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AbstractÑ This paper introduces the Buffered Input Cell as
a reciprocal collision avoidance method for multiple vehicles
with high-order linear dynamics, extending recently proposed
methods based on the Buffered Voronoi Cell [1] and generalized
Voronoi diagrams [2]. We prove that if each vehicleÕs control
input remains in its Buffered Input Cell at each time step,
collisions will be avoided indeÞnitely. The method is fast,
reactive, and only requires that each vehicle measures the
relative position of neighboring vehicles. We incorporate this
collision avoidance method as one layer of a complete lane
change control stack for autonomous cars in a freeway driving
scenario. The lane change control stack comprises a decision-
making layer, a trajectory planning layer, a trajectory following
feedback controller, and the Buffered Input Cell for collision
avoidance. We show in simulations that collisions are avoided
with multiple vehicles simultaneously changing lanes on a
freeway. We also show in simulations that autonomous cars
using the BIC method effectively avoid collisions with an
aggressive human-driven car.

I. INTRODUCTION

According to current statistics, autonomous cars are more
likely to be involved in a collision than human-driven cars
per mile, but they are less-often found to be at fault [3],
[4]. One explanation for this paradoxical phenomenon is
that current autonomous driving polices do not adequately
predict or correctly account for the future control actions
of other vehicles. This hypothesis is also supported in an
analysis of a collision during the DARPA urban challenge
[5], [6]. In this paper we propose a reciprocal strategy that,
when integrated into an autonomous driving control stack,
can effectively avoid collisions while taking into account the
control actions of other drivers.

The key to the collision avoidance strategy is for each ve-
hicle to compute a set of allowable inputs, called the Buffered
Input Cell (BIC), that provides a reciprocal guarantee—
as long as all vehicles’ inputs remain in their BICs at the
current time step, there will be no collisions at the next time
step. Each vehicle can compute its BIC quickly knowing
only the relative positions of neighboring vehicles (unlike
other methods that require velocities), and then projects its
commanded control input into this set to avoid collisions. Our
BIC concept is inspired by the Buffered Voronoi Cell (BVC)
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Fig. 1. An example of three autonomous vehicles using Buffered Input
Cells (BIC) to avoid collision in a freeway driving scenario. The buffered
Voronoi cell (BVC) of the corresponding vehicles are shaded in different
colors. The BIC is obtained by mapping the BVC constraint in the position
space into the control input space using vehicle dynamics. Each vehicle
chooses its control input to be in its own BIC to avoid collision.

[1] for collision avoidance with single integrator robots. Our
method generalizes the BVC to vehicles with higher order
dynamics and adapts generalized Voronoi diagrams [2] to
deal with non-circular geometry, both of which are crucial to
freeway driving. We give a proof of collision avoidance with
the BIC for vehicles with linear dynamics of any order under
a controllability-like assumption. We incorporate the BIC
collision avoidance strategy as one layer in a lane change
control stack for autonomous freeway driving, and show in
simulations that collisions are avoided with multiple vehicles
performing simultaneous lane change maneuvers on a free-
way. We also compare simulation performance with a naive
model predictive control (MPC) lane change controller, and
find that the MPC controller sometimes leads to collisions,
while our BIC controller always avoids collisions. We also
show that the algorithm effectively avoids collisions with
an aggressive human driver, even though the human driver
violates the reciprocal assumptions of the BIC.

A large body of research in collision avoidance in the driv-
ing context is concerned with path planning in the presence
of other vehicles and road structures [7]–[9]. A sampling-
based approach is found to be effective in real-time mo-
tion planning for autonomous vehicles when combined with
closed-loop predictions [10]. Some other work also focuses
on trajectory planning [11], and the tunability and stability
of the planning is presented in [12]. However, most planning
algorithms [13] carry the assumption that other vehicles
maintain constant speeds and thus fail to account for dynamic
traffic environments. One possible solution to this conundrum
is to use reciprocal collision avoidance approaches such as
Reciprocal Velocity Obstacle (RVO) [14], [15]. In [16], a
similar approach to our BIC method is proposed, where the
authors extend RVO by projecting position constraints into
control space. However, RVO methods require measuring
relative position and velocity of other vehicles, while our BIC
method only requires position measurements. A nonlinear
control theoretic tool called Control Barrier Functions (CBF)
is introduced in [17], [18] to prevent collisions in a minimally



invasive fashion by solving a quadratic programming (QP).
In contrast, our method uses a reciprocal assumption about
the actions of the other agents, and also takes into account
the physical geometries of the agents. Additionally, intention
models of the traffic participants are shown to be crucial
for autonomous driving, and are commonly dealt with by
partially observable Markov decision processes (POMDPs)
[19], [20], which characterize the uncertainty in knowledge
of other drivers’ policies. We do not explicitly model other
vehicles’ policies, but instead focus on provable safety by
providing a deterministic method that relies on the BIC
reciprocal constraint assumption.

