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Distributed 
Optimization 
Methods for  

Multi-Robot Systems
Part 2—A Survey

Although the field of distributed 
optimization is well developed, 
relevant literature focused on the 
application of distributed optimi-
zation to multi-robot problems is 
limited. This survey constitutes 
the second part of a two-part 
series on distributed optimization 
applied to multi-robot problems. 
In this article, we survey three 
main classes of distributed opti-
mization algorithms—distributed 
first-order (DFO) methods, dis-
tributed sequential convex pro-
gramming methods, and alternating direction method of 
multipliers (ADMM) methods—focusing on fully distributed 
methods that do not require coordination or computation by a 
central computer. We describe the fundamental structure of 
each category and note important variations around this 
structure, designed to address its associated drawbacks. Fur-
ther, we provide practical implications of noteworthy 
assumptions made by distributed optimization algorithms, 
noting the classes of robotics problems suitable for these 
algorithms. Moreover, we identify important open research 
challenges in distributed optimization, specifically for robot-
ics problem.

INTRODUCTION
In this article, we survey the literature in distributed optimiza-
tion, specifically with an eye toward problems in multi-robot 
coordination. As we demonstrated in the first article in this 
two-part series [1], many multi-robot problems can be written 
as a sum of local objective functions, subject to an intersection 
of local constraints. Such problems can be solved with a pow-
erful and growing arsenal of distributed optimization algo-
rithms. Distributed optimization consists of multiple 
computation nodes working together to minimize a common 
objective function through local computation iterations and 
network-constrained communication steps, providing both 
computational and communication benefits by eliminating the 
need for data aggregation. Distributed optimization is also 
robust against the failure of individual nodes, as it does not 
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rely on a central computation station, and many distributed 
optimization algorithms have inherent privacy-preserving 
properties, keeping the local data, objective function, and 
constraint function private to each robot while still allowing 
for all robots to benefit from one another. Distributed optimi-
zation has not yet been widely employed in robotics, and 
there exist many open opportunities for research in this 
space, which we highlight in this survey.

Although the field of distributed optimization is well estab-
lished in many areas, such as computer networking and power 
systems, problems in robotics have a number of distinguish-
ing features that are not often considered in the major applica-
tion areas of distributed optimization. Notably, robots move, 
unlike their analogous counterparts in these other disciplines, 
which makes their networks time varying and prone to band-
width limitations, packet drops, and delays. Robots often use 
optimization within a receding horizon or model predictive 
control (MPC) loop, so fast convergence to an optimal solu-
tion is essential in robotics. In addition, optimization problems 
in robotics are often constrained (e.g., with safety constraints, 
input constraints, or kinodynamics constraints in planning 
problems) and nonconvex [for example, simultaneous localiza-
tion and mapping (SLAM) is a nonconvex optimization, as is 
trajectory planning and state estimation for any nonlinear robot 
model]. Many existing surveys on distributed optimization do 
not address these unique characteristics of robotics problems.

This survey constitutes the second part of a two-part series 
on distributed optimization for multi-robot systems. The first 
part consisted of a tutorial focused on the applicability of dis-
tributed optimization to multi-robot problems. In it, we dem-
onstrated how a broad range of multi-robot problems can be 
cast in a form that is appropriate for distributed optimization, 
and we provided practical guidelines for implementing dis-
tributed optimization algorithms. In this survey, we highlight 
relevant distributed optimization algorithms and note the 
classes of robotics problems to which these algorithms can 
be applied. Noting the large body of work in distributed opti-
mization, we categorize distributed optimization algorithms 
into three broad classes and identify the practical implica-
tions of these algorithms for robotics problems, including the 
challenges arising in the implementation of these algorithms 
on robotics platforms.

This survey is aimed at robotics researchers who are inter-
ested in research at the intersection of distributed optimization 
and multi-robot systems as well as robotics practitioners who 
want to harness the benefits of distributed optimization algo-
rithms in solving practical robotics problems (see Figure 1). In 
this survey, we limit our discussion to optimization problems 
over real-valued decision variables. Although discrete opti-
mization problems (i.e., integer programs or mixed-integer 
programs) arise in some robotics applications, these problems 
are beyond the scope of this survey. However, we note that 
distributed algorithms for integer and mixed-integer problems 
have been discussed in a number of different works [2], [3], [4]. 
Further, we limit our discussion to derivative-based methods, 
in contrast to derivative-free (zeroth-order) distributed optimi-

zation algorithms. We note that derivative-free optimization 
methods have been discussed extensively in [5], [6], [7], [8], 
[9], and [10].

