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Abstract—1In this paper we study rebalancing strategies for
a mobility-on-demand urban transportation system blending
customer-driven vehicles with a taxi service. In our system, a
customer arrives at one of many designated stations and is
transported to any other designated station, either by driving
themselves, or by being driven by an employed driver. When
some origins and destinations are more popular than others,
vehicles will become unbalanced, accumulating at some stations
and becoming depleted at others. This problem is addressed
by employing rebalancing drivers to drive vehicles from the
popular destinations to the unpopular destinations. However,
with this approach the rebalancing drivers themselves become
unbalanced, and we need to ‘“rebalance the rebalancers” by
letting them travel back to the popular destinations with a
customer. In this paper we study how to optimally route the
rebalancing vehicles and drivers so that the number of waiting
customers remains bounded while minimizing the number of
rebalancing vehicles traveling in the network and the number
of rebalancing drivers needed; surprisingly, these two objectives
are aligned, and one can find the optimal rebalancing strategy
by solving two decoupled linear programs. We determine the
minimum number of drivers and minimum number of vehicles
needed to ensure stability in the system. Our simulations suggest
that, in Euclidean network topologies, one would need between
1/3 and 1/4 as many drivers as vehicles.

I. INTRODUCTION

Mac Schwager

Emilio Frazzoli Daniela Rus

employed driver. In a typical one way car-share system
(e.g. Car2Go) it has been observed empirically [2], and
shown analytically [3], that vehicles become unbalanced,
accumulating at popular destinations and becoming depleted
at less popular ones. Our proposed system addresses this
problem by employing rebalancing drivers to drive vehicles
from the popular destinations to the unpopular destinations.
However, with this approach the rebalancing drivers them-
selves become unbalanced, and hence we need to Orebalance
the rebalancersO by letting them travel back to the popular
destinations with a customer. In such a trip, the rebalancing
driver operates the vehicle as a taxi, driving the customer to
their desired destination. The system is illustrated in Fig. 1.
The main difpculty in such a system, and the focus of this
paper, is how to determine the rebalancing trips and the taxi
trips in order to minimize wasted trips, while providing the
best possible customer experience.

Specibcally, the contribution of this paper is twofold: we
study routing algorithms for the MOD system illustrated
in Fig. 1 that (1) minimize the number of rebalancing
vehicles traveling in the network, (2) minimize the number
of drivers needed, and (3) ensure that the number of waiting
customers remains bounded. Second, leveraging our analysis,

In this paper we study vehicle routing algorithms for gye determine the relation between the minimum number
novel model of urban transportation system, which involvegs §rivers needed and the minimum number of vehicles
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and the DTA problem is that in the former the optimization
is over the empty vehicle trips (i.e., the rebalancing trips)
rather than the passenger carrying trips.

The paper is structured as follows. In Section II we present
a fluid model for our system, and we formally state the
rebalancing problem. In Section III we (i) study the well-
posedness and equilibria of the model; (ii) determine the
minimum number of vehicles and drivers needed to meet the
customer demand; and (iii) show that the system is indeed
locally stable. In Section IV we show how to optimally route
the rebalancing vehicles and drivers to keep the number of
waiting customers is bounded while minimizing the number
of rebalancing vehicles traveling in the network and the
number of rebalancing drivers needed. In Section V we study
the relation between the minimum number of drivers needed
and the minimum number of vehicles needed. Due to space
constraints, we refer to our technical note for proofs [9].

Fig. 1. At each station there are three queues: customers (yellow dots),
drivers (red dots), and vehicles (small car icons). There are three types of
car trips between stations: A customer can drive a car ; a customer can be
driven by a driver; or, a driver can drive a car to rebalance.

TABLE I
DESCRIPTION OF NOTATION FOR STATION ¢

Definition
ci number of customers at station ¢
v; number of vehicles at station %
T number of drivers at station
i rate of arrival of customers at station %

i departure rate from station %

Tij travel time from station ¢ to station j

pi; | fraction of customers at station ¢ destined for station j
a;; | rate of rebalancing vehicles from station % to station j
Yo | 2

Bij rate of rebalancing drivers from station ¢ to station j
fi fraction of customers traveling from ¢ to j willing

to use taxis

Heaviside function

H()

II. MODELING THE MOBILITY-ON-DEMAND SYSTEM

In our prior work [3] we proposed a fluid model for
mobility-on-demand systems and formulated a policy to op-
timally rebalance vehicles assuming that they could operate

autonomously. In this paper we consider rebalancing the
vehicles through the use of dedicated personnel that are
employed to drive the vehicles. In this section we extend
the fluid model in [3] to capture the later scenario.

