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Guarantees on Robot System Performance Using
Stochastic Simulation Rollouts

Joseph A. Vincent , Aaron O. Feldman , and Mac Schwager , Member, IEEE

Abstract—In this article, we provide finite-sample performance
guarantees for control policies executed on stochastic robotic sys-
tems. Given an open- or closed-loop policy and a finite set of
trajectory rollouts under the policy, we bound the expected value,
value at risk, and conditional value at risk of the trajectory cost, and
the probability of failure in a sparse cost setting. The bounds hold,
with user-specified probability, for any policy synthesis technique
and can be seen as a postdesign safety certification. Generating
the bounds only requires sampling simulation rollouts, without
assumptions on the distribution or complexity of the underlying
stochastic system. We adapt these bounds to also give a constraint
satisfaction test to verify the safety of the robot system. We pro-
vide a thorough analysis of the bound sensitivity to sim-to-real
distribution shifts and provide results for constructing robust
bounds that can tolerate some specified amount of distribution
shift. Furthermore, we extend our method to apply when selecting
the best policy from a set of candidates, requiring a multihypoth-
esis correction. We show the statistical validity of our bounds in
the Ant, Half-cheetah, and Swimmer MuJoCo environments and
demonstrate our constraint satisfaction test with the Ant. Finally,
using the 20-degree-of-freedom MuJoCo Shadow Hand, we show
the necessity of the multihypothesis correction.

Index Terms—Motion and path planning, optimization and
optimal control, probability and statistical methods, risk-sensitive
control.

I. INTRODUCTION

I T IS essential that robots be able to operate safely and
successfully under diverse sources of uncertainty, including

uncertainty about their own dynamics and state, friction and
contact forces, the future motion of other agents, and environ-
ment geometry. For example, robot manipulators must interact
with objects having uncertain geometries or physical param-
eters, legged robots must locomote on uncertain terrain, and
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Fig. 1. Overview of our method for bounding performance for a single policy
using a stochastic simulator. The policy is executed in simulation n times to
collect trajectory rollouts. The cost or constraint function is evaluated for each
rollout, and these samples are used to form a distribution-free upper bound on a
given performance measure (expected value, value at risk, conditional value at
risk, or probability of failure) that is guaranteed to hold with probability at least
1− δ. These probabilistic bounds may also be used to ensure safety by testing
constraint satisfaction for the performance measures. The finite-sample bound
guarantee ensures that these tests incorrectly accept a policy as safe with at most
δ probability. We demonstrate this pipeline for several MuJoCo environments
and extend the method to compare multiple policies for manipulating an egg of
uncertain mass and friction.

autonomous vehicles must avoid colliding with other agents
whose future trajectories are uncertain. While it is common
to have a simulation model reflecting these diverse sources of
uncertainty, we rarely have access to closed-form mathematical
models, making it difficult to provide rigorous performance
and safety guarantees. We address this challenge, presenting
statistical performance bounds and safety tests for arbitrary
robotic systems given a finite set of trajectory samples from
a stochastic simulator.

Performance for stochastic robotic systems is typically quan-
tified with an expected trajectory cost, or with risk-sensitive
performance measures such as value at risk (VaR) or conditional
value at risk (CVaR). These risk-sensitive measures have been
widely used in the optimization of financial portfolios [1] and
have more recently been adopted for use in robotic control
problems [2], [3]. Performance can also be quantified by the
probability of task success (e.g., probability that an object is not
dropped or a robot does not fall). Symmetrically, safety is often
enforced by putting constraints on these performance measures:
expected value constraints, VaR constraints, CVaR constraints,
or constraints on success probability. We provide probabilistic
bounds for all of these performance measures.

Most of the existing approaches for computing or bounding
expected value, VaR, CVaR, or success probability: 1) assume a
known distribution for the uncertainty (e.g., Gaussian); 2) use a
large number of simulation rollouts to approximate uncertainty
without formal guarantees; or 3) provide formal guarantees
that hold asymptotically as the number of samples approaches
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infinity. In contrast, our methods are both distribution-free (they
require no knowledge of the underlying probability distribution)
and finite-sample (they hold with a finite number of samples).
A core insight is that the trajectory cost of the robotic system
can be treated as a scalar random variable, and a stochastic sim-
ulator can be viewed as an elaborate random number generator,
producing independent and identically distributed (IID) samples
of the trajectory cost. We can, therefore, apply distribution-free
finite-sample statistical analysis tools. We only require two key
assumptions.

1) The simulative dynamics model exactly represents the
stochastic dynamics encountered during execution, in ad-
dition to modeling the roboticist’s uncertainty in initial
conditions and simulation parameters.

2) Successive simulations are IID, that is, there is no memory
or distributional shift between trajectory rollouts.

For the first assumption, there are three uncertainties the
simulator may capture: 1) uncertainty over state transitions;
2) uncertainty over initial conditions; and 3) uncertainty over
simulation parameters. We assume that these uncertainties are
modeled as random variables as is common in, e.g., state esti-
mation and filtering problems.

We derive simple formulas using foundational statistical prin-
ciples to compute upper bounds on expected value, VaR, and
CVaR, as well as an upper bound on the probability of failure
in a binary success/failure reward model. These bounds are
probabilistic, that is, they are allowed to be wrong δ proportion of
the time, for a user-specified error rate δ. We further adapt these
bounds to give constraint satisfaction tests for the expected value,
VaR, CVaR, and failure probability, with a guaranteed user-
specified false positive rate (declaring the system safe, when
it is actually unsafe). The probability of the bound being valid
(1− δ) is often referred to as the confidence or coverage level of
the bound. In Section VI, we investigate how the confidence level
for each bound changes when there is sim-to-real distribution
shift and Assumption 1 is not met. In Section VII, we detail how
to retain a desired confidence level in light of such distribution
shifts.

An overview of our method for bounding performance and
testing constraint satisfaction for a policy is shown in Fig. 1.
We also modify the bounds, so they can be used to compare
performance among multiple policies, as outlined in Fig. 7.
Notably, we show that a multihypothesis correction is required to
retain statistical guarantees when comparing multiple policies.
We empirically demonstrate the validity of our bounds and
constraint satisfaction tests in several MuJoCo [4] environments
simulated in Gymnasium [5] and verify our policy comparison
bounds in a 20-degree-of-freedom MuJoCo Shadow Hand sim-
ulation manipulating an object with uncertain mass and friction.

Our bounds are independent of the system’s complexity
or dimensionality. They only depend on the number of
rollouts and the user-specified error rate. Therefore, our
method is appropriate for complex simulation models of
high-degree-of-freedom robots, featuring, e.g., discontinuities
from contact, uncertainties in friction or reaction forces, fluidic
or finite-element simulations for soft robots and deformable

objects, and aerodynamic simulations for aerial robots. The
bounds also apply regardless of how the simulation is derived,
applying also when the simulation itself is learned (e.g.,
generative world models or multiagent trajectory forecasters).
The “simulation” can also be an experimental setup, in which
a control policy is repeatedly executed on a physical robot.
Furthermore, our bounds are valid for open- or closed-loop
policies, as well as deterministic or stochastic policies.

We emphasize that we do not present a new policy optimiza-
tion or planning technique in this work, but rather present a
statistical method for bounding the performance of a given con-
trol policy or comparing performance among a set of policies.
Our methods can be used as a verification tool to bound the
performance or certify the safety of a policy obtained from any
upstream optimizer (e.g., a reinforcement learning or optimal
control design technique or even a large language model task
planner).

In summary, our primary contributions are as follows.
1) Given an open- or closed-loop control policy, we ap-

ply probabilistic upper bounds for expected value, VaR,
CVaR, and probability of task failure, from a finite set of
simulated trajectory rollouts.

2) Similarly, we obtain a probabilistic test to verify the satis-
faction of constraints on the expected value, VaR, CVaR,
or probability of failure. The test has a user-specified false
acceptance rate.

3) We describe a necessary multihypothesis correction to
these performance bounds in the case of choosing the best
among a finite set of candidate policies.

4) We provide analytic expressions for how the confidence
of each bound changes as a function of sim-to-real dis-
tribution shift, and we provide simple extensions to each
bound to ensure that a desired confidence level holds under
a specified amount of sim-to-real distribution shift.

We achieve the above for an arbitrarily complex simulator,
learned or model-based, with diverse sources of uncertainty, and
with any upstream policy generation or optimization approach.
As evidence to this, we demonstrate our approach in several
MuJoCo environments including with the 20-degree-of-freedom
Shadow Hand.

The rest of this article is organized as follows. We give
related work in Section II. In Section III, we introduce our
notation and define the problem setting. In Section IV, we
present the distribution-free performance bounds and derive
constraint satisfaction tests. We empirically validate the bounds
and constraint tests in MuJoCo simulations in Section V. In
Section VI, we provide expressions for how the confidence level
for each bound changes due to sim-to-real distribution shift. In
Section VII, we detail how to retain a desired confidence level
given some amount of distribution shift. In Section VIII, we in-
troduce the correction required when comparing bounds among
multiple policies and demonstrate the validity of this correction
in Section IX in simulations with the MuJoCo Shadow Hand
manipulating an uncertain object. Finally, Section X concludes
this article. We give proofs of theorems and computational
details in the Appendix.
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II. RELATED WORK

A. Sample-Based Performance Quantification

We build on an emerging literature that uses finite sam-
ples from simulation rollouts to produce and optimize for
distribution-free guarantees on system performance. Using re-
sults from randomized optimization, Akella et al. [6] construct
distribution-free bounds on the VaR of a given robustness metric
for a robotic system. Their bound on the VaR is a special case of
our bound given in Theorem 1. Similar methods are used in [7] to
verify safety and robustness of a reinforcement learning policy
and in [8] to place probabilistic bounds on the error of a simulated
model.

Akella et al. [9] use distribution-free statistics to place bounds
on coherent risk measures (such as CVaR) and on the quality
of optimization via random search. They use these results to
randomly search over policies and choose the one with the least
upper bound on risk. In [10], the same bounds are used to find a
nonlinear control plan that is better than a specified percentage
of plans. As we show in this work, when policy cost is not
deterministic, optimizing for the sample-based bound requires
a multihypothesis correction to retain validity. This is a crucial
step in the policy synthesis process that our article addresses in
Section VIII.