In many robotics applications, such as field robotics, com-
munication with a central computer (or the cloud) might be 
infeasible, even though each robot can communicate locally 
with other neighboring robots. Consequently, we focus par-
ticularly on distributed optimization algorithms that permit 
robots to use local robot-to-robot communication to compute 
an optimal solution, rather than algorithms that require coor-
dination by a central computer. These methods yield a glob-
ally optimal solution for convex problems and, in general, a 
locally optimal solution for nonconvex problems, producing 
the same solution quality that would be obtained if a central-
ized method were applied. Although many distributed opti-
mization algorithms are not inherently “online” (in the sense 
that these algorithms were not originally designed to be exe-
cuted while the robot is actively gathering data or completing 
a task, providing information that changes its objective and 
constraint functions), we note that many of these algorithms 
can be applied in these online problems within the MPC 
framework, where a new optimization problem is solved peri-
odically from streaming data.

In this survey, we provide a taxonomy of the different 
algorithms for performing distributed optimization, based on 
their defining mathematical characteristics. We identify three 
classes: DFO algorithms, distributed sequential convex pro-
gramming, and distributed extensions to the ADMM:
1)	 DFO algorithms: The most common class of distributed 

optimization methods is based on the idea of averaging 

(a)

(b)

FIGURE 1. A motivation for distributed optimization: consider an 
estimation scenario in which a robot seeks to localize a target 
when given sensor measurements. (a) The robot can compute 
an optimal solution when given only its observations. (b) By 
using distributed optimization techniques, each robot in a net-
worked system of robots can compute the optimal solution when 
given all robots’ observations, without actually sharing individual 
sensor models or measurements with one another.
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local gradients computed by each computational node 
to perform an approximate gradient descent update [11], 
and in this work, we refer to them as DFO algorithms. 
DFO algorithms can be further subdivided into distrib-
uted (sub)gradient descent, distributed gradient track-
ing, distributed stochastic gradient descent, and 
distributed dual averaging (DDA) algorithms, with each 
subcategory differing from the others based on the 
order of the update steps and the nature of the gradients 
used. In general, DFO algorithms use consensus meth-
ods to achieve a shared solution for the optimization 
problem. Many DFO algorithms allow for dynamic 
communication networks (including unidirectional and 
bidirectional networks) [12], [13] and limited computa-
tion resources [14], but they are often not well suited to 
constrained problems.

2)	 Distributed sequential convex programming: Sequential 
convex optimization is a common technique in centralized 
optimization that involves minimizing a sequence of con-
vex approximations to the original (usually nonconvex) 
problem. Under certain conditions, the sequence of sub-
problems converges to a local optimum of the original 
problem. Newton’s method and the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) method are common examples. 
The same concepts are used by a number of distributed 
optimization algorithms, and we refer to these algorithms 
as distributed sequential convex programming methods. 
Generally, these methods use consensus techniques to con-
struct the convex approximations of the joint objective 
function. One example is the network Newton method 
[15], which uses consensus to approximate the inverse 
Hessian of the objective to construct a quadratic approxi-
mation of the joint problem. The NEXT family of algo-
rithms [16] provides a flexible framework, which can 
utilize a variety of convex surrogate functions to approxi-
mate the joint problem and is specifically designed to opti-
mize nonconvex objective functions. Although many 
distributed sequential convex programming methods are 
not suitable for problems with dynamic communication 
networks, a few distributed sequential convex program-
ming algorithms are amenable to these problems [16].