Basic model: The model in [3] can be formalized as
follows. Consider a set of n stations, N' = {1,...,n},
defined over an extended geographical area (see Figure 1).
Since the model is a fluid approximation, the number of
customers, vehicles, and drivers are represented by real
numbers. Customers arrive at station ¢ at a constant rate
Ai € Rsp. The number of customers at station ¢ at time
t is ¢;(t) € R>p, and the number of vehicles waiting idle
at station ¢ at time ¢ is v;(t) € Rx¢. The total number
of vehicles in the system is V' € Rs. The fraction of
customers at station ¢ whose destination is station j is p;
(where p;; € R>o, p;; = 0, and Zj pij = 1). The travel
time from station ¢ to station j is T;; € R>q. When there
are both customers and vehicles at station ¢ (i.e., ¢;(t) > 0
and v;(t) > 0), then the rate at which customers (and hence
vehicles) leave station ¢ is p;; when, instead, ¢;(¢) = 0 but
v;(t) > 0 the departure rate is A;. A necessary condition for
the total number of customers at station ¢ to remain bounded
is that p; > A;; we will assume p; > A; throughout the paper
(the case p; = A; can be addressed with techniques similar
to the ones introduced in this paper and is omitted).

From [3], we showed that a station is in need of rebalanc-
ing if —\; + Zj# Ajpji # 0. This can be easily understood
by noting that \; is the rate at which vehicles leave station
i, while >, Ajp;; is the rate at which vehicles arrive at
station 7. In what follows we assume that

—Xi+ > Ajpji #0 forall i € N,
J#i
and thus each station is in need of rebalancing. We comment
further on this assumption in Remark III.3.

Rebalancing vehicles: In order to rebalance the number
of vehicles v;(t) at each station, vehicles without customers
will be driven between stations using hired human drivers.
The number of drivers waiting at station ¢ is r;(t) € Rx
and the total number of drivers in the system is R € R+. In
order to send a vehicle without a customer on a rebalancing
trip from station ¢ to station j, there must be a driver present
at station 7. We let o;; € R denote the rate at which
we send vehicles from station 7 to station j; when vehicles
and drivers are available at station ¢. The total rate at which
station 4 sends vehicles without customers is ; := > Qg
where a;; = 0. We let « denote the matrix with entries given
by «;;. These trips are shown in Figure 1 as vehicles with
red dots in them.

Rebalancing drivers: Finally, we must rebalance the
drivers in the network, as they will tend to accumulate at
some stations and become depleted at others. This is done
as follows. If a driver would like to make a trip from station
1 to station 7, it can drive a car for a customer on a trip from
i to j, thereby acting as a taxi driver for that trip. This allows
the driver to make the journey from station ¢ to station j by
“hitching a ride” on a passenger-carrying trip, but without
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negatively affecting the customer experience. We quantify
this using two sets of variables. The variables 8;; ! R o
give the rate at which drivers are sent from station i to station
j when there are idle drivers available at station i. We let
B denote the matrix with entries given by 3;; and assume
Bi =0.

The quantities f;; ! (0, 1] give the fraction of customers
making the trip from station i to j that would be willing
to use the taxi mode of service on their trip. The remaining
fraction of customers 1" f;; would prefer to drive themselves
on their trip. Thus, f;; imposes a constraint on the largest
value of 3;;. In what follows we assume that the f;; are such
that there are enough customer trips available to rebalance
the drivers. In Proposition III.4 we give a necessary and
sufficient condition on the f;; such that this is true. These
trips are shown in Figure 1 as vehicles containing red and
yellow dots. The notation is summarized in Table L.

We are now ready to write the differential equations gov-
erning the evolution of the number of vehicles, customers,
and drivers at each station. In order to write the expressions
more compactly, we introduce the following notation:

vi(t), = ci(t), ri=ri(t),
Vj(t " Tji)v C;- = Cj(t " Tji)a

A"/

Vi

IR ré = r;(t " TZ])

J

(In other words, v;- denotes the number of vehicles that were
present at station j, specifically T;; time units prior to the
current time.) Then, we can write the customer dynamics at

station | as |

.'1:-/: )\,‘, if v; = 0,
¢ =, 0, ifv,>0andc; =0,
$)\i" M;, if v;> Oand c; > 0.
Defining the Heaviside flol/nCtiOIl as
0 .
H(x) = 1, ifx> 0,

0, otherwise,
the customer dynamics can be written as
¢ = )\i&l "H(v) (N p)H(C)H (V).
The rate of change of vehicles at station i can be written

as the sum of four components:

1) the rate at which customer-carrying vehicles depart

station i: |

%0, ifv,=0
w A, ifv;>0andc =0,
" Wi, if v; > Oand ¢; > 0O,

which can be written more compactly as " \;H (v;) +
(A" H)H (C)H (vi);
2) the rate at which customer-carrying vehicles arrive at
station i:
) *
Pji AHVH) " (A" W)H(C)HH (V)
i
3) the rate at which vehicles without a customer
(rebalancing vehicles) depart station i, given by

" H (V) H (re);

4) the rate at which vehicles without a customer (re-
balancing vehicles) arrive at station i, given by
i OéjiH (V;)H (rj)

Thus, the vehicle dynamics can be written as

G =" )\iH(V;}+()\i " H)H(C)H (Vi) x
+ i AHV) " (A" Wy)H(S)H (V)

o

Jj=1

" oyH(V)H () + (
e

Oéjl'H (V;)H (r;),

%

Finally, the dynamics for the drivers contains four com-
ponents. The first two components are identical to those of
the rebalancing vehicles, given by 3) and 4) above. (This
is due to the fact that each rebalancing vehicle contains a
driver). The third component is the rate at which rebalanc-
ing drivers dgpart station i (by driving customer carrying
vehicles): " jEiBin (vi)H (r;). The fourth term is the
rate at which rebalancing drivers arrive at station i with
a customer: . ; B;H (vj)H(r3). Since drivers rebalance
by driving vehicles on customer trips, we have from the
customer dynamics € that

8, # fijAipij ?f c;=0
fijlipi; ifc;> 0
However, we will consider fixed values of 3;;, and since
M; > )\;, we simply need to enforce the more stringent
constraint ﬂij # fzy>\1pzj

Therefore, the 1} dynamics can be written as

(
g =" vH(V)H(r;)+

OéjiH (V;)H (r;)
L ( o ( o
BijHV)H(r) +  BiH(V)H(r}).

Putting everything together, we can write a set of nonlin-
ear, time-delay differential equations describing the evolution
of customers and vehicles in the system as

2 .
G =X 1" H(vi) +(N" H)H(c)H (v),
G =" )\iHSVi)+()\i " M)H (C)H (vi)+

Pji AjH(V;) B OVE Hj)H(C;‘)H(V;’)

i

" oyH (v)H () + (

o

j
aiHVOH (), (1

i

w

G =" vH()H )+ ( ajH (VOH ()
( -
! BijH (Vi)H (r;) +

o

J

BiiH(VOH (r}).

%

i j=
where t $ 0; the initial conditions satisfy c;(7) =
0, Vi(’T) =0, ri(T) =0 for 7! [" max; ; Tijr 0), Cl(O) !
Ri 0, Vi(0) ! Ry o with v;(0) > O for at least one i ! A
r;(0) ' Ry q with r;(0) > O for at least one i ! N

bl
>
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and >, v;(0) = V and ), 7;(0) = R. The optimization
variables v and /3 are constrained as follows:

0 <Bij < fijAipij
0 Saij.

The problem we wish to solve is as follows: find an opti-
mal vehicle rebalancing assignment « and driver rebalancing
assignment (3 that simultaneously

1) minimizes the number of rebalancing vehicles traveling
in the network,

2) minimizes the number of drivers needed, and

3) ensures that the number of waiting customers remains
bounded.

Note that this is a multi-objective optimization, and thus
it is not clear that one can both minimize the number of
rebalancing vehicles in the network and the number of drivers
needed. However, it will turn out that these two objectives
are aligned, and one can find an assignment («, () that
minimizes both objectives.

III. WELL-POSEDNESS, EQUILIBRIA, AND STABILITY OF
FLUID MODEL

In this section we first discuss the well-posedness of
model (1) by showing two important properties, namely
existence of solutions and invariance of the number of vehi-
cles and rebalancing drivers along system trajectories. Then,
we characterize the equilibria, we determine the minimum
number of vehicles and drivers to ensure their existence,
and we give a necessary and sufficient condition on the
“user’s preference” f;; such that there are enough customer
trips available to rebalance the drivers. Finally, we show
that rebalancing vehicles and drivers give rise to equilibria
that are locally (i.e., within a neighborhood of the nominal
conditions) stable.

A. Well-posedness

The fluid model (1) is nonlinear, time-delayed, and the
right-hand side is discontinuous. Due to the discontinuity, we
need to analyze the model within the framework of Filippov
solutions (see, e.g., [10]). The following proposition verifies
that the fluid model is well-posed.

