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Abstract— This paper considers the problem of planning a
trajectory for a sensing robot to best estimate a time-changing
Gaussian Random Field in its environment. The robot uses
a Kalman filter to maintain an estimate of the field value,
and to compute the error covariance matrix of the estimate.
A new randomized path planning algorithm is proposed to
find a periodic trajectory for the sensing robot that tries to
minimize the largest eigenvalue of the error covariance matrix
over an infinite horizon. The algorithm is proven to find the
minimum infinite horizon cost cycle in a graph, which grows
by successively adding random points. The algorithm leverages
recently developed methods for periodic Riccati recursions to
efficiently compute the infinite horizon cost of the cycles, and
it uses the monotonicity property of the Riccati recursion to
efficiently compare the cost of different cycles without explicitly
computing their costs. The performance of the algorithm is
demonstrated in numerical simulations.

I. INTRODUCTION

In this paper we investigate the problem of controlling a
sensing robot to persistently monitor a continually changing
field in its environment [1], [2], [3]. Consider, for example,
an Unpiloted Aerial Vehicle (UAV) with a radiation sensor
that must continually fly over the site of a nuclear accident to
maintain an estimate of the time changing levels of radiation
in the region. The objective of the vehicle is to execute a tra-
jectory that optimizes, over an infinite horizon, the estimation
accuracy. For this purpose, we propose a new randomized
path planning algorithm, which we call Rapidly-expanding
Random Cycles (RRC), that returns periodic trajectories with
guaranteed infinite horizon sensing performance.

We model the environmental field as a Gaussian Random
Field (GRF) with linear dynamics driven by Gaussian white
noise, and our robot’s sensor takes measurements that are
linear combinations of the field value with additive Gaussian
white noise. This is a suitable model for a broad range
of environmental scalar fields [4], [5], [6]. The sensing
robot estimates the field using a Kalman filter, which is
well known to minimize the mean squared estimation error
for a GRF with linear dynamics. However, our problem is
distinguished from a typical estimation setting by the fact
that our robot’s sensing performance is a function of its
position. Intuitively, the robot only obtains information about
the part of the environment that is closest to it. Since the
environment is dynamic, the robot must perpetually move to
maintain an estimate of the field value at different places.
Our algorithm finds a trajectory for the agent to execute in
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order to minimize the asymptotic supremum (the lim sup) of
a measure of the quality of its field estimate. We specifically
focus on finding a periodic trajectory because recent results
in optimal sensor scheduling [7], [8] have shown that an
optimal infinite horizon sensor schedule can be arbitrarily
closely approximated by a periodic schedule.

Finding the optimal infinite horizon trajectory is in-
tractable in general, however our algorithm produces a series
of periodic trajectories with monotonically decreasing cost,
that are the minimum cost cycles in a randomly expanding
graph. More specifically, our algorithm expands a tree of
randomly generated nodes over the environment, a strategy
inspired by recent randomized planning algorithms [9]. The
algorithm maintains a record of the minimal cost cycle that
can be created in this tree by adding a single edge. When
a new point is added to the tree, the cost of several new
cycles must be evaluated and compared with the current op-
timal cycle. This is accomplished by leveraging a technique,
based on structure-preserving algorithms [10], for finding the
asymptotic solution to periodic Riccati recursions efficiently.
We also propose a new efficient test to compare the cost
of one cycle with another without explicitly calculating its
asymptotic cost. Specifically, the main contributions of this
paper are as follows:
• We propose the Rapidly-exploring Random Cycles

(RRC) algorithm to find periodic trajectories that are
suitable for persistent monitoring of a Gaussian Random
Field (Algorithm 1).

• We prove that the RRC algorithm gives the minimal cost
simple cycle in an expanding graph of random points
in the environment (Theorem 1).

• We adapt a structure-preserving algorithm to evaluate
the cost of cycles when needed, and we give a procedure
for comparing the cost of two cycles that does not
require their costs to be computed explicitly.

• We demonstrate the algorithm in numerical simulations.
The rest of this paper is organized as follows. The prob-

lem is formulated in Section II. Our trajectory planning
algorithm is described in Section III. Efficient computation
of the asymptotic cost of periodic trajectories is described
in Section IV. Section V presents the results of numerical
simulations, and we discuss conclusions in Section VI.