Cleaveland et al. [11] perform the verification of closed-loop
stochastic systems. Like us, they take a distribution-free finite-
sample approach, but with some key differences. While they
are primarily interested in verifying closed-loop systems with
neural network controllers, we take a broader view to systems,
which need not be differentiable, continuous, or defined in closed
form. Cleaveland et al. [11] also discuss choosing the least risky
controller from a set of controllers but fail to note the need
for a multihypothesis correction. Finally, we use a tighter VaR
bound not based on the Dvoretzky–Kiefer–Wolfowitz (DKW)
inequality [12], [13] and take a different approach to constraints;
we provide analysis for handling a variety of risk-sensitive
constraints, whereas Cleaveland et al. [11] focus on signal-
temporal-logic constraints. Finally, none of these works address
how bound confidence changes with distribution shift.

B. Risk-Sensitive Control

Our method can be used to certify policies obtained from
existing risk-sensitive control techniques. We classify the ap-
proaches for risk-sensitive control into three broad categories:
parametric, distributionally robust, and sampling-based.

In the parametric category are works imposing distributional
and structural assumptions to efficiently quantify risk. Carpin
et al. [3] compute risk averse policies (in the sense of CVaR)
for finite state and action Markov decision processes (MDPs)
by solving a surrogate MDP. Ahmadi et al. [14] synthesize a
CVaR-safe controller for linear systems using barrier functions.
Lew et al. [15] enforce obstacle avoidance chance constraints
assuming a Gaussian dynamics disturbance. While parametric
approaches provide efficient mechanisms for quantifying and
mitigating risk, we avoid the associated assumptions (i.e., on the
dynamics or uncertainty distribution), so that our approach can

be applied as a general certification step for arbitrary complex
systems.

Instead of assuming a particular uncertainty distribution,
some work adopts a distributionally robust approach. The au-
thors of [16] and [17] propose CVaR constrained control where
the CVaR is first estimated empirically. Then, based on a known
ambiguity set for the disturbance distribution (using the Wasser-
stein metric) about the empirical CVaR, distributionally robust
CVaR constraints are enforced at runtime. Dixit et al. [18] add a
constraint on the entropic value at risk in their model-predictive
control (MPC) formulation using its dual representation as the
worst case expectation within a Kullback–Leibler-divergence-
based ambiguity set. In contrast with these works focusing on
distribution mismatch, we focus on the setting where our sim-
ulator provides samples from the true uncertainty distribution,
but our bounds do not require knowledge of that distribution.
However, we also provide extensions in Section VII to construct
robust bounds that hold even under simulator mismatch. Specif-
ically, we use the simulator and a given robustness tolerance to
implicitly define a distributional ambiguity set when construct-
ing the robust bounds.

Sampling-based approaches use repeated draws of empirical
performance to estimate the risk without imposing distribu-
tional assumptions. In [19], each agent in a team estimates its
VaR using the empirical quantile of recently observed rewards.
Hiraoka et al. [20] impose a CVaR constraint during policy
optimization by rewriting the CVaR as a tail expectation so that
it can be approximated from rollouts. During MPC, the authors
of [21] and [22] repeatedly rollout controls under the stochastic
dynamics and optimize for the sequence minimizing the average
associated trajectory cost.

Lew et al. [23] show that, under certain conditions, the sample
average solution becomes asymptotically optimal. However,
in this work, we are interested in finite-sample performance
guarantees. Lew et al. [24] applies the work in [23] to CVaR-
constrained trajectory optimization and provides a finite-sample
bound on the CVaR constraint. However, they leverage concen-
tration inequalities, which hold uniformly across all controls.
Our bounds hold pointwise, necessitating a multihypothesis cor-
rection, but when comparing only a modest number of policies,
this can yield tighter guarantees. While sampling-based control
provides context for our work, we augment such methods with
finite-sample distribution-free statistical guarantees.

C. Conformal Prediction

Conformal prediction (CP) is increasingly being used for
producing distribution-free guarantees in robotics. Given ex-
changeable data (a weaker condition than IID) and a scoring
function, CP produces a confidence interval on the score of a
new data sample [25]. In this work, we adapt analysis tools from
CP to obtain our VaR bound and to assess chance constraint
satisfaction. Similar to our work, several papers applying CP to
robotics have viewed full robot trajectories as one sample. Luo
et al. [26] use collected data of unsafe trajectories to augment
robotic fault detection systems, achieving a guaranteed false
negative rate. Lindemann et al. [27] use CP to augment learned
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forecasting models (e.g., predicting pedestrian motion) with
a confidence set of possible trajectories. Dixit et al. [28] use
adaptive CP to now adapt their confidence sets using online
data. As in much of the CP robotics literature, we also view
trajectories as the fundamental sample to get IID data. Instead
of using offline data, we evaluate performance using a generative
stochastic simulator.

D. Concentration Bounds

Key to our approach is the use of sampling-based distribution-
free concentration bounds for risk measures as this allows us to
produce rigorous performance guarantees when planning with
any arbitrarily complex simulator.

Concentration bounds for CVaR were first given by
Brown [29], further refined by Wang and Gao [30], and later
improved upon by Thomas and Learned-Miller [31]. Each of
these results requires bounds on the support of the random vari-
able. Later, Kolla et al. [32] provided concentration bounds in
the case the random variable is sub-Gaussian or subexponential
(weaker than boundedness by Hoeffding’s lemma [33]), which
were improved upon in [34]. The CVaR bound we use in this
article is from [31], but we express it in a simpler form and give
an accompanying proof. We then extend this bound to give a
novel bound on the expected value.

Unlike CVaR bounds, VaR bounds place no finite support or
sub-Gaussianity restrictions. VaR bounds are often derived via
the DKW inequality [32], [35], [36]. Although some authors
claim these bounds as contributions, an optimal VaR bound
has been available since 2005 [37] (although this optimal VaR
bound is derived for continuous random variables, it can be
extended for discontinuous random variables using the methods
of [38]). In this work, we use a slightly suboptimal VaR bound
because of its simple form and derivation, which we present in
the Appendix. The VaR bound we use is well established in the
statistics community, dating back to 1945 (see [38] and [39]),
but its application to bounding policy performance is new. This
classical bound is seemingly unknown to many practitioners and
is strictly better than the bounds given in [32] and [35].

Concentration bounds on the expected value are more studied
than for the VaR or CVaR. Hoeffding’s inequality is arguably
the most influential bound of this sort [33] although the bounds
given later by Anderson are no worse and often better [40].
More modern work has focused on bounds that are not defined
in closed form [41] and concentration sequences [42]. The
expectation bound we use in this article is equivalent to the
Anderson bound [40], but derived and expressed in a slightly
different form.

Finally, bounds for the probability of success parameter in the
Bernoulli distribution (often called binomial confidence inter-
vals) have been studied extensively. Unlike other concentration
bounds, the majority of methods for binomial confidence inter-
vals are not guaranteed to hold with a user-defined probability
(e.g., Wald, Wilson, Jeffreys’, Agresti–Coull, etc. as described
in [43] and [44]). Methods guaranteed to meet the desired
confidence level include those by Clopper and Pearson [45],
Sterne [46], Crow [47], Eudey [48], [49], and Stevens [50]. Of

these approaches, only the bounds from Eudey and Stevens re-
turn confidence intervals with exactly the desired coverage, and
they do so by inverting randomized hypothesis tests. We show
that the confidence interval we derive in Theorem 4 is analogous
to the one-sided Clopper–Pearson interval, which is known to
be unimprovable among nonrandomized approaches [51].

III. PROBLEM SETTING

Here, we introduce notation and formalize the problem of
quantifying performance and safety for a stochastic robotic
system. For a given fixed time horizon T , we consider ei-
ther an open-loop policy as a sequence of control actions
(U0, . . . , UT−1) or a closed-loop policy as a mapping (determin-
istic or stochastic) from state to action Ut ∼ πt(Xt). We use the
term policy to describe all of these cases and cover all cases with
the notation U to represent the stochastic sequence of control
actions obtained by executing the policy in simulation. When
executing the policy, the control actions drive state evolution
from a random starting state X0 via stochastic dynamics Ft

X0 ∼ X0 (1a)

Xt+1 ∼ Ft(Xt, Ut), t = 0, . . ., T − 1. (1b)

We do not assume access to an explicit functional form or
distribution for Ft, but instead we assume that we can sample
Xt+1 ∼ Ft(Xt, Ut) IID from a simulation of the system. We
write the stochastic state trajectory as X = (X0, . . . , XT ), as
with the control policyU . The trajectory cost J associated with a
policy and a state sequence realization is composed of stagewise
costs ct as

J(X ,U) = cT (XT ) +
T−1∑
t=0

ct(Xt, Ut). (2)

As an important alternative case, we also consider the sparse
reward setting often seen in reinforcement learning. We let J =
1 denote task failure and J = 0 denote task success, to keep the
interpretation of J as a cost rather than a reward.

In addition to a cost function, we also consider a constraint
function g, which may be used to impose trajectory constraints
for safety (such as avoiding collisions, or avoiding control input
limits) or for task success (such as not dropping an object, not
falling down, or attaining a discrete goal). We consider the
generated trajectory a success when it satisfies a given set of
trajectory constraints

g(X ,U) ≤ 0. (3)

The aforementioned constraint also applies in the binary suc-
cess/failure setting, in which case g = 0 is task success and
g = 1 is task failure, again with the convention of lower g being
safer. When executing the policy, we assume that cost J can still
be defined even when the trajectory violates safety constraints
and do not truncate or reject such trajectories. Rather, “soft”
safety penalties may be incorporated by modifying the stagewise
costs ct in J , in addition to g, which separately encodes “hard”
safety constraints.
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Fig. 2. Visualization of the expected value, VaRτ , and CVaRτ for an example
distribution. Classic stochastic optimal control and reinforcement learning both
seek to minimize the expected value of the total cost distribution. Risk-sensitive
stochastic optimal control and reinforcement learning consider other measures
of performance, such as VaR or CVaR of the cost.

Though the policy is fixed, the associated cost J and the
constraint function g evaluate to random values due to the
stochastic dynamics, which generate different state sequence
realizations on different runs under the same policy. Therefore,
to measure system performance or to impose safety constraints,
we must define a summarizing statistic over the cost or constraint
functions, which we call a performance measure.

A. Performance Measures

Consider a scalar random variable Y , representing either the
value of the cost function J or the constraint function g. We de-
fine a performance measure P(Y ) as a summary statistic for the
random variable Y . The most common choice of performance
measure is the expected value P(Y ) = E[Y ]. However, to be
more conservative, we often consider alternative measures that
are risk sensitive, such as the VaR or CVaR of the trajectory cost.
VaR, expected value, and CVaR are defined in the following and
visualized in Fig. 2. Alternatively, in the binary success/failure
setting, the probability of failure is the natural performance
measure to be minimized. We consider finite-sample methods
for upper bounding these quantities.