The remainder of this paper is organized as follows. In
Sec. II we define the Buffered Input Cell and prove properties
about collision avoidance. We describe the lane change
control stack with the BIC layer in Sec. III. We demonstrate
our method as applied to simulated vehicles and compare
performance with an MPC lane change controller in Sec. IV
and offer concluding remarks in Sec. V.

II. BUFFERED INPUT CELL FOR LINEAR SYSTEMS

In this section, we describe our core technical contribution,
the Buffered Input Cell (BIC), which is developed based on
the previously introduced concepts of generalized Voronoi
diagrams [2] and the Buffered Voronoi Cell (BVC) [1]. The
BIC extends the collision avoidance properties of the BVC to
general linear systems by mapping the constraints in position
space into the control input space.

A. Collision Avoidance with the Buffered Voronoi Cell
Consider N robots whose physical geometries are given

by closed convex sets Ot
i . First define the distance between

two convex sets:
Definition 1: (Distance Between Two Convex Sets) Let A

and B be two closed convex sets, the distance between the
two sets is the distance between the closest points in the two
sets.

d(A,B) := min ka⇤ � b

⇤k, s.t. a⇤ 2 A, b

⇤ 2 B (1)
Accordingly, a collision-free configuration of all N robots

is defined as:
Definition 2: (Collision-free Configuration) A collision-

free configuration of a group of N robots is one where

d(Oi ,Oj ) > 0, 8i 6= j

Recall in collision-free configurations, the generalized
Voronoi cell of robot i is defined as the set of points q 2 Rd

which satisfies:

Vi := {q | kq�p⇤
i k < kq�p⇤

j k, kp⇤
i �p⇤

j k = d(Oi ,Oj ),

p⇤
i 2 Oi , p⇤

j 2 Oj 8j 6= i}. (2)

Note that a robot is contained in its generalized Voronoi cell
in a collision-free configuration (see Lemma 1) [2]. The gen-
eralized Voronoi cell for robot i is an open set that excludes
the generalized Voronoi edge. The generalized Voronoi edge
is a function of the geometries and configuration of robot
i and its neighbors, and hence changes dynamically as the
robots move. In order to avoid cumbersome notation, we

denote this dependence by V t
i . We then define the Buffered

Voronoi Cell1 (BVC) [21] by retracting the boundary of the
generalized Voronoi cell by the body of the robot,

¯V t
i := V t

i  (Ot
i � pt

i ), (3)

where A B denotes the Minkowski difference of two sets
A and B:

A B = {c | c + B ✓ A}
Note that this is similar to “growing the obstacles” to
compute the configuration space for path planning [22], [23].

By definition of the Minkowski difference, the BVC has
the property that if the robot center position is within the
BVC at time t, then the whole body of the robot is within
its Voronoi cell at time t. Under the assumption that the robot
orientation does not change, this can be used for reciprocal
collision avoidance because if every robot stays inside its
current BVC at the next time step, pt +1

i 2 ¯V t
i for all t, then

collisions are prevented indefinitely. A crucial property of
the BVC is stated below:

Lemma 1: (Property of the BVC) A group of N robots
with center positions pi are in a collision-free configuration,
if and only if their center positions pi 2 ¯V t

i , where ¯V t
i s

(i = 1, 2, . . . , N ) are the Buffered Voronoi Cells from a
collision-free configuration.