II. PROBLEM FORMULATION

A. Persistent Environmental Monitoring

Consider an environmental field that is modeled as a
dynamic Gaussian Random Field (GRF), {φt(qi)}qi∈D, t =
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0, 1, . . ., where D is a discrete set of points of interest.
Hence, for a fixed t, φt is a n× 1 Gaussian column vector,
where n is the number of points of interest. Let the dynamics
of the environment be described by a linear time invariant
system

φt+1 = Aφt + wt

where A is a known n × n matrix and wt is the process
noise which is assumed to be white and with known Gaussian
distribution wt ∼ N(0, Q). This is a well-established model
for spatial environmental processes [6], [11]. There are
other models however, for example [4], [5] use a linear
combination of basis functions for estimation rather than
using a GRF.

The sensing robot moves along a path in the environment
and takes measurements at fixed time intervals. Let X ⊂ Rd
and U ⊂ Rm be the state space and space of control inputs,
respectively, of the agent. The dynamics of the agent is given
by

xt+1 = xt + ut, ‖ut‖ ≤ η, x(0) = x0

where xt ∈ X , ut ∈ U , and η > 0 is the largest distance the
agent can travel in one time step. We consider these simple
dynamics so as not to complicate the scenario, although more
complex dynamics xt+1 = ft(xt, ut) can be accommodated
with some modifications. The agent has a sensor which gives
measurements at each time step according to the sensing
model

yt = C(xt)φt + vt

where vt is the measurement noise which is white, inde-
pendent from wt, and with known Gaussian distribution
vt ∼ N(0, R). Here C(xt) depends on the agent state xt,
because the agent’s sensor has a measurement quality which
diminishes with the distance to a point of interest in the
GRF. For example, we may let the ith entry of C be given
by a Gaussian decay, ci(xt) = e−‖xt−qi‖

2/2σ2
c , or we could

let the ith entry be 1 inside some radius from the agent
and zero outside the radius. Our results do not depend on
the specific form of the dependence on xt. Our goal is to
drive the sensing agent to estimate φt while minimizing some
measure of the estimation uncertainty.

We use the Kalman filter for estimation which is known
to be the optimal estimator for this model in the sense that
it minimizes the mean squared estimation error [12]. Let us
denote the estimate of φt by a random vector φ̄t, with an
expected value φ̂t. The a priori and a posteriori covariance
matrices associated with this estimate are denoted by Σt and
Σ+
t , respectively, and the filter maintains a Gaussian estimate

φ̄t ∼ N(φ̂t,Σ
+
t ). From the Kalman filter equations, we can

get a well-known Riccati equation between two consecutive
steps which updates the a priori error covariance matrix

Σt+1 = AΣtA
T −AΣtC(xt)

T

×
(
C(xt)ΣtC(xt)

T +R
)−1

C(xt)ΣtA
T +Q

We will be interested in asymptotic solutions to this recur-
sion, which are known not to depend on the initial condition
Σ0.

B. Performance Metric and Optimality

We choose the spectral radius (i.e. the largest eigenvalue)
of the a priori error covariance matrix, ρ(Σt), as the objec-
tive function. The spectral radius is an indication of the worst
error covariance over all linear combinations of the points of
interest in the environment. Our goal is to design a trajectory
for the agent such that when it moves along this trajectory
the maximum over time of the spectral radius of the error
covariance matrix will be minimized. However, in order not
to be influenced by initial transient effects we consider the
asymptotic limit of this maximum

J(σ,Σ0) = lim sup
t→∞

ρ(Σσt ), (1)

where σ denotes a trajectory for the agent, and Σσt is the
error covariance attained at time t along the trajectory σ from
initial condition Σ0. Note that the limit of the supremum
always exists even though Σσt does not necessarily converge
as t goes to infinity.

We define the Riccati map gxt : A 7→ A, t ∈ {1, 2, . . .} as

gxt := AΣtA
T −AΣtC(xt)

T

×
(
C(xt)ΣtC(xt)

T +R
)−1

C(xt)ΣtA
T +Q (2)

where A is the cone of semi-definite matrices. Initially, when
t = 0, then gx0

= AΣ0A
T+Q. Consider the error covariance

over an interval of time steps τ1, τ1 + 1, . . . , τ2, then we
define the repeated composition of gxt over the interval as

Gτ1:τ2
x (Στ1) := gxτ2 (gx(τ2−1)

(· · · gxτ1 (Στ1))), (3)

so that Σ(τ2+1) = Gτ1:τ2
x (Στ1).