Recall that the cumulative distribution function (CDF), which
exists for any scalar random variable, whether continuous or
not, is defined as CDF(y) := Pr[Y ≤ y]. We define VaRτ (Y )
in terms of the CDF as

Definition 1 (VaR): Given a scalar random variable Y , the
VaR of Y at quantile τ ∈ (0, 1) is

VaRτ (Y ) := inf{y | CDF(y) ≥ τ}. (4)

If Y has an invertible CDF, then

VaRτ (Y ) = {y | CDF(y) = τ} = CDF−1(τ). (5)

In plain words, VaRτ = y ensures that τ proportion of the
probability mass of the random variable Y is below the value
y. The VaR can be seen as a generalization of the inverse of the
CDF and closely relates to the quantile as used in statistics.

Recall that the standard definition of the expected value of
a continuous scalar random variable is E[Y ] =

∫∞
−∞ yp(y) dy,

where p(y) is the probability density function. In fact, a more
general definition of the expected value can be stated in terms
of the VaRτ as follows.

Definition 2 (Expected value): Given scalar random variable
Y , the expected value of y is

E[Y ] :=

∫ 1

0

VaRτ (Y ) dτ. (6)

The aforementioned definition applies to any scalar random
variable (continuous, discrete, or mixed). In the case of a
continuous random variable with the invertible CDF, one can
recover the standard definition through a change of variables1

τ = CDF(y).
One criticism of VaR as a risk-sensitive performance measure

is that it ignores high-cost outcomes that may lie in the 1− τ
rightmost tail of the distribution. CVaR, defined below, addresses
this concern.

Definition 3 (CVaR): Given scalar random variable Y and
τ ∈ [0, 1), the CVaR of Y at quantile τ is

CVaRτ (Y ) :=
1

1− τ

∫ 1

τ

VaRγ(Y ) dγ. (7)

If Y has an invertible CDF, then

CVaRτ (Y ) = E[Y | Y ≥ VaRτ (Y )]. (8)

There are several equivalent definitions for CVaRτ (Y ). We
prefer the one above as it applies to all scalar random vari-
ables (continuous, discrete, or mixed), and it highlights the
clear relationship between VaRτ (Y ) and E[Y ]. We can see that
CVaRτ (Y ) is simply the expected value of Y taken over the top
1− τ tail of the probability mass (and renormalized by 1− τ to
ensure that it remains a valid expectation). Taking τ = 0 recovers
the expected value. In contrast to VaRτ , CVaRτ captures high-
cost tail events. It, therefore, incorporates the worst case cost
situations and is often quite conservative. CVaRτ (Y ) is always
greater than or equal to both E[Y ] and VaRτ (Y ). However, E[Y ]
and VaRτ (Y ) may lie in either order, depending on τ and the
distribution of the random variable Y .

For simple distributions (e.g., Gaussians), E[Y ], VaRτ (Y ),
and CVaRτ (Y ) can be found. However, in more realistic robotics
scenarios, distributions are non-Gaussian and usually are un-
known, so none of these performance measures can be obtained
in closed form. This motivates the need in this article to give
finite-sample bounds for these quantities.

We next formalize the probability of failure as a performance
measure for problems with binary success/failure cost models.

Definition 4 (Failure probability): Given a Bernoulli random
variable Y , we refer to q = Pr[Y = 1] as the failure probability.

Note that failure probability is actually a special case of
expected value, since Pr[Y = 1] = E[Y ] for a binary random
variable Y . However, the binary case allows for significantly
tighter bounds than the general bounds on the expected value.
We, therefore, treat this case separately.

1With the change of variables τ = CDF(y), we have dτ = p(y) dy (re-
calling that p(y) = dCDF (y)/dy). The domain of integration τ ∈ (0, 1)
becomes y ∈ (−∞,∞), and since VaRτ (Y ) = CDF−1(τ), the integrand be-
comes CDF−1(CDF(y)) = y, leading to

∫ ∞
−∞ yp(y) dy.
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B. Cost Performance and Safety Performance

The aforementioned performance measures can be applied to
the cost function P(J) to measure cost performance or to the
constraint function P(g) to measure safety performance. In this
article, we present bounds P to probabilistically bound the cost
performance from a finite set of simulation rollouts. Specifically,
we give bounds of the form

Pr[P(J) ≤ P ] ≥ 1− δ (9)

where δ is a user-defined error rate for the bound.
Similarly, safety is often quantified by putting constraints on a

performance measure applied to the constraint function,P(g) ≤
C, for some constant C. Specifically, we consider safety as a
bound on any of the aforementioned performance measures:

E[g] ≤ CE (10a)

VaRτ (g) ≤ CVaR (10b)

CVaRτ (g) ≤ CCVaR (10c)

Pr[g = 1] ≤ Cq. (10d)

where in (10d) we consider the case where g is assumed to be
binary with g = 1 indicating failure.

The aforementioned formulation in (10) already captures
chance constraints (as seen in stochastic optimal control), which
require that the trajectory constraint (3) be satisfied with suf-
ficiently high probability. This follows because constraining
VaRτ (g) in (10b) is equivalent to imposing a chance constraint
on g

VaRτ (g) ≤ 0 ⇐⇒ Pr[g ≤ 0] ≥ τ. (11)

In fact, chance constraints can also be modeled as a binary suc-
cess/failure of the type (10d), where g = 1 denotes the event that
the trajectory fails the constraint (3), and g = 0 for a successful
trajectory satisfying the constraint.

Note that we cannot directly evaluate whether the constraints
in (10) hold, because we cannot compute their left-hand side
when we only have access to a simulator. We, therefore, define
a test for whether P ≤ C, using the finite-sample bound P . If
P passes this test, we declare the constraint satisfied. In the
following section, we prove that such a test can be constructed
with a user-specified false positive error rate, only concluding
that an unsafe policy is safe some small fraction of the time.

IV. FINITE-SAMPLE PERFORMANCE BOUNDS

In this section, we provide finite-sample upper bounds for
the expected value, VaR, CVaR, and failure probability. We also
define constraint satisfaction tests based on these bounds. We
require access to IID samples of the total cost J or constraint
function g under the policy being evaluated, which we assume
are obtained from repeatedly executing the policy for a given
time horizon T in a stochastic simulator of the robot system.
Each bound presented holds probabilistically, with probability
at least 1− δ, where the randomness stems from the bound
itself being a function of a finite set of random samples. In
fact, if no distributional assumptions are made, one can only

formulate bounds that hold probabilistically (see [52, Sec. 5]).
We refer to δ as the user-specified error rate for the bound and
to the guaranteed probability 1− δ that the bound holds as the
confidence level of the bound. All proofs are deferred to the
Appendix. An overview of the method is shown in Fig. 1.

As explained previously, our results rest upon two founda-
tional assumptions.

Assumption 1 (Accurate simulation model): The simulative
dynamics model in (1) exactly represents the stochastic dy-
namics encountered during execution, in addition to modeling
the roboticist’s uncertainty in initial conditions and simulation
parameters.

Assumption 2 (IID): Successive simulations are IID, that is,
there is no memory or distributional shift between trajectory
rollouts.

Of course, these assumptions will never exactly hold in
practice, as there is always some sim-to-real gap. However,
qualitatively, the closer the simulation model is to the real robotic
system, the more reliable the bounds will be. In Section VI, we
address the sensitivity of the bounds to some sim-to-real gap,
and in Section VII, we show how to construct bounds, which
are robust to this gap.

A. Performance Bounds

The bounds make use of the concept of order statistics, defined
as follows.

Definition 5 (Order statistics): For a set of n samples J1:n
drawn IID, we let J(k) denote the kth order statistic, obtained
by arranging the samples in order from smallest to largest and
taking the kth element in the sequence.

Definition 6 (Binomial distribution): Let Bin(k;m, p) denote
the Binomial CDF, withm trials, success probabilityp, evaluated
at k successes.

Theorem 1 (VaR bound): Consider τ, δ ∈ (0, 1) and n IID
cost samples J1:n, and let k be the smallest index such that
Bin(k − 1;n, τ) ≥ 1− δ. We have the following probabilistic
upper bound on VaRτ (J):

VaRτ := J(k) (12)

which has the property

Pr[VaRτ (J) ≤ VaRτ ] ≥ 1− δ.

A feasible value for k exists when n ≥ 	ln(δ)/ ln(τ)
, i.e., n is
large enough to ensure Bin(n− 1;n, τ) ≥ 1− δ.

The aforementioned VaR bound simply chooses one of the
order statistics based on a test involving the cumulative binomial
distribution. Its proof (in the Appendix) is inspired by similar
analyses in CP [25], [53]. In our experience, this bound is con-
siderably tighter than other VaR bounds in the recent literature
(see, e.g., [32] and [35]) and tends to be tighter in practice than
the CVaR and E bounds below. As previously stated, the form
of this bound is well known in the statistics literature [38], [39],
but its application to bounding policy performance is new. The
VaR bound in [9] is a special case of this one, which considers
the bound arising from the largest order statistic, J(n).
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Before stating the CVaR and E bounds, we require an addi-
tional assumption.

Assumption 3 (Almost sure upper bound): We have an almost
sure upper bound Jub such that Pr[J ≤ Jub] = 1.

It may seem circular to require one upper bound in order
to produce another upper bound. The idea is to combine the
order statistics J(i) with the almost sure upper bound to produce
a significantly tighter bound. In fact, any finite sample upper
bound on CVaR or E requires knowledge of such an a priori
known bound on the right tail of the distribution of J . Two
common choices are an almost sure upper bound (as we assume
here) or a sub-Gaussian assumption. Without such a tail bound,
one can adversarially construct a distribution that violates any
claimed CVaR or E bound by placing a finite probability mass
arbitrarily far to the right in the distribution, pulling both CVaR
and E far enough right to violate the claimed bound. By contrast,
VaR ignores the tail, so finite sample bounds on VaR can be
constructed without a priori bounds on the tail.

Since J is computed as the sum of T stage costs, it suffices
to simply find bounds on the stage cost and multiply these by
T to bound the trajectory cost. For some cost functions, bounds
may be computed analytically. Otherwise, in practice, one may
clip the value of the cost function between some user-defined
bounds, bounding the support of the total cost by construction.
Computation of support bounds can be done offline and tight
support bounds are not needed, but tighter support bounds on J
will lead to tighter bounds on E[J ] and CVaRτ (J).

Finally, we define a constant that arises in both CVaR
and E bounds, originating from the application of the DKW
bound [12], [13] in their derivation, as discussed in the proofs
in the Appendix.

Definition 7 (DKW gap): We define the DKW gap as

ε(δ, n) =

√
− ln δ

2n
.