Proposition IIL.1 (Well-posedness of fluid model). For the
fluid model (1), the following hold:

1) For every initial condition, there exist continuous func-
tions ¢;(t) : R = Rio, vi(t) : R = Ry, and
ri(t) : R = Ryo i € N, satisfying the differential
equations (1) in the Filippov sense.

2) The total number of vehicles and rebalancing drivers
is invariant for t > 0 and is equal, respectively, to
V =>,v(0) and R=73", r;(0).

B. Equilibria

The following result characterizes the equilibria of
model (1). The proof is contained in [9]. Recall that no
station is exactly balanced, and thus —X; + 3w ; Ajpji # 0,
foralli € N.

I"#$

Theorem IIL2 (Existence of equilibria). Let A x B be the
set of assignments («, ) that verify the equations

Z(aij - Olji) = Dy, )
J=i
Z(ﬁzj — Bji) = —D;, 3)

i

for each i € N, where D; := —X; + 3w ; \jpji. Moreover,
let

‘/1 = Z Tij (pij)\q', + Olij), and
4,J
Ry = Ty (e + Biy)-
4,J
If (o, B) ¢ A x B, then no equilibrium exists. If (a, 3) €
A x B, there are two cases:

) IfV>Vi and R > Ry », then the set of equilibria is

c; =0, v; >0, >0 VieN,

where Y . v; =V —Vi and ) ., r; =R— R »
2) If V<Vi or R< Ry », then no equilibrium exists.

Remark IIL.3 (Balanced stations case). We have assumed
that D; = —\i + 3 ju; \jpji # 0 for each station i. This
assumption removes the pathological case that a station is
perfectly balanced and does not need any rebalancing effort.
In the case that D; = 0 for a station, then r; = 0 becomes a
valid equilibrium. Due to space constraints we have omitted
a full treatment of the D; = 0 case in this presentation. ¥

One question remains; does there always exist an assign-
ment («, 3) € A x B that satisfies the constraints ;i > 0,
and 0 < B;; < fijAips; for each 4,5 € N ? We call such
an assignment feasible. It is straightforward to verify that a
feasible assignment for « always exists, since the variables
are constrained only to be non-negative [3]. The 3 variables,
however, are bounded from above (that is, they have finite
capacities), and thus it is not clear whether there exists a
feasible /3 assignment. The following result gives a standard
condition for the existence of a feasible assignment (see, for
example [11, p. 220] and a consequence of this condition.
The proof is given in [9].

Proposition II1.4 (Existence of a feasible assignment). A
feasible assignment («, 3) exists if and only if,

- ZDZ- < Z fijAipi;  for every set S TN, (4)
S # S, S

where D; = —)\i—|—2j5 ; \jDji. As a consequence, if f;; =1
for all i,j,€ N, then a feasible assignment always exists.

C. Stability of Equilibria
In this section we investigate the (local) stability of the
equilibria of our model. We consider the following notion

of local stability. Let (o, 3) € A x B and assume V > W
and i > R » (this is a necessary and sufficient condition



0
to have equilibria, see Theorem IIl.2). We say that the (norwhereD; = " % + Oj#i %p;i , and the optimization vari-

empty) set of equilibria ables are#; and$; , wherei,j ! N. The constraints ensure

! " that the optimization is over the sAt%B. Note, however

A | 3n . = f ; . . ’ R

Br= (e, r)# RT G =0v> O#r' > Ofor al that this optimization can be decoupled into an optimization

i! N, and vi=V" V and ri=R" Ry« over # and an optimization ove$. Both optimizations are

i [ minimum cost Bow problems [11]. Th# optimization is

() identical to that presented in [3]:
#

is locally asymptotically stable if for any equilibrium

minimize Tii #ij
(c,v,r)! E - there exists a neighborhod®f . (c,v,r) := v

. L
{(c,v,r)! R |G # O,v; #,0,r; # Oforalli! Ny, $(c" , # . ,
V" v,r" 1$< !, and /Qvi = V"V, and /bri - subjectto  (#; " #;i) = Dj &i ! N
R" R, ~} such that every evolution of model (1) starting at J#i

#i # 0 &i,j ! N.