One important property of the Riccati recursion (3) (which
was proven in [8], Corollary 1) is restated here in the
following Lemma.

Lemma 1 (Monotonicity of Composite Riccati Maps):
For any Σ1,Σ2 ∈ A, α ∈ [0, 1], and τ1, τ2 ∈ {0, 1, 2, . . .},
where τ1 < τ2, we have: if Σ1 � Σ2, then
Gτ1:τ2
x (Σ1) � Gτ1:τ2

x (Σ2).
We will use this monotonicity property of the composite
Riccati map to compare the asymptotic cost of different pe-
riodic trajectories without explicitly computing their infinite
horizon cost.

Denote the free state space and the obstacle region by
Xfree and Xobs, respectively. A feasible trajectory is σ :
[0,∞) 7→ Xfree, that is, σ(t) ∈ Xfree for t ∈ [0,∞). In our
case, trajectories are characterized by a sequence of discrete
waypoints, (x0, x1, x2, . . . , xT ), connected by straight lines
which satisfy ‖xi+1 − xi‖ ≤ η. Denote by M∞(x0) all
the feasible trajectories with initial condition x0 ∈ Xfree.
Denote the covariance matrix along a trajectory by Σσt . We
now give a formal statement of our persistent environmental
monitoring problem.

Problem 1 (Persistent Monitoring of a GRF): Given a
bounded and connected environment X with a dynamic
Gaussian Random Field φt(qi), over a set of points of
interest qi ∈ D, a mobile sensing agent xt+1 = xt + ut,
with initial state x0, and with a measurement system
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yt = C(xt)φt + vt, and with cost J(σ,Σ0) given by (1),
find a feasible trajectory σ∗ such that

σ∗ ∈ argmin
σ∈M∞(x0)

J(σ,Σ0) (4)

subject to

Σσt+1 = AΣσt A
T −AΣσt C(xt)

T

×
(
C(xt)Σ

σ
t C(xt)

T +R
)−1

C(xt)Σ
σ
t A

T +Q

η ≥ ‖xt+1 − xt‖.

III. TRAJECTORY PLANNING

In this section we propose an incremental sampling-
based planning algorithm to give approximate solutions to
Problem 1 by finding periodic trajectories with finite periods.
Our algorithm is similar to the RRT* algorithm [9]. However,
unlike RRT*, we maintain a record of the minimum cost
cycle that can be obtained from the random tree by adding
a single edge.

Our search for only periodic trajectories is motivated by
several powerful results proven in [7] concerning optimal in-
finite horizon sensor schedules. Let σ̃ be a periodic trajectory
with period T , so that σ̃(t) = σ̃(t+ T ) for all t = 1, 2, . . . .
Let the T waypoints in σ̃ be given by (x1, x2 . . . , xT ), and
denote the composite Riccati map that starts at xi and ends
at xi after moving around the cycle once by Gσ̃xi . Using this
notation, we summarize the extension of the results from [7]
to our Problem 1 in the following corollary.

Corollary 1: For any δ > 0, Σ0 and x0, if there exists an
optimal trajectory for Problem 1 with optimal cost J∗, then
there exists a periodic trajectory σ̃ consisting of waypoints
(x1, x2, . . . , xT ) with a finite period T (δ) ∈ Z>0 and an
infinite horizon cost J(σ̃) such that

1) 0 ≤ J(σ̃)− J∗ ≤ δ,
2) The trajectory of the covariance matrix Σσ̃t con-

verges exponentially to a unique limit cycle,
Σx1
∞ ,Σ

x2
∞ , . . . ,Σ

xT
∞ , where Σxi∞ is the fixed point of the

composite Riccati map Σxi∞ = Gσ̃xi(Σ
xi
∞), for all i =

1, 2, . . . T . So J(σ̃) = ρ(Σσ̃∞) = max
i∈{1,2,...,T}

ρ(Σxi∞),

3) J∗ is independent of Σ0.
Proof: The proof of the first two parts follows directly

from theorem 4 in [7], and the proof of the third part follows
from theorem 2 in [7].

Since the cost of a periodic trajectory can be arbitrarily
close to the optimal cost of Problem 1, we propose an
algorithm to search an expanding tree for the best feasible
periodic path.