Theorem 2 (Expected value bound): Consider δ ∈ (0, 0.5],
an almost sure upper bound Jub, and n IID cost samples J1:n.
Let k be the smallest index such that k

n − ε ≥ 0. We have the
following probabilistic upper bound on E[J ]:

E := εJub +

(
k

n
− ε

)
J(k) +

1

n

n∑
i=k+1

J(i) (13)

which has the property

Pr[E[J ] ≤ E] ≥ 1− δ.

We require n ≥ − 1
2 ln(δ) samples to ensure ε ≤ 1. If k = n, the

summation on the right is ignored. Forn < − 1
2 ln(δ), we default

to the almost sure bound Jub.
Theorem 3 (CVaR bound): Consider τ ∈ [0, 1), δ ∈ (0, 0.5],

an upper bound Jub, and n IID cost samples J1:n. Let k be the
smallest index such that k

n − ε− τ ≥ 0. We have the following
probabilistic upper bound on CVaRτ :

CVaRτ :=
1

1− τ

[
εJub +

(
k

n
− ε− τ

)
J(k) +

1

n

n∑
i=k+1

J(i)

]

(14)

which has the property

Pr[CVaRτ (J) ≤ CVaRτ ] ≥ 1− δ.

We require n ≥ − 1
2 ln(δ)/(1− τ)2 samples to ensure ε ≤

1− τ . If k = n, the sum on the right is ignored. For n <
− 1

2 ln(δ)/(1− τ)2, we default to the almost sure bound Jub.
Both the aforementioned CVaR and E bounds take the form

of a sample average over the order statistics, excluding some
proportion of the smaller order statistics defined by the DKW gap
ε(δ, n) and including the upper bound Jub and the smallest effec-
tive order statistic J(k) with special weightings, also determined
by ε(δ, n). Therefore, both of these bounds can be understood as
variations on the sample average that typically serves as a proxy
for the expected value. The great advantage of these bounds is
that, unlike a sample average, they rigorously upper bound the
unknown quantity (CVaR or E) with a user-defined probability
1− δ without knowing the underlying probability distribution
of J .

Notice that setting τ = 0 in the CVaR bound gives the E
bound, which is appealing given that this is also true of CVaR
and E from their definitions in Definitions 2 and 3. We note that
the CVaR bound in Theorem 3 is mathematically equivalent to
the one derived in [31], but expressed in a different form and
derived by different means.

While the bounds described can be performed for any choice
of δ and τ , for a given number of samples n, as δ decreases, the
actual bound values will increase as we require the bounds to
hold with higher confidence. As τ increases, the actual bound
values will also increase as we seek to bound a larger measure
of the cost distribution (noting that VaRτ (J) and CVaRτ (J) are
increasing with respect to τ ). Similarly, as δ decreases and/or as
τ increases, the minimum number of samples needed to yield
(nonvacuous) bounds grows.

Finally, we introduce an upper bound on the probability of
failure in a binary cost setting.

Theorem 4 (Failure probability bound): Given δ ∈ (0, 1) and
n IID Bernoulli samplesJ1:n (whereJ = 1 denotes failure) with
k =

∑n
i=1 Ji failures, we have the following probabilistic upper

bound on the probability of failure, q := Pr[J = 1]:

q = max{q′ ∈ [0, 1] | Bin(k;n, q′) ≥ δ} (15)

which has the property

Pr [q ≤ q] ≥ 1− δ.

B. Constraint Satisfaction Tests

The aforementioned theorems bound performance measures
on the random cost J attained by a robotic system under a given
control policy. Now, we adapt the above bounds to give a test
for constraint satisfaction. Consider any of the aforementioned
performance measures applied to the constraint function, P(g),
embedded in a constraint

P(g) ≤ C.

Using the associated finite-sample bound, which we write gener-
ically as P , we define the associated constraint test as P ≤ C.
We have the following result.
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Theorem 5 (Constraint test): The test for constraint satisfac-
tion P ≤ C has a false acceptance rate of no more than δ, i.e.,

Pr[P ≤ C | P(g) > C] ≤ δ.

The ability to provide a false acceptance guarantee for the
constraint tests is a powerful yet natural consequence of the
bound error rates. Indeed, we could not readily guarantee a
false acceptance rate if using Monte Carlo estimates for the
performance measures.

We noted in Section III that chance constraints

Pr[g ≤ 0] ≥ τ

can be modeled using either a binary function for g ≤ 0 or
by constraining VaRτ (g). Using this equivalence, we can test
whether a chance constraint holds via two equivalent methods:

1) by forming VaRτ = g(k) using Theorem 1 and checking
whether g(k) ≤ 0;

2) by first computing the number of successes/failures to sat-
isfy g(X ,U) ≤ 0 to form q using Theorem 4 and checking
whether q ≤ 1− τ .

Both the methods also require the same number of minimum
samples n to ever accept: Bin(n− 1;n, τ) ≥ 1− δ, although
this condition is enforced directly in Theorem 1.

It may be the case that one wishes to assess a policy’s safety,
via a constraint satisfaction test P(g) ≤ C, and, if safe, obtain
a bound on the policy’s cost performance P(J). To disentangle
these assessments, we would first repeatedly rollout the policy
recording gi to assess P(g) ≤ C. If the policy passes the safety
test, i.e., P ≤ C, we then separately rollout the policy recording
Ji to bound P(J).

V. BOUND EVALUATION EXPERIMENTS

A. Performance Bounds

In Fig. 3(a)–(d), we empirically validate the bounds given by
Theorems 1–4, respectively. We use the error rate δ = 0.2 for
all bounds, and the quantile τ = 0.7 for VaRτ and CVaRτ . For
a fixed policy U , each plot shows the resulting distribution of
total cost as a blue histogram generated using 10 000 simulation
rollouts. Since the bounds are sample based, they themselves
follow a distribution, shown as the overlaid gray histogram. To
compute this bound distribution, we repeatedly (1000 times)
generate the sample-based bound using a fresh batch of n = 100
sampled policy rollouts. The blue dashed vertical line shows the
true performance measure we seek to bound,2 while the gray
dashed vertical line shows the δ (0.2 in this case) quantile of
the bound distribution.3 Since the bounds are sample based, an
individual generated bound may be invalid and fall below the
true performance measure. We observe this in Fig. 3(a) and (d),
where portions of the gray bound histogram lie left of the blue
dashed line. Yet, the theorems guarantee that the bounds hold
with probability at least 1− δ, so at least 1− δ of the bound

2Since we do not have access to the true underlying performance measure,
we approximate the true measure with a Monte Carlo estimate from the 10 000
simulation rollouts. This is only for visualization purposes.

3This theoretical quantile is also approximated for visualization as the empir-
ical quantile of the repeated bound generations.

Fig. 3. (a)–(d) Empirical validation of the bounds for VaRτ , E, CVaRτ , and
q, respectively. Each plot shows, for a single policy, the empirical distribution
of total cost J (blue), along with the distribution of the bound (gray). The blue
vertical line shows the true measure we seek to bound, and the gray vertical
line shows the δ quantile of the bound distribution. Since our theoretical results
ensure that the bounds holds with probability ≥ 1− δ, the δ quantile of the
bound distribution should exceed the true measure. Thus, visually, our results
ensure that the gray line is to the right of the blue line, as validated in each
plot. The cost histogram was generated using 10 000 simulations, and the bound
histogram was generated by repeatedly computing the bound 1000 separate
times. In each case, n = 100, δ = 0.2, and τ = 0.7. To demonstrate that the
bounds are agnostic to the dynamics, we used the Half Cheetah (a), Ant [(b) and
(d)], and Swimmer (c) MuJoCo environments.
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distribution should exceed the true performance measure. Equiv-
alently, the bound distribution’s δ quantile should exceed the true
performance measure. Visually, this means that the gray dashed
line should lie right of the blue dashed line. We indeed observe
this result in all the subfigures, empirically demonstrating that
the sample-based bounds hold with probability at least 1− δ as
guaranteed by the theorems.

To emphasize that the bounds are agnostic to the form of the
dynamics, we use a variety of MuJoCo environments for testing
the validity of Theorems 1–4 (Half Cheetah [54], Ant [55],
Swimmer [56], and Ant again, respectively). Due to limitations
of the MuJoCo simulator, in these experiments, the dynamics
of the robot are deterministic. Uncertainty comes from the
starting state of the robot, which is randomly initialized using a
Gaussian distribution centered about a nominal state. This form
of uncertainty could realistically arise when a state estimation
algorithm (e.g., Kalman filter) is used to provide a distribution
over the starting state. The cost functions used are the negative
values of the default rewards in MuJoCo, which encourage
forward motion and minimal control input. We use clipping
of the stage cost to ensure bounded support when computing
the expectation and CVaR bounds. For the sparse cost case in
Fig. 3(d), we declared success, setting J = 0, when the Ant
torso remained within the standard height range considered by
default in MuJoCo, but still used the continuous cost when op-
timizing. The open-loop policies considered are obtained as the
result of optimizing with the cross-entropy method (CEM) [57].
Thus, the bounds can be viewed as a probabilistic guarantee on
the optimizer’s solution performance under randomized initial
conditions. Further experiment details are in the Appendix.

While the expectation and CVaR bound (see Theorems 2
and 3) are somewhat loose when formed using the relatively
small number of 100 samples, the VaR and probability of failure
bounds (see Theorems 1 and 4) are quite tight. In our later
experiments, we focus on showing results using VaR and failure
probability as the relevant statistics.

In the Bound Comparison section of the Appendix, we com-
pare the bound distributions (gray) we obtain in Fig. 3 with the
bound distributions one would obtain using different bounds
from the literature (specifically those from [9], [11], and [32]).
We show that the bounds we use are less conservative than others
(better estimating the unknown performance measure). Using
less conservative bounds allows more accurate understanding of
policy performance, so practitioners can better decide whether
to deploy a policy or devote more resources toward policy
synthesis/improvement.

