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Abstract— Robotics, signal processing, and other disciplines
involve distributed data collection and storage for state estima-
tion, control, and predictive modeling using optimization. We
consider large-scale optimization problems in which multiple
agents with limited resources communicate over a network to
obtain the optimal variables of the centralized problem. In
this work, we present the Separable Optimization Variable
ADMM (SOVA) method where each agent optimizes only
over a subset of the optimization variables relevant to its
data or role, avoiding unnecessary optimization over all the
problem variables. We demonstrate superior convergence rates
of the SOVA method compared to previous distributed ADMM
methods. Further, we show applications of the SOVA method
to robotics and data modeling.

I. INTRODUCTION

Advances in computing and sensing have spurred the
deployment of decentralized data collection and storage sys-
tems. In robotics, signal processing, and process control, in-
creasingly autonomous systems rely on distributed data col-
lection for improved estimation, localization, planning, and
control. In other disciplines, the resulting data is employed in
building predictive models for autonomous financial systems
in algorithmic trading and improved personalization services
in media. The collected data can be aggregated centrally to
extract the model variables through optimization. However,
agents are often sparsely located, and the collated data is
often large in size, creating communication, storage and
computing challenges. To address these issues, distributed
optimization methods have been applied to these problems
to eliminate the need for data transfer and storage at a central
location.

The dual decomposition method has been applied to
distributed minimization of differentiable convex functions
using dual ascent and extended to problems with non-
differentiable convex objectives using subgradients [1], [2],
[3], [4] (see [5] for a discussion on the use of dual decompo-
sition and subgradient methods in distributed optimization).
More recently, these approaches have been combined with
consensus methods for fully distributing problems with sep-
arable objective functions. These methods employ consensus
with a subgradient projection step for distributed optimiza-
tion [6], [7].
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Convergence in dual decomposition methods is guaranteed
for strictly convex or finite objective functions, prompting
the development of augmented Lagrangian methods such
as the method of multipliers for improved convergence in
problems with non-finite objectives. The alternating direction
method of multipliers (ADMM) blends the dual decom-
position method with the method of multipliers, providing
better convergence properties than the dual decomposition
method [8], [9]. The method belongs to a sub-class of other
distributed optimization methods derived from the proximal
point algorithm and often requires reformulating the original
problem for decomposability of the problem objective [10],
[11], [12]. ADMM combines a dual variable update through
dual ascent with a minimization step for the primal variables
and requires the existence of a central node for maintaining
and communicating the dual variable with other agents (see
[13], [14] for a recent survey of ADMM and its update
procedures). Other augmented Lagrangian methods make
similar assumptions on the existence of a central node.

In many applications, no single agent can communicate
with all other agents due to technical constraints such as
limited communication ranges. Addressing this challenge,
some distributed approaches formulate the ADMM method
on a communication graph with no requirement for a central
node [16]. This ADMM method uses consensus to ensure
each agent obtains the same solution and is referred to
as consensus ADMM in literature. Other approaches solve
distributed optimization problems with a centralized linear
sharing constraint using multiple consensus steps at every
update iteration, with increased computation and commu-
nication costs [15]. In contrast, we do not employ any
consensus steps within our optimization method.

In consensus ADMM methods, each agent optimizes over
all the problem variables at each update step. In many
applications, only a small subset of these variables depend
on data stored by each agent while in other scenarios, each
agent requires a subset of the variables for its assigned roles.
Such applications arise in signal processing where receivers
operate within a limited frequency band or collect different
signals and in sensor networks and distributed robotics where
sensors or robotic agents are situated physically in different
locations and observe different areas of their environment.
Optimizing over all problem variables creates communica-
tion, storage, and computing overhead which can be limiting
in resource-constrained systems . Previous work has exam-
ined using approximate primal updates within the ADMM
method to ease its computational complexity such as [17],
[18], [19]. The inexact update steps improve computational



cost at the expense of slower convergence rates and increased
communication costs.

In this paper, we present the Separable Optimization
variable ADMM (SOVA) method, a distributed optimization
algorithm for these applications which does not require a
central node for implementation. With the SOVA method,
each agent optimizes over a subset of the problem vari-
ables, eliminating the overhead from all agents performing
unnecessary optimization over all the variables. SOVA allows
for arbitrary mappings between elements of each agent’s
optimization variable to the centralized optimization variable.
We prove its convergence to the centralized optimal solution
under typical convexity and regularity conditions on the
objective function and constraints. In addition, we show in
numerical simulations that SOVA converges more than two
orders of magnitude faster than consensus ADMM in three
prevalent problems in different domains.