A. Primitive Procedures

Before describing the operation of the algorithm in detail,
we provide several primitive procedures that will be used
in the algorithm. All of these except for FindCycle and
PersistentCost are identical to the primitive procedures from
[9]. Hence we very briefly describe the primitive procedures
that are the same as in [9] below (please see [9] for more
details on these). We then give more detail on the primitive
procedures that are unique to our algorithm.

Fig. 1. This figure shows the expanding tree in the RRC algorithm. The red
lines represent edges in the tree, and the green squares indicate the points
of interest in the field.

(a) Potential cycle 1. (b) Potential cycle 2. (c) Potential cycle 3.

Fig. 2. This figure shows the new potential cycles found by adding the
new point xnew to the tree in Figure 1.

SampleFree : Z>0 → Xfree returns uniformly distributed
samples from Xfree. In Figure 1, it returns xrand. Nearest :
(G, x) → v returns a vertex v ∈ V which is closest to x
in terms of the Euclidean distance. In Figure 1, it returns
xnearest. Steer : (x, y, η) → z returns a point z ∈ Xfree

such that ‖z − y‖ is minimized while ‖z − x‖ ≤ η. In
Figure 1, it returns xnew. Near : (G, x, r) → V

′ ⊆ V
returns the vertices in V that are contained in a closed ball
of radius r centered at x. In Figure 1, it returns v1, v2, v3.
CollisionFree(x, y) returns True if the straight line segment
between x and y lies in Xfree and False otherwise. Now we
describe in more detail the procedures that are unique to our
algorithm.

Find Cycles: Given a spanning tree T = (V,E′) of a
graph G = (V,E), and a point x ∈ Xfree, the function
FindCycle : (v1, v2, x) → Cv1,v2,x returns the index of the
vertices in a cycle, where v1 and v2 are any two vertices
in the spanning tree T = (V,E′), and Cv1,v2,x is a cycle
which includes vertices v1, v2 and x. In Figure 1, it returns
3 cycles, shown in Figure 2.

Calculating Cycle Cost: Given a cycle returned by the
function FindCycle, the function PersistentCost returns the
infinite horizon cost of the cycle. We will discuss how
to calculate this cost in detail in Section IV. That is,
PersistentCost : Cv1,v2,x → R>0.

B. Generating a Periodic Path

We now describe the algorithm in detail, using the primi-
tive procedures introduced above. The algorithm starts with
an initial position x0. We also initialize the algorithm by
minCycleIndex = ∅ and minCycleCost = ∞. The
variable minCycleIndex is used to store the index of all the
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vertices in the cycle with minimum cost, and minCycleCost
is used to store the cost of the cycle. In this algorithm, we
will keep a tree structure. At each step, we generate a new
random point xrand by the function SampleFree. With this
new random point and the function Nearest, we find the
nearest vertex xnearest of the graph to the random point.
Then we apply the Steer function to get a potential new
vertex xnew for the tree. These procedures are the same with
RRT* from [9].

From the function Near, we get a set Xnear which includes
the near neighbors of xnew. If there is only one vertex in
Xnear, i.e. xnearest, then we just connect xnew to xnearest.
If there are more than one vertices in Xnear, then we do
several connecting tests. That is, we do a test by connecting
xnew to any two vertices inside Xnear. By connecting the
new point with two vertices, we form a single cycle, which is
made up of the two edges connecting the vertices to the new
point plus the unique path through the tree between the two
vertices. If there are k vertices in Xnear, then we will have to
consider k(k−1)

2 cycles formed in this way. We compare the
cost of these cycles and choose the one with the minimum
cost. We can use the procedure PersistentCost to calculate
these costs.

After we find out the cycle with minimum cost among
the k(k−1)

2 cycles, we give the value of the minimum
cost to cycleCost. We also look for the indices of the
vertices inside this cycle using the function FindCycle, and
give them to cycleIndex. The variable cycleV ertexIndex
is used to store either of the two vertices which belong
to Xnear and cycleIndex. That is, cycleV ertexIndex ∈
(Xnear ∩ cycleIndex). Then we connect xnew to the vertex
in cycleV ertexIndex. So we only add one new edge
to the spanning tree, and the new graph will still be a
spanning tree. After this we compare the cost of this cycle
with minCycleCost. If it is smaller, then we update the
minCycleCost and make it equal to the cost of the new
cycle. That is, minCycleCost = cycleCost. We also update
minCycleIndex by minCycleIndex = cycleIndex. We
repeat this process for numSteps times and we get a tree
with numSteps + 1 vertices and a fundamental cycle of
this tree, i.e., minCycleIndex. This cycle is the periodic
trajectory for Problem 1. A pseudo-code implementation
of the algorithm is shown in Algorithm 1. The following
theorem characterizes the performance of the algorithm.