B. Constraint Satisfaction Tests

In Fig. 4, using our approach from Theorem 5, we show
the relationship between the probability of our constraint test
holding and the probability that the underlying constraint is
actually satisfied. To convey the effect of sample size on the
test, we show theoretical curves for n ∈ {10, 50, 100, 500}.
We empirically validate the theory for the n = 10 case using
simulations of the MuJoCo Ant environment. Specifically, the
constraint function g = 0 is a success if the height of the ant torso

Fig. 4. Visualization of Theorem 5, and empirical validation of the theorem,
applied to testing whether a chance constraint holds. Each curve represents
the probability of accepting that the chance constraint holds (y-axis) given the
true probability of the underlying trajectory constraint being satisfied (x-axis).
The validity of the theorem is demonstrated by each curve being below δ when
the chance constraint fails to hold, i.e., Pr[constraint satisfied] is below τ .
Visually, the false acceptance is guaranteed to be below δ so that the curves
avoid the region shaded in red in the figure. Here, we use δ = 0.2 (horizontal
line) and τ = 0.7 (vertical line). As the sample size n increases, the curve
approaches a step function, i.e., we obtain a perfect discriminator. For n = 10,
we plot empirical results from the Ant environment where the vertical position
of the Ant torso always being between [0.5, 1] with probability 0.7 is the chance
constraint we seek to assess. The x and y coordinates for each orange dot are
separately estimated by averaging over 1000 simulation runs.

remains in the interval [0.5, 1] for an entire rollout (based on the
healthy condition specified in MuJoCo), and a failure otherwise.
We impose a binary failure probability constraint (10d) requiring
that this condition is satisfied with probability at least τ = 0.7
(shown by the gray dotted vertical line in Fig. 4). In other words,
we have reformulated a chance constraint as a constraint on the
failure probability of a binary g. We seek to verify whether or
not the provided control policy satisfies this constraint by using
the test derived from Theorem 4, checking whether the upper
bound on the failure probability is sufficiently low q ≤ 1− τ .
By constructing q with user-specified error rate of δ = 0.2, we
are guaranteed to have a false acceptance rate no greater than
δ = 0.2 (shown by the dashed gray horizontal line in Fig. 4) by
Theorem 5. To validate the test over a range of satisfying and
violating policies, we use 20 open-loop policies generated by
randomly sampling control actions.

For each policy, we repeatedly (1000 times) collect a fresh set
of n = 10 samples of the constraint function g1:n by executing
the control actions from random initial conditions in the Ant
environment, and apply Theorem 5 with cutoff C = 1− τ and
bound P = q computed from Theorem 4. We call each such
bound computation a trial. We use the empirical fraction of trials
for which we concluded that the chance constraint holds (based
on the test) to approximate the unknown true probability. This
fraction provides the y-coordinate for the associated point in
the figure. We obtain the associated x-coordinate, the “ground
truth” constraint satisfaction probability Pr[g = 0], through
1000 Monte Carlo simulations. Specifically, we simulated the
policy 1000 times and recorded the empirical fraction of the
resulting trajectories that were a success, obtaining g = 0.
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The tight agreement between the theoretical and empirical
results shows that we can use our method to provide a sampling-
based certification method for policy constraint satisfaction. In
particular, we observe that both in the empirical and theoretical
curves whenever the constraint fails to hold, the acceptance
probability is below δ: to the left of the vertical line at τ = 0.7,
all curves lie below the horizontal line at δ = 0.2, avoiding the
region shaded in red.

Similar figures could have been generated for constraint tests
on other performance measures with continuous g, e.g., a CVaR
constraint. However, we would not easily be able to generate
a corresponding theoretical curve. With Theorem 4, we can
compute the theoretical curves using the Binomial distribution
and the true probability of success.

VI. BOUND SENSITIVITY TO DISTRIBUTION SHIFTS

In this section, we give analytical expressions for the effect
that changes in cost distributions have on the confidence level
of the bounds presented in Section IV. The setting we consider
is when the distribution of cost based on our simulator does not
match the true distribution of cost when the policy is deployed
in the real world. Using samples from the simulator cost distri-
bution, we construct performance bounds with confidence level
1− δsim. In the following sections, we give expressions for how
this confidence level changes (to 1− δtrue) when the distribution
of cost in the real world does not match that of the simulator. We
present the sensitivity relationships in this section as corollaries
of the bound theorems in Section IV and defer all proofs to the
Appendix.

It is important to note the inherent tradeoff between efficiency
of a bound and its robustness to distribution shift. If a bound
very precisely estimates the unknown parameter, it will be more
sensitive to distribution shifts. If one anticipates a certain level of
distribution shift, it is not appropriate to use less precise bounds;
instead, in Section VII, we detail how to modify the bounds
presented in this article to be appropriately robust to distribution
shift.

In this article, we measure distribution shift between the
simulated cost distribution Dsim and the true cost distribution
Dtrue according to the one-sided Kolmogorov–Smirnov (KS)
distance for distributions [49]

sup
x

CDFDsim(x)− CDFDtrue(x). (16)

We consider the one-sided KS distance because it captures when
a cost CDF shifts downward, relating to a harmful distribution
shift of higher cost more often.

Corollary 1 (Sensitivity of VaR bounds): Suppose that we con-
struct VaRτ with samples from the simulated cost distribution,
Jsim ∼ Dsim. Then, suppose that that the true cost distribution,
Dtrue, is close to Dsim in the one-sided KS distance

sup
x

CDFDsim(x)− CDFDtrue(x) ≤ α. (17)

Then, we have

Pr[VaRτ (Jtrue) ≤ VaRτ ] ≥ 1− δtrue (18a)

δtrue = 1− Bin(k∗ − 1;n, τ + α) (18b)

Fig. 5. Confidence level of the VaR bound as a sim-to-real mismatch is varied.
The parameter σ controls the standard deviation of the initial state distribution
in the Half Cheetah environment. When σ > σsim, the true confidence level
of the bound degrades. When σ < σsim, the true confidence level of the bound
strengthens. In blue, we plot the empirical confidence levels estimated by varying
σ, using 10 000 simulations to estimate VaRτ (Jtrue), and using 1000 realizations
of VaRτ . In orange, we plot the minimum confidence level guaranteed by (18).
The theoretical sensitivity guarantee is valid, always lower than the empirical
confidence, but is pessimistic when σ < σsim as even though the one-sided KS
distanceα > 0, the distribution shift actually results in a higher confidence level.

k∗ = min{k ∈ {1, . . . , n} | Bin(k − 1;n, τ) ≥ 1− δsim}.
(18c)

In Fig. 5, we plot the sensitivity of the VaR bound to
distribution shifts imposed by misspecifying a parameter for
the Half Cheetah environment, the noise parameter σ over
the initial state distribution. The empirical confidence level of
the bound Pr[VaRτ (Jtrue) ≤ VaRτ ] always exceeds the theo-
retically predicted 1− δtrue using Corollary 1. However, the
theoretical prediction is pessimistic when σ is decreased from
the nominal value σsim as this distribution shift actually results
in increased confidence level. A tighter theoretical bound may
be obtained if we assume knowledge of the precise τ ′ such that
VaRτ (Jtrue) = VaRτ ′(Jsim) and then use τ ′ instead of the larger
τ + α in (18b).

Corollary 2 (Sensitivity of E and CVaR bounds): Suppose
that we construct CVaRτ with samples from the simulated cost
distribution, Jsim ∼ Dsim. Suppose that the true cost distribution,
Dtrue, is close to Dsim in the one-sided KS distance

sup
x

CDFDsim(x)− CDFDtrue(x) ≤ α ≤
√

− ln(2δsim)

2n
. (19)

Then, we have

Pr[CVaRτ (Jtrue) ≤ CVaRτ ] ≥ 1− δtrue (20a)

δtrue = e−2n(ε−α)2 (20b)

ε =

√
− ln δsim

2n
. (20c)

The condition thatα ≤
√

− ln(2δsim)
2n is an artifact of the DKW

bound holding for δ ∈ (0, 0.5]. One can remove this condition
(at the expense of closed-form expressions for the bounds) by
using the KS approach [58] in place of the DKW approach when
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constructing the bounds. Finally, since we treat the expected
value as a special case of CVaR, the relationships in (20) also
hold for the expected value bound.

Corollary 3 (Sensitivity of failure probability bounds): Sup-
pose that we construct q by observing k failures out ofn samples
from a Bernoulli distribution with probability of failure qsim.
Then, suppose that the true cost distribution, Dtrue, is close to
Dsim in the one-sided KS distance

sup
x

CDFDsim(x)− CDFDtrue(x) ≤ α (21)

i.e., qtrue − qsim ≤ α. Then, we have

Pr[qtrue ≤ q] ≥ 1− δtrue (22a)

δtrue = Bin(k∗α − 1;n, qsim) (22b)

k∗α = min{k ∈ {0, . . . , n} | Bin(k;n, qsim + α) ≥ δsim}.
(22c)

VII. CONSTRUCTING ROBUST BOUNDS

Building on the bound sensitivity results, in this section, we
show how to construct robust bounds, which will hold with the
desired confidence level (1− δ) even when there is mismatch
between the simulated and real cost distributions. To construct
robust bounds, we anticipate the potential cost distribution shift
and appropriately increase the bounds, slightly modifying those
described in Section IV.

Specifically, we again assume that the true and simulated cost
distributions are within α in terms of the one-sided KS distance

sup
x

CDFDsim(x)− CDFDtrue(x) ≤ α (23)

where Dsim and Dtrue are the simulated and true cost distribu-
tions, respectively. Although precisely specifying α is problem
dependent and may be challenging, these robust bounds pro-
vide a principled mechanism for acting conservatively when
the simulator is known to be inaccurate. Practically, α may be
chosen based on past experience or can be estimated from Monte
Carlo estimates of CDFDsim and CDFDtrue (using simulated and
real-world trajectories, respectively). Each of the expressions
we give are presented as corollaries of the bound theorems in
Section VI, and all proofs are deferred to the Appendix.

Corollary 4 (Robust VaR bounds): Consider τ, δ ∈ (0, 1) and
n IID cost samples from the simulator J1:n ∼ Dsim and assume
that supx CDFDsim(x)− CDFDtrue(x) ≤ α. Then, we have the α-
robust VaR bound

Pr[VaRτ (Jtrue) ≤ VaRτ (α)] ≥ 1− δ (24a)

VaRτ (α) = VaRτ+α (24b)

where VaRτ+α is constructed using J1:n as in Theorem 1 to hold
with probability 1− δ.

Corollary 5 (Robust E and CVaR bounds): Consider τ ∈
[0, 1), δ ∈ (0, 0.5], an upper bound Jub, and n IID cost
samples from the simulator J1:n ∼ Dsim and assume that
supx CDFDsim(x)− CDFDtrue(x) ≤ α. Then, replacing the DKW
gap ε(δ, n) by ε′ = ε(δ, n) + α when applying Theorem 3 with

Fig. 6. Confidence level of robust failure probability bounds as a sim-to-
real mismatch is varied. Similar to Fig. 5, we plot the empirical confidence
level associated with robust bounds constructed with different tolerances α ∈
[0, 0.05, 0.1, 0.15] as we vary the parameterσ controlling the standard deviation
of the initial state distribution in the Ant environment. We observe that even
under distribution shift, whenever qtrue ≤ qsim + α (denoted by circles), the
associated robust bound q(α) holds with confidence level at least 1− δ, as
expected from Corollary 6. The plotted points are generated by varying σ, using
10 000 simulations to estimate qtrue, and using 1000 realizations of q(α).