The paper is organized as follows. In Section II, we formu-
late the general optimization problem and introduce notation
for distributed optimization. In Section III, we describe the
consensus ADMM method and derive the SOVA method
in Section IV. In Section V, we demonstrate the superior
convergence, communication, and computational properties
of SOVA in sensor networks and data modeling problems
in statistics, finance, and medicine. We provide concluding
remarks in Section VI.

II. PROBLEM FORMULATION

In this section, we formulate the general distributed opti-
mization problem with separable objectives among N agents.
Consider the optimization problem

minimize
z

f(z) (1)

where f(z) : Rn → R denotes the problem objective,
and z ∈ Rn is the optimization variable. The optimal
variable z? in (1), depends on each agent’s local data. We
consider unconstrained optimization; however, our method
can be readily extended to optimization problems with con-
vex constraints. In distributed optimization, we solve (1)
through local operations performed by each agent instead
of centrally. Given a group of N agents and a separable
objective function, Problem (1) can be expressed in opti-
mization variables xi ∈ Rn i = 1, · · · , N which are local
copies of z. Agent i updates its optimization variable xi to
recover the optimal solution of (1) using its local data. The
corresponding optimization statement is given by

minimize
x1,··· ,xN

N∑
i=1

fi(xi)

subject to xi = z i = 1, · · · , N
(2)

where fi(xi) encodes the optimization objective for agent i.
xi denotes the optimization variable of agent i, and z consists
of all the unknown parameters of the centralized problem.
The consensus constraints in (2) ensure each agent obtains
the same solution.

Communication Graph

We represent the agents as nodes in an undirected graph
G with a set of vertices V = {1, · · · , N} and edges
E = {· · · , (i, j), · · · } given there is a communication link
between agents i and j. The neighbor set of agent i represents
the set of agents sharing a communication link with agent i
which we denote as Ni = {j | (i, j) ∈ E}.

Notation: |Ni| denotes the cardinality of the neighbor set of
agent i. In ∈ Rn×n denotes the identity matrix. We denote
the Mahalonobis norm (the weighted l2 norm with matrix
M ) as ‖ · ‖M .

III. CONSENSUS ADMM

In consensus ADMM methods, each agent maintains a
local copy of the optimization variable z (shown in Figure 1).
The method introduces consensus constraints between pairs
of nodes sharing a communication link, ensuring each agent
converges to the same values with the assumption that the
communication graph G is connected.

Fig. 1. Each agent maintains a local copy of the entire optimization variable
in consensus ADMM.

The consensus ADMM method reformulates Problem (2)
as

minimize
x1,··· ,xN

N∑
i=1

fi(xi)

subject to xi = xj ∀j ∈ Ni i = 1, · · · , N
(3)

and minimizes the augmented Lagrangian of Problem (3)
with respect to xi while updating the dual variables through
gradient ascent [16]. The update steps for xi and the dual
variable pi ∈ Rn at iteration k + 1 are

xk+1
i = argminimize

xi

(
fi(xi) + pkTi xi

+ ρ
∑
j∈Ni

∥∥∥xi − xki + xkj
2

∥∥∥2

2

)
(4)

pk+1
i = pki + ρ

∑
j∈Ni

(
xki − xkj

)
(5)

where ρ is a penalty term on the agreement between the
optimization variables of an agent and its neighbors. In
many problems with non-differentiable objective functions,
solving the update step in (4) is computationally expensive.
Inexact consensus ADMM methods replace fi(xi) in (4) with
its first-order approximations to yield more tractable update
steps [17], [18].



IV. SEPARABLE OPTIMIZATION VARIABLE ADMM
In consensus ADMM methods, all agents store and solve

for all parameters in z which is superfluous in many appli-
cations where each agent’s data relates to only a subset of
the parameters. Moreover, each agent often requires only a
subset of these parameters for its role. This situation arises
in estimation problems, signal processing, and data fitting
where data collection sources and modes differ. For example,
robots are often equipped with different sensing modalities
including active sensors such as lidar and radar and passive
vision-based sensors while receivers in signal processing
operate within different frequency bands. In computing,
medicine, and other disciplines, data collection modes differ
across devices and locations.