Theorem 1 (Properties of RRC algorithm): At each iter-
ation, the RRC algorithm gives the minimal cost feasible
simple cycle that can be created from the graph G by adding
a single edge. This cost is monotonically non-increasing in
the number of iterations.

Proof: The proof is by induction. Let σ̃i be the
trajectory given by the algorithm at iteration i, and denote
by Ξi the set of all feasible simple cycles that can be
created by adding one edge to Gi. Assume that σ̃i =
argminσ̃∈Ξi

J(σ̃). In iteration i + 1 a single vertex xnew
is added to the graph, during which all feasible cycles
that include this vertex are compared. Denote these new
cycles by ∆Ξi+1, and note that Ξi+1 = Ξi ∪ ∆Ξi+1.

The cycle with minimal cost among {σ̃i,∆Ξi+1} is taken
to be σ̃i+1, hence σ̃i+1 = argminσ̃∈{σ̃i,∆Ξi+1}J(σ̃) =
argminσ̃∈Ξi∪∆Ξi+1

J(σ̃) = argminσ̃∈Ξi+1
J(σ̃). The initial

case for the induction follows from the fact that x0 is the
minimum cost cycle in its own trivial graph. To prove mono-
tonicity, notice that Ξi+1 ⊃ Ξi, therefore minσ̃∈Ξi+1

J(σ̃) ≤
minσ̃∈Ξi J(σ̃).

Algorithm 1 Rapidly-exploring Random Cycles (RRC)
1: V ← x0; E ← ∅; minCycleIndex ← ∅;
minCycleCost←∞;

2: for i = 1 to numSteps do
3: xrand ← SampleFree;
4: xnearest ← Nearest(G = (V,E), xrand);
5: xnew ← Steer(xnearest, xrand, η);
6: if CollisionFree(xnearest, xnew) then
7: Xnear ← Near(G = (V,E), xnew, r);
8: V ← V ∪ xnew;
9: if size(Xnear) == 1 then

10: E ← E ∪ (xnearest, xnew);
11: else
12: cycleCost← inf;
13: cycleV ertexIndex← xnearest;
14: cycleIndex← ∅;
15: for any two (x1

near, x
2
near) ∈ Xnear do

16: if CollisionFree(x1
near, xnew) and

CollisionFree(x2
near, xnew) then

17: σ̃ ← FindCycle(x1
near, x

2
near, xnew);

18: J(σ̃)← PersistentCost(σ̃);
19: if J(σ̃) < cycleCost then
20: cycleV ertexIndex ← x2

near (or x1
near);

21: cycleCost← J(σ̃);
22: cycleIndex← σ̃;
23: end if
24: end if
25: end for
26: E ← E ∪ (cycleV ertexIndex, xnew);
27: if cycleCost < minCycleCost then
28: minCycleCost← cycleCost;
29: minCycleIndex← cycleIndex;
30: end if
31: end if
32: end if
33: end for
34: return G = (V,E), minCycleIndex, minCycleCost;

IV. EFFICIENT COMPUTATION OF CYCLE COST

In the primitive procedure PersistentCost, we need to
calculate the infinite horizon cost of a cycle. Let’s consider
such a cycle σ̃ with waypoints (x1, x2, . . . , xT ) and period
T , when taking measurements along this cycle, we will get
a discrete-time stochastic periodic system with period T .

φt+1 = Aφt + wt, wt ∼ N(0, Q) (5a)
yt = C(xt)φt + vt, vt ∼ N(0, R) (5b)
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where C(xt) = C(xt+T ). Also, by doing Kalman filtering
along this cycle, we will get a discrete-time periodic Riccati
equation (DPRE) with period T .

Σxi−1
∞ = AΣxi∞A

T −AΣxi∞C(xi)
T

×
(
C(xi)Σ

xi
∞C(xi)

T +R
)−1

C(xi)Σ
xi
∞A

T +Q (6)

[13] proves that there exists a unique symmetric periodic
positive semidefinite (SPPS) solution to this DPRE if and
only if the periodic system (5) is stabilizable and detectable.