J1:n, we have the α-robust CVaR bound

Pr[CVaRτ (Jtrue) ≤ CVaRτ (α)] ≥ 1− δ (25a)

CVaRτ (α) =

1

1− τ

[
ε′Jub +

(
k

n
− ε′ − τ

)
J(k) +

1

n

n∑
i=k+1

J(i)

]
(25b)

where k is the smallest index such that k
n − ε′ − τ ≥ 0.

Taking τ = 0 immediately yields a similar robust bound for
the expected value.

Corollary 6 (Robust failure probability bounds): Consider
δ ∈ (0, 1) and n IID Bernoulli samples J1:n obtained in simu-
lation (where J = 1 denotes failure) with k =

∑n
i=1 Ji failures

and assume supx CDFDsim(x)− CDFDtrue(x) ≤ α (i.e., qtrue ≤
qsim + α). Then, we have the α-robust failure probability bound

Pr [qtrue ≤ q(α)] ≥ 1− δ (26a)

q(α) = max{q′ ∈ [0, 1] | Bin(k;n, q′ − α) ≥ δ}. (26b)

In Fig. 6, we plot the confidence level of robust failure
probability bounds constructed with different α as we impose a
distribution shift by misspecifying the noise parameter σ over
the initial state distribution for the Ant environment. Whenever
the distribution shift is within the allowed tolerance (qtrue ≤
qsim + α), as designated by a circle, the confidence level of the
bound remains at least 1− δ confirming Corollary 6.

VIII. POLICY SELECTION

Thus far, we have presented a method for rigorously assessing
the quality of a policy by placing bounds on performance mea-
sures of the trajectory cost. A natural extension is to use these
bounds when selecting between several candidate policies. In
this case, we must take care to apply an appropriate correction
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to the bounds for the resulting bound on the chosen policy
to remain probabilistically valid. To illustrate the need for a
correction, consider a thought experiment where 100 identical
policies are considered as candidates for execution. For each of
these identical policies, we generate a fresh set of stochastic
simulation rollouts and use these to compute a performance
bound. We then choose to execute the policy achieving the
lowest bound. Of course, this a false choice since all the policies
are the same. However, because the rollouts are stochastic, the
computed bounds will fluctuate even though all used the same
policy. Choosing the lowest bound among the 100 will thus give
an artificially low performance bound for the associated policy
as the chosen bound is the result of a lucky draw of rollouts.
Therefore, we cannot expect the resulting bound to still hold
with probability at least 1− δ. In other words, since the bounds
hold probabilistically, one bound among the 100 is likely to be
overly optimistic by chance and may even be lower than the
true performance measure, i.e., an invalid bound. To remedy
this problem, we explain a statistical correction for comparing
bounds among a set of candidate policies.

Consider m (not necessarily independent) policies U1:m,
where for each policy Ui, we obtain n IID trajectory rollouts,
obtaining trajectory cost samples J

(i)
1:n. Let the performance

measure we are interested in be denoted by P (e.g., P = VaRτ ).
Then, using the samples J

(i)
1:n and the results from Section IV,

an individual upper bound P
(i)

is computed for each policy,
which has corresponding unknown true performanceP (i). Now,
suppose that we plan to execute the policy with least upper
bound, that is,

U∗ = arg min
Ui∈U1:m

P
(i)
. (27)

Take P
∗

as the individual upper bound associated with U∗ and
P ∗ as the true statistic (e.g., true VaRτ ) associated with U∗. We
are interested in understanding with what probability P

∗
upper

bounds P ∗ and formalize this in the following result.
Theorem 6 (Uncorrected confidence level): Given m policies

U1:m with associated unknown true performance {P (i)}mi=1 and

associated probabilistic bounds {P (i)}mi=1 individually holding
with confidence level 1− δ i.e.,

Pr[P (i) ≤ P
(i)
] ≥ 1− δ ∀i (28)

let P
∗

be the lowest probabilistic bound and let P ∗ be the
associated true statistic, i.e.,

i∗ = arg min
i∈{1,...,m}

P
(i)

(29a)

P
∗
= P

(i∗)
(29b)

P ∗ = P (i∗). (29c)

Then, P
∗

bounds P ∗ with probability at least (1− δ)m, i.e.,

Pr[P ∗ ≤ P
∗
] ≥ (1− δ)m. (30)

Before proceeding, we consider two limiting cases of Theo-
rem 6. Temporarily assume that the individual bounds hold with

probability 1− δ exactly, i.e.,

Pr[P (i) ≤ P
(i)
] = 1− δ. (31)

Then, we have the following.
1) When each bound is bounding the same statistic (i.e.,

P (1) = · · · = P (m)), then

Pr[P ∗ ≤ P
∗
] = (1− δ)m (32)

where this follows as all bounds must hold for the mini-
mum bound to hold in this case.

2) When the cost samples J
(i)
1:n associated with each policy

Ui are confined to disjoint intervals (i.e., for each Ui, J ∈
[J

(i)
lb , J

(i)
ub ] := Di with Di ∩Dj = ∅ ∀i �= j), then

Pr[P ∗ ≤ P
∗
] = 1− δ (33)

where this follows as only one bound, the one generated
using the policy Ui having the lowest interval Di, needs
to hold for the minimum bound to hold in this case.

These two limiting cases show the extremes we must consider
when making a correction for multiple policies. In the best case
(case 2), the resulting bound P

∗
still holds with probability

1− δ, i.e., the error rate is unchanged, while in the worst case
(case 1), the error rate can increase dramatically for a large set
of candidates. Since we want to avoid distributional assump-
tions, we must consider the worst case scenario, in which case
Theorem 6 is tight.

Theorem 6 captures the worst case when comparing multiple
policies and selecting the policy with lowest bound. Thus, we can
use it to correct for the comparison by first inflating the required
probability that each individual bound hold, as described in the
following theorem.

Theorem 7 (Multipolicy bound correction): The resulting
bound P

∗
obtained when selecting the lowest bound among

multiple policies holds with probability at least 1− δ if each

individual bound P
(i)

is inflated to satisfy

Pr[P (i) ≤ P
(i)
] ≥ 1− δ̄ (34a)

δ̄ = 1− (1− δ)1/m. (34b)

Remark (Multihypothesis connection): This correction is
identical to the Šidák correction [59] for testing multiple hy-
potheses. Although we are only interested in ensuring that the
minimizing bound be probabilistically valid, we end up needing
to inflate as if we required all bounds to hold due to case 1 (the
typical use case of multihypothesis correction).

Remark (Considering shared rollout seeds): In our approach,
for each policy, we generate a bound using a fresh set of stochas-
tic simulation rollouts. However, one might consider instead
fixing a random seed, e.g., fixing a set of sampled environments,
which is then reused when generating the rollouts for each policy.
Even with this modification, a multihypothesis correction is still
needed. In fact, since under this fixed seed procedure, the rollouts
for each policy would no longer be independent, we would have
to resort to the weaker Bonferroni correction [59] over the Šidák.

As mentioned previously, introducing the necessity of this
bound correction is one of the contributions of this article. In
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Fig. 7. Overview of our method for comparing performance among a set of
policies for manipulating an egg of uncertain mass and friction with the MuJoCo
Shadow Hand. Givenm candidate policies, each policy is executed in simulation
n times, and each associated trajectory cost is recorded. These cost samples
are then used to compute a probabilistic upper bound on performance for each

policyP
(i)

. Finally, the policy achieving the minimum bound is selected, giving
a probabilistic guarantee on policy performance. To ensure that this final bound
holds with a user-specified probability (1− δ), we apply a multihypothesis
correction to each of the individual bounds.

Fig. 7, we summarize the process for selecting the policy with
the lowest performance bound while retaining statistical validity
using the multihypothesis correction. In Section IX, we show
the necessity of the correction by comparing against the naive
uncorrected bound in the setting of object manipulation.

IX. MANIPULATION EXAMPLE

In this section, we demonstrate the validity and necessity of
the multihypothesis correction in the MuJoCo Shadow Dexter-
ous Hand environment [60] for simulating in-hand manipulation.
In realistic settings, the object to be manipulated may have
uncertain physical parameters, such as mass and friction, that
can only be roughly estimated or inferred from interaction but
are not directly observable. In this example, we show how
for such a setting, we can use our distribution-free method to
select among several candidate control policies for manipulating
the object, obtaining an associated performance bound for the
chosen policy. This experiment is chosen to emphasize that our
approach works with complex dynamics involving contact and
the discontinuities therein.

To generate candidate policies, we use a simple sampling-
based planner inspired by the approach in [61]. Critical to
the success of the planner is not to sample actions for each
step of the planning horizon, but to take a spline interpolation
of sub-sampled points This reduces the effective size of the
action space and enforces smoothness. Using this method, we
generated m = 20 open-loop plans over a horizon of 100 time
steps each designed for manipulating Gymnasium’s egg object
assuming a nominal density of 1000 kg/m3, sliding friction
coefficient of 1, torsional friction coefficient of 0.005, and rolling
friction coefficient of 0.0001. We randomize over density rather
than mass as this is more standard in MuJoCo, and the object

Fig. 8. Validity of the correction given by Theorem 7 for the Shadow Hand
environment when manipulating the egg object with uncertain density and
friction. Plotted are two distributions, of VaR

∗
τ − VaR∗

τ . In blue, VaR
∗
τ is chosen

without the correction and in gray VaR
∗
τ is chosen with the multihypothesis

correction specified in Theorem 7. Each sample in the histogram is generated
by selecting the best bound (VaR

∗
τ ) among 20 precomputed plans based on

either the corrected or uncorrected bound and subtracting the true performance
measure VaR∗

τ associated with the chosen policy. Each histogram is generated
with 500 repetitions. Only for the corrected bound does the δ quantile dashed
line lie above 0. Thus, when selecting a policy with multihypothesis correction,
the desired error rate is achieved, while this is not the case when using the
uncorrected bound.

volume is fixed, meaning that randomizing over density and
randomizing over mass are equivalent in this setting.