3)	 ADMM: The last class of algorithms covered in this survey 
is based on the ADMM [17]. The ADMM works by mini-
mizing the augmented Lagrangian of the optimization 
problem, using alternating updates to the primal and dual 
variables [18]. This method naturally accommodates con-
strained problems (with the assumption that we can con-
vert inequality constraints to equality constraints by using 
slack variables). The original method is distributed but not 
in the sense we consider in this survey. Specifically, the 
original ADMM requires a central computation hub to col-
lect all local primal computations from the nodes to per-
form a centralized dual update step. The ADMM was first 
modified to remove this requirement for a central node in 
[19], where it was used for distributed signal processing. 
The algorithm from [19] has since become known as the 

consensus ADMM (C-ADMM), although the original paper 
[19] did not use this terminology. A number of other dis-
tributed variants have been developed to address many 
unique characteristics, including unidirectional communi-
cation networks and limited communication bandwidth 
[20], [21], which are often present in robotics problems.

EXISTING SURVEYS
A number of other recent surveys on distributed optimization 
exist and provide useful background when working with the 
algorithms covered in this article. Some of these surveys 
cover applications of distributed optimization in distributed 
power systems [22], big data problems [23], and game theory 
[24], while others focus primarily on first-order methods for 
problems in multiagent control [25]. Other articles broadly 
address DFO optimization methods, including a discussion 
on the communication–computation tradeoffs [26], [27]. 
Another survey [28] covers exclusively nonconvex optimiza-
tion in both batch and data streaming contexts but again ana-
lyzes only first-order methods. Finally, [29] covers a wide 
breadth of distributed optimization algorithms with a variety 
of assumptions, focusing exclusively on convex optimization 
problems. Building on the first article in this two-part series 
[1], which formulates multi-robot problems within the frame-
work of distributed optimization, our survey differs from 
other existing surveys in that it specifically targets applica-
tions of distributed optimization to multi-robot problems: 
identifying suitable distributed optimization algorithms that 
address the practical issues arising in multi-robot problems 
and providing references demonstrating the application of 
distributed optimization to multi-robot problems. As a result, 
this survey highlights the practical implications of the 
assumptions made by many distributed optimization algo-
rithms and provides a condensed taxonomic overview of use-
ful methods for these applications. Other useful background 
material can be found for distributed computation [30], [31] 
and on multi-robot systems in [32] and [33].

CONTRIBUTIONS
This survey article has three primary objectives:
1)	 survey the literature across three different classes of dis-

tributed optimization algorithms, noting the defining math-
ematical characteristics of each category

2)	 highlight noteworthy assumptions made by distributed opti-
mization algorithms and provide existing applications of 
distributed optimization algorithms to multi-robot problems

3)	 propose open research problems in distributed optimiza-
tion for robotics.

ORGANIZATION
In the “Notation and Preliminaries” section, we introduce 
mathematical notation and preliminaries, and in the “Prob-
lem Formulation” section, we present the general formulation 
for the distributed optimization problem and describe the 
general framework shared by distributed optimization algo-
rithms. The “DFO Algorithms,” “Distributed Sequential 
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Convex Programming,” and “ADMM” sections survey the 
literature in each of the three categories and provide details 
for representative algorithms in each category. The “Distrib-
uted Optimization in Robotics and Related Applications” sec-
tion provides existing applications of distributed optimization 
in the robotics literature. In the “Research Opportunities in 
Distributed Optimization for Multi-robot Systems” section, 
we discuss open research problems in applying distributed 
optimization to multi-robot systems and robotics in general, 
and we offer concluding remarks in the “Conclusion” section.

NOTATION AND PRELIMINARIES
In this section, we introduce the notation used in this article 
and provide the definitions of mathematical concepts relevant 
to the discussion of the distribution optimization algorithms. 
We denote the gradient of a function :f R Rn "  as fd  and 
its Hessian as .f2d  We denote the vector containing all ones 
as ,1n  where n represents the number of elements in the vec-
tor. Next, we begin with the definition of stochastic matrices 
that arise in DFO optimization algorithms.

DEFINITION 1: NONNEGATIVE MATRIX
A matrix W Rn n! #  is referred to as a nonnegative matrix if 
w 0ij $  for all , , , .i j n1 f! " ,

DEFINITION 2: STOCHASTIC MATRIX
A nonnegative matrix W Rn n! #  is referred to as a row-sto-
chastic matrix if

	 .W1 1n n= � (1)

In other words, the sum of all elements in each row of the 
matrix equals one. We refer to W as a column-stochastic 
matrix if

	 .W1 1n n= << � (2)

Likewise, for a doubly stochastic matrix W,

	 , .W W1 1 1 1andn n n n= = << � (3)

Now we provide the definition of some relevant properties 
of a sequence.