Next we will discuss how to solve for this DPRE nu-
merically and efficiently. One naive way is to start with an
initial covariance matrix and calculate an approximation by
brute force. In this work, we will use the structure-preserving
algorithm introduced in [10] to calculate the SPPS solution,
because to the best of our knowledge this method is the most
efficient approach.

A. Structure-preserving Algorithms for DPRE

Structure-preserving algorithms consist of structure-
preserving swap and collapse algorithm (SSCA) and
structure-preserving doubling algorithm (SDA). Basically,
this algorithm uses the SSCA algorithm to get an equivalent
Riccati equation for the periodic Riccati equation, and then
it uses the SDA algorithm to solve this equivalent Riccati
equation and get ΣxT∞ , from which the other Σxi∞, (i =
T−1, . . . , 1) can be found through equation (6). More details
can be found in [10].

B. Comparing the Cost of Different Cycles

In line 19 of Algorithm 1, when we compare the infinite
time horizon cost of two cycles, a naive method is to use the
function PersistentCost to calculate the cost of the two cycles
respectively, and then compare them. However, it is always
good if we can avoid calculating the infinite horizon cost of
some cycles, because it increases the computation burden of
our algorithm even though the structure-preserving algorithm
is very efficient. As in Corollary 1, let the composite Riccati
map corresponding to one complete cycle of a periodic
trajectory σ̃ that starts and ends at xi be denoted by Gσ̃xi , and
recall that J(σ̃) = max

i=1,2,...,T
ρ(Σxi∞). We have the following

theorem to compare the cost of two cycles.
Theorem 2 (Cycle Cost Comparison): Consider two peri-

odic paths, σ̃x with period Tx and points (x1, x2, . . . , xTx),
and σ̃y with period Ty and points (y1, y2, . . . , yTy ), and let
k = argmaxi=1,2,...,Tx

ρ(Σxi∞). We have that

1) if there exists one G
σ̃y
yi (Σxk∞ ) � Σxk∞ , then J(σ̃y) ≥

J(σ̃x),
2) if Gσ̃yyi (Σxk∞ ) � Σxk∞ for all i = 1, 2, . . . , Ty , then

J(σ̃y) ≤ J(σ̃x),
3) if there exists at least one (G

σ̃y
yi (Σxk∞ )−Σxk∞ ) remaining

indefinite and there is no G
σ̃y
yi (Σxk∞ ) � Σxk∞ for i =

1, 2, . . . , Ty , then we can NOT compare J(σ̃y) and
J(σ̃x).

Proof: Here we only prove part 1. The proof for
part 2 is similar, and by proving part 1 and part 2, we

proved part 3. Without loss of generality, let us consider
point y1 in the path σ̃y . By part 3 of Corollary 1, J(σ̃y) is
independent of where we start. So we choose Σy

1

0 = Σx
k

∞ as
the initial covariance matrix for the Riccati recursion along
σ̃y . We denote the trajectory of the covariance matrix at y1

by Σy10 ,Σ
y1
Ty
,Σy12Ty

,Σy13Ty
, . . . ,Σy1∞, so

if Σy1Ty = Gσ̃yy1 (Σxk∞ ) � Σxk∞

then Σy12Ty
= Gσ̃yy1 (Σy1Ty ) � Gσ̃yy1 (Σxk∞ ) = Σy1Ty � Σxk∞

...
Σy1∞ � Σxk∞

⇒ ρ(Σy1∞) ≤ ρ(Σxk∞ ),

where the inequalities are an application of the monotonicity
of the composite Riccati map from Lemma 1. Similarly, we
can prove that ρ(Σyi∞) ≤ ρ(Σxk∞ ), i = 2, . . . , Ty . So we have

J(σ̃y) = max
i=1,2,...,Ty

ρ(Σyi∞) ≤ ρ(Σxk∞ ) = J(σ̃x)

C. Computational Complexity Analysis

As discussed in [9], the CollisionFree procedure can be
executed in O(logdM) time, M is the number of obsta-
cles in the environment and d is the dimension of the
environment. As for the procedure Nearest, it has time
complexity O(log|V |), where |V | is the number of vertices;
and O(logN) time is spent on the procedure Near, where
N is the number of iterations. In the procedure FindCycle,
we use depth-first search (DFS) to find the cycles inside the
tree. For DFS in a tree, the time complexity is O(|V |) [14].
Assume we have k vertices in Xnear, then we need to find
out the k(k−1)

2 cycles. Hence the time complexity of this
procedure is O(k(k−1)

2 |V |). Because k is bounded, we can
write the complexity of this procedure as O(|V |).