Proof: Firstly, by the BVC definition given in (3), it
follows directly that pi 2 ¯V t

i , Oi ✓ V t
i . Thus, to prove

the result, we need to show that Oi ✓ V t
j ,Oj ✓ V t

j ,
d(Oi ,Oj ) > 0, 8j 6= i. We prove d(Oi ,Oj ) > 0 )
Oi ✓ V t

i by contradiction. Consider robots i and j that
d(Oi ,Oj ) = ||p⇤

i � p⇤
j || > 0. Assume 9 a 2 Oi , s.t. a /2 Vi ,

i.e. ka� p⇤
i k � ka� p⇤

j k. It is obvious that a 6= p⇤
i .

ka� p⇤
i k � ka� p⇤

j k
,ka� p⇤

i k2 � (a� p⇤
j )

T
(a� p⇤

j )

,ka� p⇤
i k2 � (a� p⇤

i + p⇤
i � p⇤

j )
T
(a� p⇤

i + p⇤
i � p⇤

j )

,2(a� p⇤
i )

T
(p⇤

i � p⇤
j ) + (p⇤

i � p⇤
j )

T
(p⇤

i � p⇤
j )  0

)(a� p⇤
i )

T
(p⇤

j � p⇤
i ) � 0

Since Oi is convex, according to Eqn. (1), we have

||↵a + (1� ↵)p⇤
i � p⇤

j || � ||p⇤
i � p⇤

j ||, 8↵ 2 [0, 1] . (4)

Substitute ↵ =

(a�p i)T (p j�p i)
(a�p i)T (a�p i) � 0, Eqn.(4) becomes

((a�p i)T (p j�p i))2

(a�p i)T (a�p i)  0, which contradicts ||p⇤
i � p⇤

j || > 0

and a 6= p⇤
i . Thus, we have d(Oi ,Oj ) > 0 ) Oi ✓ V t

i .
The proof of Oi ✓ V t

i ,V t
j ,Oj ✓ V t

j ) d(Oi ,Oj ) > 0

. d(Oi ,Oj ) > 0 ( Oi ✓ V i ,V t
j ,Oj ✓ V t

j follows
straightforward from Eqn. (3). Thus, the results follows.

For single integrator robots [1], ensuring that pt +1
i 2 ¯V t

i
is straightforward, however for high order robot dynamics,
we require a different technique.

1The definition we give here is more general than the previous definition
from [1] equation (1) and (3). The two definitions are equivalent in the case
that Oi is a ball of radius r.



B. Collision Avoidance with the Buffered Input Cell
We propose the Buffered Input Cell (BIC) to ensure

collisions are avoided even when the robots have translational
linear dynamics of arbitrary order. High order linear models
can capture momentum and other complex dynamical effects
that are particularly important in freeway driving. Instead
of enforcing the collision-free constraint in the position
space, we produce a constraint in the control input space by
exploiting the robot dynamics. We follow a procedure similar
to the generalized velocity obstacle concept from [16].

Consider the following discrete linear dynamics:

x t +1
i = Fi x t

i +Gi u t
i , (5)

where x t
i 2 Rn is the state, ut

i 2 Rm denotes the control
input, and Fi and Gi are matrices from the robot model
that are known by robot i, but not by any other robot. We
assume in this linear model that the orientation of the vehicle
does not change, which is approximately true for linearized
vehicle dynamics at freeways speeds. The position of the
ith vehicle pt

i is related to the vehicle state by the linear
mapping (again only known by robot i),

pt
i = Ci x t

i . (6)

Substituting (5) into (6), we obtain

pt +1
i = Ci Fi x t

i + Ci Gi u t
i . (7)

Define a matrix Ji := Ci Gi . We require the following
assumption related to controllability.

Assumption 1: (Strong Controllability) The robot dynam-
ics are such that Ji = Ci Gi is invertible for all robots i.

Note that a necessary condition for Assumption 1 is that
there are an equal number of input dimensions and position
dimensions, m = d. We find in Sec. III-E that this condition
is satisfied for a linearized kinematics bicycle model of a car.

Definition 3: (The Buffered Input Cell) For a robot with
linear dynamics (5), position model (6) and invertible Ji , the
BIC for the robot at time step t is defined as

BIC

t
i = J

�1
i (

¯V t
i � (�Ci Fi x t

i )), (8)

where ¯V t
i is the robot’s BVC.

Intuitively, the BIC represents the set of one-step control
inputs that will result in a robot position inside the current
BVC at the next time step. An example of a BIC is illustrated
in Fig. 2.