Despite this structure, each agent optimizes over all pa-
rameters in z irrespective of the relevance of its data to each
individual parameter. This strategy is inefficient considering
the limited storage, computing, and communication resources
available to each agent. Hence, we develop a distributed opti-
mization algorithm for problems with separable optimization
variables in which each agent optimizes over a subset of the
optimization variable depending on the relevance of these
unknown parameters to its data or role. The optimization
variable is distributed among the agents as depicted in Figure
2.

Fig. 2. The optimization variable is separated among agents in the SOVA
method.

Optimization Variable Separation Subgraph

The separation of the optimization variable among the
agents induces a set of subgraphs of the communication
graph G denoted by Gs = {Gis, i = 1, · · · , n}. Subgraph
Gis is described by a set of vertices Vi consisting of all agents
optimizing over parameter zi and a set of edges Ei. An edge
(j, k) exists in Ei given agents j and k optimize over zi (j
and k ∈ Vi) and agents j and k share a communication link
in G. We can construct these subgraphs from the relevance
of an agent to each parameter in z, depending on its role or
data.

Optimization Procedure

The SOVA method is not limited to applications in which
each agent’s optimization variable consists of parameters in
z but also applies to cases where combinations of elements
within each agent’s optimization variable map to the param-
eters in z. We make the following assumptions on the graph
topology and the objective functions.

Assumption 1. The subgraphs in Gs induced by distributing
the parameters in z are connected i.e. a set of edges exists
which connect any pair of nodes in Gis, i = 1, · · · , n.

Assumption 2. The objective function fi(xi) is closed,
proper, and convex ∀i ∈ V .

In many problems, agents optimizing over the same pa-
rameter in z perform similar roles and share close proxim-
ity. Consequently, these agents can communicate with each
other, satisfying Assumption 1. For example, in estimation
problems where the agents collect data on a given event
such as temperature and concentration in process control
or amplitudes in signal processing, agents optimize over
the same variable when these agents are in close proximity
to one another. We introduce consistency constraints on
equivalent elements within each agent’s optimization variable
in Problem (2).

minimize
x1,··· ,xN

N∑
i=1

fi(xi)

subject to Aijxi = cij

Bijxj = dij

cij = dij j ∈ Ni, i = 1, · · · , N

(6)

where Aij ∈ Rmi×ni and Bij ∈ Rmj×nj define mappings
between elements in xi and xj to each parameter in z, and
agent i optimizes over ni variables and shares mi consis-
tency constraints with agent j. Agent i shares a consistency
constraint with agent j if both agents optimize over the same
parameter p in z, described by the subgraph Gp

s . Mappings
between elements in the consistency constraints are not
limited to individual elements. The consistency constraints
can be enforced on arbitrary combinations of elements within
each agent’s optimization variable. We have introduced the
slack variables cij and dij into the consistency constraints in
(6), ensuring that each agent maintains a local slack variable.
Note that agent i maintains cij while agent j maintains dij .
We denote the set of optimization variables {x1, · · · , xN} as
x1:N and derive the augmented Lagrangian La of Problem
(6).

La(x1:N , c, d, v, w) =

N∑
i=1

fi(xi)

+

N∑
i=1

∑
j∈Ni

(
vTij
(
Aijxi − cij

)
+ wT

ij

(
Bijxj − dij

))
+
ρ

2

N∑
i=1

∑
j∈Ni

(
‖Aijxi − cij‖22

+ ‖Bijxj − dij‖22
)

(7)

vij ∈ Rmi and wij ∈ Rmj are dual variables on the
consistency constraints.