Hence, in RRC at each iteration we have O(logdM) time
spent on collision checking, O(log|V |) time spent on finding
nearest vertex, O(logN) time spent on finding near vertices,
O(|V |) time spent on finding cycles and O(k2) time spent on
finding the cycle with minimum cost. So with N iterations,
the time complexity of RRC is O(N(logdM + log|V | +
logN + |V |+ k2)). Since d and M are fixed, |V | = N + 1
and k is bounded, the time complexity of RRC is O(N2).

V. NUMERICAL SIMULATIONS

This section presents numerical simulations of our algo-
rithm. We compare the performance of our algorithm with an
alternative method based on a Traveling Salesperson (TSP)
tour of the points of interest.

We choose the parameters of the simulation as follows.
The environment is a square region with four rectangular
obstacles of varying sizes. There are 9 points of interest
arranged in an even grid in the environment. We choose the
dynamics of the field as A = 0.99I9, where I9 is the 9× 9
identity matrix. The reason why we choose such a dynamics
for the field is that, by such an A matrix, the field is stable,
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(a) Black blocks: obstacles; green
squares: points of interest; blue
curves: rapidly-exploring random
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(b) This plot shows the decreasing
cost of the cycle found by the
RRC algorithm for the simulation
in Fig. 3(a). It has smaller cost
than the cycle given by TSP.

Fig. 3. Numerical results of our RRC algorithm with 10000 iterations and
TSP with path given by RRT.

since all the characteristic multipliers of the system belong to
the open unit disk. So the periodic systems along any of the
cycles in the field is stabilizable and detectable. Hence the
periodic Riccati equation has a unique symmetric periodic
positive semidefinite solution. The covariance matrix of
the process noise is Q = 5I9. We let each entry of the
measurement function be given by a Gaussian function in
the distance between the agent and the point of interest, so
cj = e−‖x−qj‖

2/2σ2
c , and C = [c1 · · · c9]. Here the standard

deviation was chosen as σc = 6. The covariance matrix of
the measurement noise is R = 10.

We initialize the RRC algorithm with x0 = (0, 0). For
the primitive procedures, we choose η = 5 for the Steer
function. The r in the function Near is chosen as r =
min{γ(log |V |/|V |)1/2, η}, where γ = (6µ(Xfree)/ζ2)1/2+
1, µ(Xfree) is the volume of the free space, ζ2 is the volume
of the unit ball in R2, and |V | denotes the number of vertices
in V .

As there are no current methods besides RRC to find
periodic sensing trajectories for infinite horizon sensing, we
use a naive TSP procedure as a point of comparison. The
TSP trajectory is found by planning a TSP tour through the
points of interest, and then connecting an executable path
between points of interest using the standard RRT algorithm,
with η = 5. An example trajectory is shown in Figure 3(a).

From Figure 3(a), we can see that the cycle returned
by RRC is quite different from the cycle given by TSP.
The costs of the two methods are shown as a function of
the number of RRC iterations in Figure 3(b). From this
figure, the cost of the cycle returned by the RRC algorithm
decreases with the number of iterations, which verifies the
monotonicity property of the algorithm. In the beginning,
the cycle found by RRC may have larger cost than the
cycle given by the TSP method, but as the tree expands
RRC can find a cycle which has smaller cost than the cycle
given by TSP. The lowest cost cycle in the simulation was
found at about iteration 600, as can be see in Fig. 3(b).
A hardware implementation with an m3pi robot execut-

ing the RRC trajectory in a motion capture environment
can be found at http://people.bu.edu/schwager/
Movies/LanICRA13ExperimentMovie.mp4.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we proposed an incremental sampling-based
algorithm to plan a periodic trajectory for a robot that tries
to minimize the largest eigenvalue of the error covariance
matrix over an infinite horizon. The algorithm maintains the
minimum cost simple cycle in an expanding graph. We use
recent results for the periodic Riccati recursion to efficiently
compute the infinite horizon cost of the cycles. We also
leverage the monotonicity property of the Riccati recursion to
efficiently compare the cost of cycles. Numerical simulations
and hardware experiments demonstrated the effectiveness of
this algorithm. In the future we plan to investigate online ver-
sions of this algorithm in which the environment dynamics
are not known a priori. We will also extend the algorithm to
multiple robots monitoring an environment simultaneously.
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