Lemma 2: (One Step Collision Avoidance) Under As-
sumption 1, if the robots are collision free at time t, and
if each robot’s control input lies inside its non-empty BIC at
time t, ut

i 2 BIC

t
i , the robots will remain collision free at

time t+ 1.
Proof: Firstly, if the robots are collision free at time

t, their BVCs at time t are non-empty (see Lemma 1).
Therefore by (8), their BICs are also non-empty at time
t. Now, from (7), if u

t
i 2 BIC

t
i , then p

t +1
i 2 Ci Fi x t

i +

Ci Gi J
�1
i (

¯V t
i � Ci Fi x t

i ) =

¯V t
i , meaning the position of

each robot at t + 1 is in its BVC at time t. Therefore, by
the definition of the BVC, they remain in a collision-free
configuration at time t+ 1.

Voronoi cell

BVC in position space

Vehicle with
geometry	*

BIC in control space

+(-)

+(- + Δ-)
1(-)

Fig. 2. Example of BVC constraints (in blue) in position space and the
corresponding BIC (in red) constraints in control space. Note that the shape
is not necessarily preserved during the mapping.

Behavioral
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Collision
Avoidance
Constraint

Traffic
Environment

Position of
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Vehicles

sensors

Vehicle Feedback
Control

Trajectory
Planning

and Tracking

sensors

Fig. 3. Architecture for autonomous freeway driving using BICs. The
information flow and various layers of control are visualized.

An induction argument on Lemma 2 leads to the main
result as follows.

Theorem 1: (BIC Collision Avoidance) Under Assump-
tion 1, if all robots begin in a collision free configuration at
t = 0, and if their control inputs lie in their BVCs at all time
steps, ut

i 2 BIC

t
i 8t � 0 and 8i, collisions will be avoided

for all time.
Proof: The base case for the induction is that the robots

are collision free at t = 0. Lemma 2 provides the induction
step. This completes the proof.

Remark 1: (Reciprocity and Robustness) Theorem 1 re-
quires reciprocity in the sense that all robots obey their own
BIC constraint, although they may have entirely different
control policies. However, we observe in simulation that
even if some vehicles violate this reciprocity assumption
(e.g. human driven vehicles), collision can still be avoided.
Simulation results in Sec. IV support this assertion.

III. AUTONOMOUS LANE CHANGE CONTROL WITH BICS

In this section, we apply the BIC approach we introduced
in the previous section to autonomous freeway driving. We
use the BIC constraint to ensure that multiple autonomous
vehicles do not collide during simultaneous lane change
maneuvers. We implement a control stack for autonomous
lane change maneuvers with the BIC constraint to avoid
collision, along with other high-level decision making tools,
trajectory planning, and differential flatness theory.

A. Overall Architecture
The architecture of the proposed lane change method is

illustrated in Fig. 3. As shown in the figure, a lane change
maneuver comprises four main steps:
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Fig. 4. Illustration of the bicycle model (in dark grey) for a four-wheel
vehicle (in light grey). Both wheels in the bicycle model can rotate to move
the car in the forward direction. The front wheel can also rotate about its
vertical axis, giving a non-holonomic rolling constraint.

1) Behavioral decision making. Based on a map, route
and sensor information, this layer selects an appropri-
ate high-level behavior (such as lane change).

2) Trajectory planning and tracking. A reference trajec-
tory and control input can be obtained using differen-
tial flatness.

3) Buffered Input Cell constraint. The BIC layer takes the
reference control input and constrains it to be inside
the current BIC to ensure safety. If the commanded
control input exceeds the admissible BIC region, a
nearest point on the BIC is chosen.

4) Vehicle Feedback Control. Low-level, closed-loop con-
trol to ensure robustness and stability.

B. Behavioral Decision Making Layer
For the determination of high-level commands, we adopt

the Multi-Policy Decision Making (MPDM) method pro-
posed in [24]. The MPDM method constantly evaluates and
selects the best policy for the commanded vehicle from a set
of closed-loop policies. The consequences of the candidate
closed-loop policies are predicted by conducting forward
simulations. We use the longitudinal distance change during
the forward simulation as the score J , i.e.,

J =

Z th

t 0
ẋdt = x(th )� x(t0),

where t0 and th are the start and end time.