Given these candidate policies, we applied Theorem 7 to
inflate the confidence level and select the bound-minimizing
policy. We used VaRτ with τ = 0.7 as the cost performance
measure we wish to bound and specified a bound error rate of
δ = 0.2. The policies are evaluated in simulated environments
now randomizing the friction and density of the egg object to
simulate uncertainty in the true object’s physical parameters.
The specific uncertainties are as follows:

1) density ∼ uniform[700, 1200] kg/m3;
2) sliding friction coefficient ∼ uniform[0.8, 1.2];
3) torsional friction coefficient ∼ uniform[0.004, 0.006];
4) rolling friction coefficient ∼ uniform[0.00008, 0.00014].
The individual bound for each policy is computed using the

total cost obtained in 30 simulated executions of it. The cost
is based on aligning the egg with a desired goal position and
orientation. The chosen goal orientation requires flipping the egg
object from its starting orientation. Fig. 7 provides an overview
of the policy selection and bound computation procedure used
in this example and shows selected frames from simulations of
the first and last of the 20 plans compared.

By repeatedly generating fresh cost samples to run many
simulated experiments, we show in Fig. 8 that while our mul-
tihypothesis corrected bound is valid with at least the specified
probability of 1− δ, naively using the uncorrected bound is too
optimistic and fails to achieve this confidence level. Specifically,
we plot the distribution of VaR

∗
τ − VaR∗

τ over 500 repetitions,
where in the blue histogram, VaR

∗
τ is chosen without correction,

and in the gray histogram, it chosen with the multihypothesis
correction. Each histogram sample is generated by selecting
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Fig. 9. Distribution of bound offsets for (a) VaRτ in the Half Cheetah environ-
ment, (b) expectation in the Ant environment, and (c) CVaRτ in the Swimmer
environment. All bounds are probabilistically valid, since the vertical dashed
lines (the δ quantiles) are to the right of zero, indicating that the generated
bounds indeed exceed the true performance measure with probability at least
1− δ. In every case, the bounds we use are less conservative than the bounds used
in [9], [11], and [32]. As in Fig. 3, the true performance measure is computed
using 10 000 rollouts, and each bound histogram was generated by repeatedly
computing the given sample-based bound 1000 times, each time using a fresh
set of n = 100 sampled policy rollouts. We again use τ = 0.7.

the lowest bound (VaR
∗
τ ) among 20 precomputed open-loop

policies and subtracting the true performance measure VaR∗
τ

associated with the chosen policy. Since the bound holds when
VaR

∗
τ − VaR∗

τ ≥ 0, if the bound holds with probability at least
1− δ, the δ quantile of the corresponding VaR

∗
τ − VaR∗

τ distri-
bution should be nonnegative. We observe this to be the case

when the bound is generated with correction, as the gray dashed
line showing the δ quantile of the associated VaR

∗
τ − VaR∗

τ dis-
tribution lies right of 0. However, the δ quantile when generating
the bound without correction, shown as the blue dashed line, lies
left of 0. Thus, we observe that the corrected bound holds with
probability at least 1− δ as guaranteed by Theorem 7, while
the uncorrected bound does not, illustrating the necessity of the
multihypothesis correction.

X. CONCLUSION

In this article, we demonstrate how sampling-based
distribution-free bounds can be used to rigorously bound the
performance of a control policy applied in a stochastic envi-
ronment. These bounds can also be used to verify the safety
of a policy via constraint tests with a guaranteed false accep-
tance rate. Furthermore, we provide a thorough analysis of the
sensitivity of our bounds to sim-to-real distribution shifts and
provide results for constructing robust bounds that can tolerate
specified amounts of distribution shift. Finally, we show how to
apply these bounds when selecting the best policy from a set of
candidates, which requires a multihypothesis correction to retain
validity. Because these bounds are distribution-free, they can be
applied to complex systems and uncertain environments with-
out requiring knowledge of the underlying problem structure.
Rather, our approach only requires simulating policy execution
in the stochastic environment and recording the associated cost
or constraint value. We empirically demonstrated bound validity
in several MuJoCo environments including for the problem of
object manipulation, which is high dimensional and has discon-
tinuous dynamics.

In this work, we only studied a few performance measures, but
our approach extends to other measures if corresponding bounds
are available. Another interesting direction for future work is to
use our method to select the best risk-sensitive plans in domain-
randomized simulations that are then used as training data for a
policy with hopes of better sim-to-real performance. Yet another
avenue for future work is to use the sample-based bounds for
risk and constraint satisfaction to guide an importance sampling
procedure (over open-loop plans) within a stochastic model-
based planner such as model predictive path integral (MPPI) [62]
or CEM [57].

APPENDIX

SIMULATION DETAILS

To create Fig. 3, we perturbed the default starting state
in MuJoCo using reset_noise_scale = 0.1. The sole exception
to this was for the sparse cost case with the Ant where we
used reset_noise_scale = 0.3 since the default of 0.1 was never
enough to push the Ant outside the healthy range of [0.2, 1]when
using the optimized action sequence.

To identify the candidate policy, CEM [57] was used. Ten
generations of optimization were performed, where in each
generation, 100 open-loop policies were generated by sampling
the control input at each time step using a Gaussian distribution
based on the estimated mean and variance from the previous
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generation. Based on a single execution in the random environ-
ment, the top performing ten sample plans were then used to
fit the Gaussian distribution for the next generation. After the
final generation, the top performing plan was selected as the
candidate. Plans had a horizon of 20 time steps.

To approximate the cost distribution, the candidate policy
was executed 10 000 times. The associated theoretical statistic
was then found by taking the empirical average cost for E, the
empirical quantile for VaRτ , or the Monte Carlo approximation
for CVaRτ (see [63]). To compute E and CVaRτ , the total costs
in the Ant environment were clipped to between [−2H, 0] and
between [−0.325H, 0.1H] for the Swimmer environment where
H = ˜20 was the horizon.

BOUND COMPARISON

Here, we compare the bounds we use for VaRτ , expected
value, and CVaRτ with those used by other papers in the robotics
and statistics literature [9], [11], [32]. Fig. 9 shows the empirical
bound distribution generated by each approach using the same
experimental parameters as when constructing Fig. 3. In every
case, the bounds we use are the least conservative (better esti-
mating the unknown performance measure) while still meeting
the desired 1− δ confidence level.

From the derivation of our VaRτ bound, it is clear that choos-
ing a smaller order statistic for the bound provably violates the
1− δ confidence level. Thus, among VaRτ bounds constructed
as a particular order statistic, ours is unimprovable. Because of
this property, our VaRτ bound will always be less conservative
than those used in [11] and [32]. Statements of similar generality
cannot be made in the case of the expected value and CVaRτ

bounds, although the empirical results in Fig. 9 provide evidence
that the bounds we use in these cases are to be preferred to the
bounds used in [9], [11], and [32].

PROOFS

Although we do not consider lower bounds or two-sided
bounds, we note that lower bounds for each performance mea-
sure can be derived in similar fashion to our derivations for
the upper bounds. Two-sided bounds can then be constructed by
combining lower and upper bounds and adjusting the confidence
level (requiring each one-sided bound to hold with probability
1− δ/2) using the inclusion–exclusion principle.

A. Proof of Theorem 1

We first provide a lemma that is necessary for our proof.
Lemma 1:

Pr[Ji < VaRτ (J)] ≤ τ. (35)

Proof: We may rewrite the strict inequality probability using
a left limit approaching VaRτ (J)

Pr[Ji < VaRτ (J)] = lim
x→VaRτ (J)−

Pr[Ji ≤ x] (36)

and are guaranteed that the limit exists since CDFs are upper
semicontinuous. Since x in the limit satisfies x < VaRτ (J), by

definition of VaR as an infimum, we have

Pr[Ji ≤ x] < τ. (37)

Since this holds for all x in the limit

lim
x→VaRτ (J)−

Pr[Ji ≤ x] ≤ τ (38)

concluding the proof. �
Now, to prove the main result, from the definition of VaRτ (J),

we have

Pr[VaRτ (J) ≤ J(k)] = Pr

[
n∑

i=1

1(Ji < VaRτ (J)) < k

]

(39a)

= Pr

[
n∑

i=1

1(Ji < VaRτ (J)) ≤ k − 1

]
.

(39b)

Since by Lemma 1, we have

Pr[Ji < VaRτ (J)] ≤ τ (40)

the random quantity 1(Ji < VaRτ (J)) is Bernoulli where the
probability of being 1 is at most τ . Thus

Pr

[
n∑

i=1

1(Ji < VaRτ (J)) ≤ k − 1

]
≥ Bin(k − 1;n, τ)

(41)

since we have the sum of n IID Bernoulli random variables with
probability of being 1 at most τ .

Therefore, given values for τ, δ ∈ (0, 1) and J1:n, choosing

VaRτ = J(k∗) (42a)

k∗ = min{k | Bin(k − 1;n, τ) ≥ 1− δ} (42b)

ensures that

Pr[VaRτ (J) ≤ VaRτ ] ≥ 1− δ. (43)

�
Remark: Note that in the case where J has invertible CDF,

(40) is tight so that (41) holds exactly. In fact, we can then give
a more precise result in this case

1− δ ≤ Pr[VaRτ (J) ≤ VaRτ ] ≤ 1− δ + bin(k − 1;n, τ)
(44)

where k is the order statistic chosen for VaRτ and bin(k −
1;n, τ) denotes the Binomial probability mass function eval-
uated at k − 1 successes. Thus, the amount of conservatism in
the coverage is no more than bin(k − 1;n, τ).

Remark: Alternatively, one can achieve exactly the desired
confidence by randomizing the chosen order statistic [37].

Remark: Our derivation of the VaR bound adapts a very
similar result from CP presented below [64].

Theorem 8 (CP conditional result): Given n+ 1 IID samples
S1:n+1 from some continuous distribution

Pr
[
Pr[Sn+1 ≤ S(k) | S1:n] ≥ 1− ε

]
=

Bin(k − 1;n, 1− ε). (45)
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Our proof does not assume a continuous distribution and can
be applied to adapt the above result to ≥ Bin(k − 1;n, 1− ε)
for any distribution.

B. Proof of Theorem 2

The result follows as a special case of Theorem 3 proven in the
following. We let τ = 0, noting that CVaRτ = E when τ = 0
from the definitions of CVaRτ and E in Definitions 2 and 3.

�

C. Proof of Theorem 3

To construct an upper bound for CVaR, we first revisit the
definition

CVaRτ (Y ) :=
1

1− τ

∫ 1

τ

VaRγ(Y ) dγ. (46)

Note that if we can construct an upper bound on the VaR that
holds for all γ, then we can use this to find an upper bound on
the CVaR

CVaRτ (Y ) =
1

1− τ

∫ 1

τ

VaRγ(Y ) dγ. (47)

Note the slight abuse of notation here; in this proof, we require
a simultaneous VaR bound for which

Pr[VaRτ ≥ VaRτ ∀τ ] ≥ 1− δ (48)

a stronger requirement than we had for the VaR bound presented
in Theorem 1. Next, we describe how we obtain a simultaneous
VaR bound.