At each iteration, xi, cij , and dij are updated by minimiz-
ing La with respect to these variables using the dual variables
from the previous iterations. The dual variables are updated
through gradient ascent on La. Initializing v0

ij = −w0
ij =



−v0
ji = 0, the update equations for cij and dij are

ck+1
ij = dk+1

ij =
1

2

(
Aijx

k+1
i +Bijx

k+1
j

)
j ∈ Ni (8)

Likewise, the dual update equation reduces to

vk+1
ij = vkij +

ρ

2

(
Aijx

k+1
i −Bijx

k+1
j

)
(9)

Combining the update equations for cij and dij , the update
step for xi is

xk+1
i = argminimize

xi

{
fi(xi) + qkTi xi

+ ρ
∑
j∈Ni

‖Aijxi −
1

2

(
Aijx

k
i +Bijx

k
j

)
‖22
} (10)

where qi = 2
∑

j∈Ni

(
AT

ijvij
)
. We have introduced qi to

combine the updates for vij and wij . The corresponding
update step for qk+1

i from Equation (9) is given by

qk+1
i = qki + ρ

∑
j∈Ni

(
AT

ij

(
Aijx

k+1
i −Bijx

k+1
j

))
(11)

For the distributed optimization problem in (6), agent i
maintains the variables xi and qi. Note that the sizes of
these variables will vary with each agent. Ideally, the size of
each variable relates to the storage, computing, and commu-
nication resources available to the agent. At each iteration,
each agent performs two updates given by Equations (10)
and (11). Subsequently, the agents communicate the updated
variables to their neighbors. Agent i does not need to
maintain the slack variables cij , dij and dual variables vij ,
wij .

Algorithm 1 describes the Separable Optimization Variable
ADMM algorithm.

Theorem 1. The parameters optimized by agents in sub-
graph Gis converge to the optimal parameter z?i .

Proof. we can express Problem (6) as

minimize
x,z

F (x)

subject to Gx = Hz
(12)

where

F (x) =

N∑
i=1

fi(xi)

x = [x1, · · · , xN ]

The centralized optimization variable z consists of all the
unknown parameters in Problem (1), and G defines the
mappings from the combinations of the elements in xi ∀i ∈
V to z. From Assumption 1, each subgraph in Gs is con-
nected. Hence, the consistency constraint is enforced on
all the agents’ optimization variables within each subgraph.
Likewise, the objective F (x) is convex from Assumption 2.
Thus, the residual rk = Gx − Hz decays to zero as the
algorithm progresses as in [13]. In addition, the objective
converges to the optimal value of (6).

Theorem 2. If the elements in each agent’s optimization
variable map directly to the parameters in z and all pa-
rameters in z are distributed among the agents, Problem
(6) is equivalent to Problem (1). Moreover, the union of all
the agents’ optimization variables X =

⋃N
i=1 xi \

⋂N
i=1 xi

converges to z? the optimal solution of (1).

Proof. From Assumption 1, all subgraphs in Gs are con-
nected. Thus, equivalent elements in xi ∀i ∈ V can be
replaced with the same variables. Consequently, the union of
all the agents’ optimization variables X is equivalent to z in
(1). Likewise, the objective in (6) can be expressed in terms
of z, and Problem (6) is equivalent to Problem (1). From
Theorem 1, xi ∀i ∈ V converges to the optimal solution of
(6) and thus, X converges to z?.

Algorithm 1 Separable Optimization Variable ADMM
Parameter Separation

Construct Gjs j = 1, · · · , n
Initialize x0

i and set q0
i = 0 ∀i ∈ V .

k = 0
do in parallel for i = 1, · · · , N

xk+1
i ← Equation (10)
qk+1
i ← Equation (11)
k ← k + 1

while convergence or stopping criterion is not satisfied

V. SIMULATIONS

We examine the convergence properties and computational
complexity of the SOVA method in contrast to consensus
ADMM which requires each agent to optimize over a full
copy of the problem variables. First, we consider a general
least-squares problem with quadratic objective and investi-
gate the rate of convergence of elements within each agent’s
optimization variable to the centralized optimal value. We
also present applications of the SOVA algorithm to prevalent
problems in sensor networks and data modeling.

A. Least Squares: Quadratic Objective Optimization

The least squares problem is prevalent in many disciplines
such as statistics, finance, medicine, and engineering for
parameter estimation and regression. These problems involve
objective terms assigning quadratic penalties to the problem
residuals. As such, we examine distributed optimization
problems with quadratic objectives. The general linear least-
squares problem is given by

minimize
x

‖y −Ax‖22 (13)

where y ∈ Rm and A ∈ Rm×n represent the problem
data. We seek to find the optimal parameters x ∈ Rn that
minimize the estimation error or best explain the problem
data.