C. Vehicle Dynamics Model and Differential Flatness
We use the bicycle model [25], as illustrated in Fig. 4,

to characterize the kinematics of the autonomous vehicle.
We start with the continuous time model, and then derive
a linearized discrete time model to incorporate the BIC
constraint. We suppress the vehicle index i in this section to
simplify notation. Vehicle states at time t are represented by
x(t) = [x(t), y(t), ✓(t), v(t)]

T 2 R4, describing the position
of the rear axle center point (x(t), y(t)), the vehicle heading
✓(t), and the magnitude of the velocity v(t). Control inputs
of the vehicle are acceleration and steering angle represented
by u(t) = [a(t),�(t)]. The vehicle kinematics is expressed
as

ẋ(t) = v(t) cos ✓(t), ẏ(t) = v(t) sin ✓(t) (9a)

˙

✓(t) =

v(t)

L

tan�(t), v̇(t) = a(t), (9b)

Fig. 5. An example of nominal trajectory during lane change maneuvers.
The trajectory is parameterized by time polynomials from the start position
(bottom left) to the final position (top right).

where L is the vehicle length from front axle center point to
rear axle center point.

Note that it is nontrivial to specify a feasible reference
trajectory for the vehicle with nonholonomic constraints (9).
Therefore, we employ differential flatness [26] to facilitate
the design of a reference trajectory that can always satisfy
the differential kinematic constraints. Here we show that the
bicycle model is differentially flat and also find the formula
from the flat output to the nominal trajectory inputs.

Briefly, a nonlinear system ˙x = f(x , u) is differentially
flat if there exists a smooth function ↵ such that

� = ↵(x , u, . . . , u(p)
),

for some finite number of time derivatives p, where � is
called the flat output. We can also write the solution of the
nonlinear system as a function of � and its time derivatives

x = �(�, �̇, . . . ,�

(p)
), u = �(�, �̇, . . . ,�

(p)
),

where the two functions �, � are are smooth and are called
the endogenous transformation.

The bicycle model in (9) can be shown to be differentially
flat with the flat output � = [�1 �2]

T
= [x y]

T and the
endogenous output transformation �, � are

x = �1, y = �2 (10a)

✓ = arctan 2(�̇2, �̇1), v =

q
�̇1

2
+ �̇2

2 (10b)

a =

�̇1�̈1 + �̇2�̈2p
�̇

2
1 + �̇

2
2

, � = arctan(

�̇1�̈2 � �̇2�̈1

(�̇

2
1 + �̇

2
2)

3
2

l).

(10c)

Using differential flatness, we can specify a low-dimensional
position trajectory �(t) containing only x(t) and y(t), and
generate the entire state trajectory (x(t), y(t), ✓(t), v(t)) as
well as the open-loop control input trajectories a(t) and �(t).
Applying the input trajectory (a(t),�(t)) to the nonlinear
model without noise or any modeling errors will drive the
vehicle’s position along the planned trajectory.

D. Trajectory Generation and Tracking

We generate a trajectory for lane changing using poly-
nomial splines in time, similarly to [27]. Consider the
scenario where the vehicle decides to change lane from state
x(0) = [x(0), y(0), ✓(0), v(0)]

T to terminal state x(T ) =

[x(T ), y(T ), ✓(T ), v(T )]

T . These constraints can be imposed
in the trajectory by specifying the initial and terminal con-
ditions on �1, �2, �̇1 and �̇2. A polynomial trajectory can



thus be expressed in the form

�(t) =


�1(t)

�2(t)

�
=

3X

i =0

↵i t
i
, (11)

with constraints

�(0) = [x(0) y(0)]

T
, �̇(0) = [ẋ(0) ẏ(0)]

T (12a)
�(T ) = [x(T ) y(T )]

T
, �̇(T ) = [ẋ(T ) ẏ(T )]

T
, (12b)

where ↵i 2 R2⇥1. With the eight constraints above, we can
obtain a unique solution for the eight unknown parameters
↵i , i = 0, . . . , 3 in (11). Fig. 5 shows an example of a
generated trajectory. The control inputs and reference trajec-
tory are then used in a feedforward-feedback controller that
drives the vehicle along the trajectory despite disturbances
and modeling errors.