G(")=g for" ! [" maxTj, 0)
b The $ optimization then looks as follows:

vi(")=y; for" I [* maxTj , 0) #
ij

(6) minimize Ty
ri(")=r; for" ! [" maxT;, 0) Jd
8] . " n H
(c(0),v(0),r(O) ! Bf - (c,v.1) sublectto. (% " $i)="Di o &TEN
T T j#i
has a ligit which belongs to the equilibrium set..In other 0" & ' fi %p; &i,j ! N.

words, limg +» c(t),limy oo v(t),limg oo r(t) ! S _ o
E .. The next theorem characterizes stability. The proof i§he # optimization is an uncapacitated minimum cost Bow
contained in [9]. problem and thus is always feasible. In Proposition 1.4

N o we give conditions on thé; fractions in order for theb
Theorem I11.5 (Stability of equilibria) Let (#,$)! A %B optimization to be feasible.

be a feasible assignment, and assuwe> V, and R > The rebalancing policy is then given by solving the two
R, - then, the set of equilibri& .- is locally asymptotically - minimum cost Bow problems to obtain solutic# ands; .
stable. We then send empty rebalancing vehicles (along with drivers)

from stationi to stationj at a rate of#ﬁ (when vehicles
and drivers are available at statioh We send drivers on

Our objective is to Pnd a rebalancing assignm@hts)  cystomer-carrying vehicles frofrto j at a rate o5 (when

vehicles traveling in the network and the number of rebalanc-

ing drivers needed, while ensuring the existence of (locally) V. SIMULATIONS

stable equilibria for model (1). From the previous section, We study the relation between the minimum number of

we already know that the set of assignments ensuring tligivers needed for stabilitiR, - and the minimum number

existence of stable equilibria i& % B (provided that the of vehicles needed, from Theorem IIl.2. To this end, we

total number of vehicle¥ and driversR is large enough). need to generate sample data consisting of arrival f4tes
The time-average number of(;gbalancing vehicles travelingach statiori, customer destination probabilitigs , travel

in the network is simply given by ij Tij #ij - In minimizing  times between stationg; , and the fraction of customefsg

this quantity we are also minimizing the lower bound on theraveling fromi toj that are willing to be driven by a driver.

necessary number of vehiclds. Th@; time-average number We generate this data as follows: We uniformly randomly

of drivers in the network is given by ;. Tj (#j + ;). In  placen stations in &.00%100environment, and calculate the

minimizing this quantity we are minimizing the lower boundtravel timesT;; as the Euclidean distance between stations.

on the necessary number of drivaRs - . We uniformly randomly generate the arrival ratés on
Combining the two objectives with the existence of stabl¢he interval [0, 0.05] arrivals per time unit. Similarly we

equilibria cc?;nstraints in (24)#and (3), we obtain the following:uniformly randomly generate the dq%tination probabiliigs

IV. OPTIMAL REBALANCING

o such that they are nonnegative andj p; = 1 for each
minimize Ty #j and Ty (#5 + ) stationi. Finally, we assume thdt; = 1 for each pair of
y b stations in order to avoid issues with feasibility. To solve
subjectto  (#; " #;i)= D;j &i !N the optimizations in Section IV for the optimal assignment
j#i #%,$%) | A%B, we use the freely available SeDuMi (Self-
($; " $i)="D; &i! N Dual-Minimization) toolbox.

Figure 2 shows results for numbers of stations ranging
from 10 up to 200. For each number of stations we generate
o 20 random problem instances of the form described above.
0" % " fiy %p; &i,J 1 N, The thick line in each plot shows the mean over 20drials

j#i
0 # &ij ! N,

1"##
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Fig. 2. Left Pgure: The minimum number of vehicles and drivers. Middle bgure: The ratio between the minimum number of drivers and number of
vehicles. Right bgure: The fraction of drivers that are performing vehicle rebalancing trips. For each bxed number of 2atiafs were performed.
Thick lines show the mean of tH20 trials while thin dashed lines show the maximum and minimum over the trials.

model of the system, we showed that the optimal rebalancing
T policy can be found as the solution of two linear programs.
Also, we showed that in Euclidean network topologies one
would need between 1/3 and 1/4 as many drivers as vehicles,
and that this fraction decreases to about 1/5 if one allows up
to 3-4 drivers to take a trip with a customer. These results
could have an immediate impact on existing one-way car-
01 sharing systems such as Car2Go.

For future work we plan to analyze a stochastic queueing
model and study the time-varying case whereby the systemOs

Fig. 3. Increasing the number of drivers per customer triplfa® station par.ameters change periodically (thus mOdeI_mg the day/n_lght

problems. Left bgure: The minimum number of vehicles and drivers. Rightariations). Also, we plan to develop real-time rebalancing

bgure: The fraction of drivers that are performing vehicle rebalancing trip:p0|icies that do not require any a priori information, and to
incorporate uncertainty in the travel times, time windows for

. _ _ . ~ the customers, and capacity constraints for the roads.

while the thin dashed lines show the maximum and minimum

values. The left bgure shows how: andR;: -: vary with
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we do vehicles. The right Pgure shows the ratio between the City,O Tech. Rep., 2011.
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