Consider a network of N agents with each agent having
a subset of the problem data. In addition, a subset of the



parameters in x influences each agent’s data. We can express
Problem (13) as a distributed optimization problem given by

minimize
x

N∑
i=1

‖yi −Aixp,i‖22

subject to Bijxp,i = Cijxp,j ∀j ∈ Ni, i = 1, · · · , N
(14)

where yi ∈ Rmi and Ai ∈ Rmi×ni denote the problem
data accessible to agent i. Bij ∈ Rnij×ni and Cij ∈
Rnij×nj define mappings between the parameters estimated
by agents i and j. nij denotes the number of parameters
jointly estimated by agents i and j. Agent i’s optimization
variable xp,i consists of a subset of parameters in x which
relate to the problem data available to agent i. We assume
agent i is able to estimate xp,i uniquely i.e mi ≥ ni and
rank(Ai) ≥ ni.

With consensus ADMM methods, each agent optimizes
over all the parameters in x. Thus, applying consensus
ADMM methods requires reformulating Problem (14) as

minimize
x

N∑
i=1

‖yi −Aaug,ixi‖22

subject to xi = xj ∀j ∈ Ni, i = 1, · · · , N
(15)

Aaug,i ∈ Rmi×n is obtained by augmenting Ai with zeros
in corresponding locations. xi ∈ Rn denotes agent’s i
copy of x. The optimal variable x? is obtained following
the procedure in Section III. At each iteration, the update
procedure for xk+1

i can be expressed in closed-form as

xk+1
i =

(
AT

aug,iAaug,i + ρ|Ni|In
)−1

(
AT

aug,iyi −
1

2
pki +

ρ

2

∑
j∈Ni

(
xki + xkj

)) (16)

with the dual update given by

pk+1
i = pki + ρ

∑
j∈Ni

(
xki − xkj

)
(17)

The SOVA method enables direct optimization of Problem
(14) without any reformulations. The primal and dual update
procedures are obtained following the procedure outlined in
Algorithm 1:

xk+1
p,i =

(
AT

i Ai + ρ
∑
j∈Ni

BT
ijBij

)−1

(
AT

i yi −
1

2
qkp,i +

ρ

2

∑
j∈Ni

BT
ij

(
Bijx

k
p,i + Cijx

k
p,j

))
(18)

qk+1
p,i = qkp,i + ρ

∑
j∈Ni

BT
ij

(
Bijx

k
p,i − Cijx

k
p,j

)
(19)

with qkp,i ∈ Rni .

Computational Complexity
We examine the computational complexity of each update

step in consensus ADMM and SOVA methods. Each primal
variable update requires solving a system of linear equations
which can be solved efficiently using matrix factorization
and back-solve steps. To simplify notation, we define the
following matrices and vectors

Mf = AT
aug,iAaug,i + ρ|Ni|In

hf = AT
aug,iyi −

1

2
pki +

ρ

2

∑
j∈Ni

(
xki + xkj

)
Mp = AT

i Ai + ρ
∑
j∈Ni

BT
ijBij

hp = AT
i yi −

1

2
qkp,i +

ρ

2

∑
j∈Ni

BT
ij

(
Bijx

k
p,i + Cijx

k
p,j

)
The primal update for xi in the consensus ADMM method
involves forming Mf ∈ Rn×n which requires O(n2mi)
flops (floating-point operations). Factoring Mf costs O(n3)
flops with a subsequent cost of O(n2) flops for the back-
solve step. Hence, consensus ADMM requires a total com-
putational cost of O(n3 +n2mi) flops. We have retained the
most significant cost terms. The dual update for pi requires
O(n) flops.

In the SOVA method, each primal update step involves
forming Mp ∈ Rni×ni at a cost of O(n2

imi) and factoring
Mp with O(n3

i ) flops. The back-solve step requires O(n2
i )

flops. The resulting computational cost of each primal update
is O(n3

i +n2
imi). The dual update on qp,i incurs O(ni) flops.

The computation cost of each primal and dual update in
consensus ADMM forms an upper bound on the compu-
tational complexity of the primal and dual updates in the
SOVA method. In large networks of resource-constrained
agents with each agent estimating smaller set of parameters
in x (ni << n), the SOVA method substantially reduces
the computational complexity of each update step performed
by each agent, enabling distributed optimization with less
compute resources.