E. BIC Collision Avoidance Layer

The BIC requires a discrete time, linear dynamical model
for the car. Therefore, we linearize the vehicle model at each
time step, and discretize in time by computing the matrix
exponentials of the matrices from the continuous time model.
Specifically, we linearize the model (9) about the current
operating state (xt , yt , ✓t , vt ), with ✓t = 0 and �t = 0.
At freeway speeds heading and steering angle are typically
close to zero, so we expect this linearized model to closely
match the nonlinear model. The BIC also assumes that the
robot orientation does not change during the process, which
is approximately true with the small angle assumption. The
resulting linearized equations are:

ẋ = vt cos ✓t + (v � vt ) cos ✓t � vt (✓ � ✓t ) sin ✓t = v,

ẏ = vt sin ✓t + (v � vt ) sin ✓t + vt (✓ � ✓t ) cos ✓t = vt ✓

˙

✓ =

1

L

⇣
vt (�� �t )

cos

2
�t

+ (v � vt ) tan�t + vt tan�t

⌘
=

vt�

L

v̇ = a

Taking the second-derivative of x(t) and y(t) yields the
simple linearized model,

ẍ = a, ÿ =

vt
2

L �.

(14)

Note that the linearized bicycle model is decoupled in x and
y directions under this linearization. The linearized model
can be expressed in state space form ˙x = At x + Bt u and
p = Ct x , with matrices

At =

2

664

0 0 0 1

0 0 vt 0

0 0 0 0

0 0 0 0

3

775 , Bt =

2

664

0 0

0 0

0

vt
L

1 0

3

775 , C =


1 0 0 0

0 1 0 0

�
.

To discretize the model in time, we assume constant control
inputs in a small time interval, i.e., u(t) = [at ,�t ] from time
t to t + �t. Given initial state x(t) = x t at time t, we
solve x(t + �t) = Ft x t + Gt ut , where Ft = e

A t! t and
Gt =

R ! t
0 e

A t!
Bt d⌧ .

Fig. 6. Three snapshots during simulation (Section IV-A). Vehicles start
lane changing in the top figure. Red vehicle enters the target lane in the
middle figure, and then finishes lane changing in the bottom figure. No
collision occurred during the simulation.

Ft =

2

664

1 0 0 �t

0 1 �tvt 0

0 0 1 0

0 0 0 1

3

775 and Gt =

2

664

! t 2

2 0

0

(! tv t)2

2L
0

! tv t
L

�t 0

3

775 .

(15)

We therefore obtain the vehicle’s position as a function of
the discrete time state and control input as

pt +! t = CFt x t + CGt ut (16)

Recall, to apply the BIC, we require from Assumption 1 that
the matrix

Jt = CGt =

"
! t 2

2 0

0

(! tv t)2

2L

#
(17)

be invertible. For vt > 0, the matrix Jt is indeed invertible
for this linearized vehicle model, and the case where vt =

0 is irrelevant to our high speed freeway driving scenario.
With these definitions for Ft , Gt , C and Jt updated by each
vehicle at each time step, we project the inputs from the
feedback controller into the BIC for collision avoidance, as
described in Sec. II.

IV. SIMULATION

In this section, simulations are conducted to evaluate the
performance of our algorithm in a freeway lane change sce-
nario. The first simulation has multiple autonomous vehicles
performing conflicting lane changes simultaneously using
our BIC algorithm, whereas the second one includes a vehi-
cle controlled by an adversarial human driver in order to test
the robustness of our approach. In the third simulation, we
assessed and compared our method to MPC method, which is
a major field of research on its applications to autonomous
vehicles. The autonomous vehicles use the linearized and
discretized dynamics for their own BIC computation, how-
ever their motion in the simulation is determined by their
full nonlinear dynamics, again to verify the robustness of
the approach.



Fig. 7. Velocities in x and y directions of the human-driven vehicle.
Green regions represent the time durations when human-operated vehicle
was inside its BVC , while red region represents the human-operated vehicle
was outside its BVC.

Fig. 8. Distance between the human controlled vehicle and BIC controlled
vehicle during the simulation (in blue line). The inter-vehicle distance was
always above 0, indicating that no collision occurred.