Consider IID samples Y1, . . . , Yn with unknown distribution
given by CDF(y), and let yub be an associated almost sure upper
bound.4 Let ̂CDF(y) be the empirical CDF

̂CDF(y) =
1

n

n∑
i=1

1(Yi ≤ y) (49)

and ε(n, δ) is a constant subtracted from ̂CDF(y) to obtain a
probabilistic lower bound

CDF(y) =

{
max{̂CDF(y)− ε, 0}, if y < yub

CDF(y) = 1, if y ≥ yub.
(50)

By letting

ε(n, δ) =

√
− ln δ

2n
(51)

(what we call the DKW gap in Definition 7), we know from the
DKW bound [12], [13] that

Pr[CDF(y) ≤ CDF(y) ∀y] ≥ 1− δ. (52)

Let VaRτ be the VaRτ obtained from CDF(y), and note that the
DKW bound extends to VaRτ to give

Pr[VaRτ ≥ VaRτ ∀τ ] ≥ 1− δ. (53)

4We replace our J notation with Y to avoid confusion of j as an index.

To see this, observe that CDF(y) ≤ CDF(y) for all y implies
that{y | CDF(y) ≥ τ} ⊆ {y | CDF(y) ≥ τ}; therefore, inf{y |
CDF(y) ≥ τ} ≥ inf{y | CDF(y) ≥ τ}, since the inf over a sub-
set is greater than or equal to the inf over the larger set. We have
CDF(y) ≤ CDF(y) for all y implies that VaRτ ≥ VaRτ for all
τ (from the definition of VaRτ in Definition 1). The extension
of the DKW bound to VaRτ follows.

From this bound, we conclude that integrating VaRτ over any
τ interval gives an upper bound on the integral of VaRτ over the
same interval, which holds with probability at least 1− δ. We
proceed to analytically integrate VaRτ from τ to 1 to compute
CVaRτ based on the definition of CVaRτ in Definition 3.

Note that VaRτ is a staircase function defined on the domain
τ ∈ [0, 1], which is equal to the smallest order statistic Y(k) such
that ( kn − ε) ≥ 0 over the interval τ ∈ [0, ( kn − ε)]. It is then
equal to Y(k+1) over the next interval τ ∈ (( kn − ε), (k+1

n − ε)],
proceeding toY(n) over τ ∈ ((n−1

n − ε), (1− ε)], and finally yub

over the last interval of τ ∈ ((1− ε), 1]. Notice that all intervals
are of length 1

n , except for the first, which is of length ( kn − ε),
and the last, which is of length ε.

Integrating this staircase function from a given τ to 1, there-
fore, evaluates to a sum over order statistics times the length of
their respective intervals. The first-order statistic in this sum is
the smallest such that its interval appears above the τ quantile,
namely, Y(k), where k is the smallest index such that ( kn − ε) ≥
τ . The length of this first interval is then ( kn − ε− τ), and we
have for the first term in the sum ( kn − ε− τ)Y(k), followed
by n− k terms of the form 1

nY(i), where i = k + 1, . . . , n,
and finally the term εyub. Following the definition of CVaRτ in
Definition 3, we normalize the sum by the length of the interval
over which we integrate, 1

1−τ , to obtain the desired expression.
The bound holds for any τ ∈ [0, 1) and δ ∈ (0, 0.5] (this

requirement comes from the DKW inequality). To avoid de-
faulting to yub, we require that there is an index k ≤ n such
that ( kn − ε− τ) ≥ 0. Equivalently, ε ≤ 1− τ , which implies
n ≥ − 1

2 ln(δ)/(1− τ)2.
As noted earlier, this CVaR bound is mathematically equiv-

alent to the one in [31], but our derivation results in a different
form for the bound expression. Visualizations of the integral
form of CVaR are given in [31, Figs. 3 and 4]. �

D. Proof of Theorem 4

In this proof, we show that Pr[q ≤ q] ≥ 1− δ for q chosen,
as described in Theorem 4. By the definition of q, note that

q ≤ q ⇐⇒ Bin(k;n, q) ≥ δ ⇐⇒ k ≥ k∗ (54)

where

k∗ = min{k′ ∈ {0, . . . , n} | Bin(k′;n, q) ≥ δ}. (55)

Then

Pr[q ≤ q] = Pr(k ≥ k∗) = 1− Pr(k ≤ k∗ − 1) (56a)

= 1− Bin(k∗ − 1;n, q) ≥ 1− δ. (56b)
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We know Bin(k∗ − 1;n, q) < δ by construction of k∗. Note that
to construct the bound, we do not need knowledge of q; whatever
q might be, our rule for choosing q is valid. �

Remark: This is the one-sided Clopper–Pearson bound [45],
which is known to be unimprovable among nonrandomized
approaches [51]. Note that one could also arrive at this result by
employing our VaR bound (see Theorem 1). Going this direction
shows that applying CP to samples from a Bernoulli distribution
reduces to the Clopper–Pearson result.

E. Proof of Theorem 5

For the test that accepts when P ≤ C, we can upper bound
the false acceptance rate as

Pr[P ≤ C | P(g) > C] ≤ Pr[P < P(g)]. (57)

By the bound’s guaranteed error rate of δ

Pr[P < P(g)] = 1− Pr[P ≥ P(g)] ≤ δ. (58)

Combining, we bound the test’s false acceptance rate

Pr[P ≤ C | P(g) > C] ≤ δ. (59)

�

F. Proof of Theorem 6

As the minimum bound holds whenever all the bounds hold

Pr[P ∗ ≤ P
∗
] ≥ Pr[P (i) ≤ P

(i) ∀i]. (60)

Even though we do not assume that Ui are independent, we

can assert that the events P (i) ≤ P
(i)

and P (j) ≤ P
(j)

are
independent for i �= j as bound i is generated with different
random samples than bound j. Applying independence yields

Pr[P (i) ≤ P
(i) ∀i] =

m∏
i=1

Pr[P (i) ≤ P
(i)
]. (61)

Each bound holds with probability at least 1− δ so
m∏
i=1

Pr[P (i) ≤ P
(i)
] ≥ (1− δ)m. (62)

Combining the steps, we conclude that

Pr[P ∗ ≤ P
∗
] ≥ (1− δ)m. (63)

G. Proof of Theorem 7

Applying Theorem 6 with δ̄ = 1− (1− δ)1/m, we get

Pr[P ∗ ≤ P
∗
] ≥ (1− δ̄)m = 1− δ. (64)

�

H. Proof of Corollary 1

Given

sup
x

CDFDsim(x)− CDFDtrue(x) ≤ α (65)

VaRτ (Jtrue) ≤ VaRτ+α(Jsim). (66)

Furthermore

VaRτ = J(k∗) (67a)

k∗ = min{k | Bin(k − 1;n, τ) ≥ 1− δsim}. (67b)

Then, utilizing the proof for Theorem 1, we have

Pr[VaRτ (Jtrue) ≤ VaRτ ] ≥ Pr[VaRτ+α(Jsim) ≤ k∗] (68a)

≥ Bin(k∗ − 1;n, τ + α) (68b)

≥ 1− δtrue. (68c)

�

I. Proof of Corollary 2

We are given

sup
x

CDFDsim(x)− CDFDtrue(x) ≤ α ≤
√

− ln(2δsim)

2n
. (69)

From the proof of Theorem 3, the CVaR bound utilizes a simul-
taneous lower bound over the CDF of cost. We can interpret the
distribution shift by amount α as a shift in the offset of our CDF
bound from the empirical CDF

CDF(y) =

{
max{̂CDF(y)− ε′, 0}, if y < yub

CDF(y) = 1, if y ≥ yub.
(70)

where ε′ = ε− α. From the DKW inequality [12], [13], we know
that

ε′ =

√
− ln δtrue

2n
(71a)

⇒ δtrue = e−2nε′2 (71b)

= e−2n(ε−α)2 . (71c)

�

J. Proof of Corollary 3

Given ksim observed failures in the simulator out of n trajec-
tories, we have

q = max{q′ ∈ [0, 1] | Bin(ksim;n, q
′) ≥ δsim}. (72)

Utilizing the proof of Theorem 4, we have

Pr[qtrue ≤ q] ≥ Pr[qsim + α ≤ q] (73a)

= Pr[ksim ≥ k∗α] (73b)

where

k∗α = min{k ∈ {0, . . . , n} | Bin(k;n, qsim + α) ≥ δsim}.
(74)

Thus

Pr[qtrue ≤ q] ≥ 1− Pr[ksim ≤ k∗α − 1] (75a)

= 1− Bin(k∗α − 1;n, qsim) (75b)

≥ 1− δtrue. (75c)

�
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K. Proof of Corollary 4

Given

sup
x

CDFDsim(x)− CDFDtrue(x) ≤ α (76)

VaRτ (Jtrue) ≤ VaRτ+α(Jsim). (77)

Therefore

Pr[VaRτ (Jtrue) ≤ VaRτ (α)] (78a)

≥ Pr[VaRτ+α(Jsim) ≤ VaRτ+α] (78b)

≥ 1− δ. (78c)

�

L. Proof of Corollary 5

Given

sup
x

CDFDsim(x)− CDFDtrue(x) ≤ α (79)

we can create a lower bound on CDFDtrue by lowering a bound
on CDFDsim by amount α. That is,

Pr[CDF(y) ≤ CDFDtrue(y) ∀y] ≥ 1− δ (80)

where, following the proof of Theorem 3, and using ε′ = ε+
α =

√− ln δ/2n+ α

CDF(y) =

{
max{̂CDF(y)− ε′, 0}, if y < yub

CDF(y) = 1, if y ≥ yub.
(81)

Following the proof of Theorem 3, the robust bound is formed
by replacing ε in the original bound equation with ε′.

�

M. Proof of Corollary 6

Given

sup
x

CDFDsim(x)− CDFDtrue(x) ≤ α (82)

we know qtrue ≤ qsim + α. Then, let

k∗ = min{k′ ∈ {0, . . . , n} | Bin(k′;n, qsim) ≥ δ}. (83)

With the following implications:

k ≥ k∗ ⇒ Bin(k;n, qsim) ≥ δ (84a)

⇒ Bin(k;n, qtrue − α) ≥ δ ⇒ qtrue ≤ q(α) (84b)

we know that

Pr[qtrue ≤ q(α)] ≥ Pr[k ≥ k∗] (85a)

= 1− Pr[k ≤ k∗ − 1] ≥ 1− δ. (85b)

�
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