Consider applications where the optimization variable x
grows with the number of agents, which arises in signal es-
timation, robotics, medicine, and finance. In these problems,
we can express the size of x as n = αN where N denotes the
number of agents and α depends on each agent’s contribution
to x. When applied to these problems, consensus ADMM
has a computational complexity of O(α3N3 + α2N2mi).
Meanwhile, SOVA requires significantly less computational
complexity of O(α3 + α2mi), a factor of N3 improvement
in complexity, if each agent optimizes only over α variables
related to its contribution to x. Moreover, SOVA attains
a computational complexity independent of the number of
agents.

Data Storage and Communication Cost
In the SOVA method, each agent maintains qp,i ∈ Rni

and xp,i ∈ Rni consisting of a subset of parameters in
x, and thus requires 16ni bytes for storage with a 64-
bit floating-point representation. In consensus ADMM, each



agent maintains a copy of all elements in x, requiring 16n
bytes for storage. Consequently, the SOVA method uses a
smaller storage footprint, efficient for agents with limited
storage resources.

In the consensus ADMM method, each agent shares the
entire parameter set with its neighbors at each iteration,
incurring a cost of n floating-point samples. The update steps
in SOVA require communicating ni ≤ n floating-point sam-
ples. Consequently, the SOVA method incurs significantly
less communication costs in large optimization problems
with greater reductions as the precision of the parameters
increases. In applications where n grows with N , SOVA
requires constant data storage and communication costs even
as the number of agents scales.

Results

We consider the distributed optimization problem with
quadratic objective in (14) with x ∈ R600. We randomly
generated the problem data A ∈ R10309×600 and y ∈ R10309

distributed among 150 agents and examine convergence of
the consensus ADMM and SOVA algorithms to the optimal
parameter x? obtained from the centralized problem.

Figure 3 shows the magnitude of the residual
r = ‖x? − x‖2 on a fully-connected graph with ρ = 100,
and on a chain graph (the least-connected acyclic graph with
each agent having at most two neighbors) with y ∈ R5365

and ρ = 1000. SOVA requires two orders of magnitude
fewer iterations for convergence compared to the consensus
ADMM method. On a chain graph, the SOVA algorithm
converges more than three orders of magnitude faster than
the consensus ADMM method which requires substantially
more iterations to reach the same magnitude of the residual.
In effect, the SOVA method provides increasing computation
and communication benefits in networks of agents with
significantly limited resources.

Figure 4 shows the convergence rates of the consen-
sus ADMM and SOVA algorithms on randomly connected
graphs as the number of agents increases. The consensus
ADMM method requires orders of magnitude more iterations
to converge with increasing number of agents. In contrast,
the SOVA method converges in relatively the same number
of iterations even as the network size increases.

The above analysis demonstrates the superior convergence
properties of the SOVA method with limited communication
and computation resources. Next, we discuss applications
of the SOVA method to distributed optimization problems
arising in robotics and data modeling. We consider chain
communication graphs and show convergence to the optimal
parameters of the optimization problem.

B. Sensor Networks

We consider a network of 1000 robots equipped with radio
receivers operating within different frequency bands. These
scenarios arise in telecommunications and search and rescue
applications where robots are deployed to recover noisy
signals transmitted by electronic devices and emergency
beacons. The scale of these applications often require the
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Fig. 3. Convergence rates of the consensus ADMM and Separable Op-
timization variable ADMM (SOVA) methods on (top) fully-connected and
(bottom) chain graphs. The SOVA algorithm provides orders of magnitude
increase in convergence rate especially on sparsely connected graphs such
as chain graphs.

deployment of large numbers of robots with limited commu-
nication and storage resources to cover large areas which are
difficult to access. The measured signals are corrupted with
noise, and thus have to be de-noised. In many applications,
recovering the transmitted signal from noisy measurements
is posed as an optimization problem given by

minimize
x

N∑
i=1

‖yi −Aixi‖22 + α‖Gixi‖2p (20)

yi ∈ Rmi represents the measured signals at robot i. Ai ∈
Rmi×ni denotes the problem data available to robot i. Each
robot recovers xi ∈ Rni . Gi defines the regularization on
xi, measuring the smoothness or size of xi. The l1 norm
on Gixi arises in basis pursuit to recover sparse signals and
in total variation de-noising. We consider the l2 norm case
where Gi ∈ R(ni−2)×ni gives a measure of the curvature of
the parameter which arises in smoothing applications:

Gi,jk =


1 j = k

−2 j = k + 1

1 j = k + 2

0 otherwise

j and k denote indices of Gi. We randomly generated the
problem data A ∈ R6506×2002, y ∈ R6506 and x ∈ R2002.
Figure 5 shows the recovered signals with α = 0 and
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Fig. 4. Convergence rates of the consensus ADMM and Separable
Optimization Variable ADMM (SOVA) methods as the number of agents
grows. The convergence rate of the SOVA algorithm remains relatively
the same while the consensus ADMM method requires substantially more
iterations as the number of agents increases.

α = 1000. The recovered signal appears noisy without
any smoothing. At α = 1000, the signal retains its overall
shape and shows much less variation. Figure 6 shows the
convergence rates of the SOVA method to x?. Convergence
of the SOVA method requires three orders of magnitude
less communication rounds in comparison to the consensus
ADMM method, resulting in less communication and com-
putation by each agent.
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Fig. 5. Signal reconstruction with a network of 1000 robots using the
Separable Optimization Variable ADMM (SOVA) algorithm. (top) The
recovered signal with no smoothing α = 0. (bottom) The smoothed
recovered signal with α = 100.

C. Data Modeling and Statistics

Medical, finance, and Internet media disciplines involve
building predictive models through optimization from data
collected in different modes from user devices and clinical
trials. In many cases, the distributed systems require low
complexity optimization methods given limited computation,
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Fig. 6. Convergence rates of the consensus ADMM and Separable
Optimization Variable ADMM (SOVA) methods on the distributed signal
estimation problem among 1000 robots. SOVA requires orders of magnitude
fewer iterations to converge.

communication, and data storage resources. The model pa-
rameters x ∈ Rn are selected to maximize the likelihood of
the observed data (Maximum Likelihood Estimation) which
arises often in machine learning or the posterior distribution
of the data (maximum a posteriori estimation) which arises
in Bayesian estimation. We can pose the problem of finding
the explanatory variables as an optimization problem. We
consider maximum a posteriori (MAP) estimation with the
data model

y = f(x, z) + v (21)

where y ∈ Rm and z ∈ Rm represent problem-specific data
and v ∈ Rm is the model noise. We assume v is independent
and normally distributed with zero mean and covariance P ∈
Rm×m. x ∈ Rn denotes the model parameters. In many
scenarios, we have some prior knowledge on x. Here, we
assume x comes from a normal distribution parameterized
by mean µ ∈ Rn and covariance Σ ∈ Rn×n. With a data
model linear in its parameters, the optimization problem is
given by

minimize
x

‖x− µ‖2Σ−1 + ‖y −Ax‖2P−1 (22)

y ∈ Rm denotes the observed data, and A ∈ Rm×n

represents the problem data. We randomly generated the
problem data and show convergence rate of the SOVA
method with x ∈ R2010, A ∈ R5371×2010, and y ∈ R2010

in Figure 7. SOVA converges more than three orders of
magnitude faster than the consensus ADMM algorithm,
despite the large number of agents. Rapid convergence in
SOVA enables efficient re-optimization of model parameters
for deploying predictive models in finance, medicine, and
other applications.

VI. CONCLUSIONS

In previous ADMM methods, distributed agents have to
optimize unnecessarily over all problem variables which
are neither related to their data nor required for their role.
We present the Separable Optimization Variable ADMM
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Fig. 7. Convergence rate of the consensus ADMM and Separable
Optimization Variable ADMM (SOVA) methods on a maximum a posteriori
(MAP) estimation problem with data distributed among 1000 agents. SOVA
converges more than three orders of magnitudes faster than consensus
ADMM.

(SOVA) method where each agents optimizes over a smaller
subset of variables, resulting in highly efficient computation,
communication, and data storage. We show superior con-
vergence properties of the SOVA method to the centralized
optimal values compared to consensus ADMM methods
with different communication constraints. Future work will
establish analytical bounds on the convergence rates of the
SOVA method and apply SOVA to non-convex problems.
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