A. Two Vehicles Changing Lanes Simultaneously
Consider a common maneuver in freeway driving as

visualized in Figure 1, where two adjacent vehicles decide
to change lanes simultaneously and their planned trajectories
intersect. Three vehicles are driving in the same direction
(from left to right) on a two-lane, one-way highway. The
initial configurations of all vehicles are shown in Fig. 1. The
green vehicle travels at a constant and relatively low speed
while the red and blue vehicles are trying to change lanes
starting from the same time using our proposed lane change
maneuver control architecture. The lane change maneuver
time is set to Tc = 4.0s for blue vehicle and Tc = 3.9s for
the red vehicle. Initial and target speeds for the three vehicles
are vblue = 35m/s, vred = 30m/s, vgreen = 35m/s. Three
snapshots are shown in Fig. 6 during the simulation at time
0.90s, 1.60s and 2.35s. In the top figure in Fig. 6, the blue
vehicle slowed down thus the red vehicle continues to pass
the blue vehicle and change lane. Simulation results show
that our algorithm successfully navigates the two vehicles to
change lanes without collision.

B. Interaction Between an Autonomous Vehicle and a Hu-
man Driver

In this simulation, the blue vehicle is controlled by a
human through a joystick. Inputs from the joystick are

accelerations in x and y directions (hence the human vehicle
is a double-integrator), while the autonomous cars are the
same as in the previous simulation. Although the human
driver does not necessarily obey the BIC constraint and
sometimes exhibits adversarial behavior during the simula-
tion, the autonomous vehicles are still able to avoid collision.
The velocity profile of the human controlled vehicle is shown
in Fig. 7. The smallest distance among the vehicles is plotted
in Fig. 8, which also illustrates if the human driver obeys the
BIC constraints. It can be seen from the plot that around 16s
to 18s, the human control input violates the BIC constraint,
resulting in an instance of small clearance between the
vehicles. However, no collision occurred during the simu-
lation since the autonomous vehicle dodged promptly. Also
from this simulation, although the vehicles have different
dynamics models, this does not change the effectiveness
of the BIC algorithm, which allows for collision avoidance
for heterogenous robot groups (recall that each vehicle only
needs to know its own dynamics, and the dynamics need not
be the same among all vehicles).

C. Performance Comparison with MPC
The proposed BVC algorithm is compared to model

predictive control (MPC) method concerning the collision
avoidance performance. MPC method solves the trajectory
planning problem for a short horizon and executes only
the control input for the first time step. In the next time
step, a new optimal control problem is solved. Our MPC
method is implemented in MATLAB with CVX [28] using
MOSEK solver. Collision avoidance constraints is imposed
using Mixed Integer Programming. We still consider the
scenario where the blue vehicle and the red vehicle are
changing lanes simultaneously as in Sec. IV-A. The objective
function of each vehicle is expressed as

min

u

NX

i =1

�

i
(pi � p target)

T
R(pi � p target) + �

i u i
T
Qui ,

where N is the planning steps, u = [u1, u2, . . . , uN ] is
control input, and pi is vehicle position at step i. Vehicle
model given in Eqn. 9 is linearized at every step.

In the first case, both blue and red vehicles were using
the MPC controller. Since there was no communication
between vehicles, a non-cooperative and oscillation behavior
was shown during the simultaneous lane change maneuvers
which led to a collision as shown in Fig. 9. In the second
case (Fig. 10), the red vehicle is using MPC controller while
the blue vehicle is using BIC controller. The BIC control
is able to avoid collision, even though the other vehicle
is using the MPC controller. The performance comparison
between BIC and MPC controllers shows the benefit of
our proposed method. The BVC controller is more reactive
and robust to vehicles whose intention and thus future
trajectory is uncertain for the ego vehicle, which is essential
to autonomous driving scenarios.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a computationally efficient,
distributed control algorithm achieving collision free lane



Fig. 9. Two snapshots during the simulation. Both red and blue vehicles
are using MPC controller. The blue dash-dot lines are the MPC planned
trajectories.

Fig. 10. Two snapshots during the simulation with the same initial
configuration as in Fig. 9. The red vehicle was using MPC controller while
the blue vehicles was using BIC controller. The blue dash-dot line is the
MPC planned trajectory.

change maneuvers for autonomous vehicles, which only
relies on relative position measurements. We introduced
Buffered Input Cells, which restrict the command control
inputs to the allowable control inputs at each time step to
guarantee collision avoidance among multiple vehicles. The
performance of this algorithm is demonstrated in MATLAB
simulations. There are many directions for future work. We
are currently formulating a probabilistic version of the BVC
and BIC to account for significant sensor noise. We also plan
to consider the effects of actuator saturation on the collision
avoidance guarantees of the BIC method. We also plan to
perform hardware experiments with model-scale autonomous
cars and full-sized autonomous vehicles.
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