DEFINITION 3: SUMMABLE SEQUENCE
A sequence ( ) ,k k 0a $" ,  with ,k N!  is a summable sequence 
if ( )k 02a  for all k and

	 ( ) .k
k 0

31a
3

=

/ � (4)

DEFINITION 4: SQUARE-SUMMABLE SEQUENCE
A sequence ( ) ,k k 0a $" ,  with ,k N!  is a square-summable 
sequence if ( )k 02a  for all k and

	 ( ) .k
k

2

0

31a
3

=

^ h/ � (5)

We next discuss some relevant notions of the connectivity 
of a graph.

DEFINITION 5: CONNECTIVITY  
OF AN UNDIRECTED GRAPH
An undirected graph G  is connected if a path exists between 
every pair of vertices (i, j ), where , .i j V!  Note that such a 
path might traverse other vertices in .G

DEFINITION 6: CONNECTIVITY OF A DIRECTED GRAPH
A directed graph G  is strongly connected if a directed path 
exists between every pair of vertices (i, j), where , .i j V!  In 
addition, a directed graph G  is weakly connected if the 
underlying undirected graph is connected. The underlying 
undirected graph Gu  of a directed graph G  refers to a graph 
with the same set of vertices as G  and a set of edges obtained 
by considering each edge in G  a bidirectional edge. Conse-
quently, every strongly connected directed graph is weakly 
connected; however, the converse is not true.

In distributed optimization in multi-robot systems, robots 
perform communication and computation steps to minimize 
some global objective function. We focus on problems in 
which the robots’ exchange of information must respect the 
topology of an underlying distributed communication graph, 
which could possibly change over time. This communication 
graph, denoted as ( ) ( ), ( ) ,t t tG V E= ^ h  consists of vertices 

( ) , ,t N1V f= " , and edges ( ) ( ) ( )t t tE V V#3  over which 
pairwise communication can occur. For undirected graphs, we 
denote the set of neighbors of robot i as ( ) .tNi  For directed 
graphs, we refer to the set of robots that can send informa-
tion to robot i as the set of in neighbors of robot i, denoted 
by ( ) .tN i

+  Likewise, for directed graphs, we refer to the set 
of robots that can receive information from robot i as the out 
neighbors of robot i, denoted by ( ) .tN i

-

DEFINITION 7: CONVERGENCE RATE
Provided that a sequence x( )k" , converges to ,x*  if there 
exists a positive scalar ,r R!  with ,r 1$  and a constant 

,R!m  with ,02m  such that

	 lim
x x

x x
( )

( )

k k r

k 1

m
-

-
=

" *

*

3

+

� (6)

then r defines the order of convergence of the sequence x( )k" , 
to .x*  Moreover, the asymptotic error constant is given by .m

If r 1=  and ,1m =  then x( )k" , converges to x*  sublinearly. 
However, if r 1=  and ,11m  then x( )k" , converges to x*  lin-
early. Likewise, x( )k" , converges to x*  quadratically if r 2=  
and cubically if .r 3=

DEFINITION 8: SYNCHRONOUS ALGORITHM
An algorithm is synchronous if each robot (computational node) 
has to wait at a predetermined point for a specific message 
from other robots (computational nodes) before proceeding. In 
general, the end of an iteration of the algorithm represents the 
predetermined synchronization point. Conversely, in an 
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asynchronous algorithm, each robot completes each iteration at 
its own pace, without having to wait at a predetermined point. 
In other words, at any given time, the number of iterations of an 
asynchronous algorithm completed by each robot could differ 
from the number of iterations completed by other robots.

PROBLEM FORMULATION
We consider a general class of separable distributed optimization 
problems in which we express a joint objective function as the 
sum over local objective functions. From a multi-robot perspec-
tive, each robot knows only its own local function, but the robots 
collectively seek to find the optimum to the global function. In 
this general formulation, we also consider a set of joint con-
straints consisting of an intersection over local constraints. Each 
robot knows only its own local constraints and its local objec-
tive function. The resulting optimization problem is given by

	

( )

( )

( )

min f x

g x i

h x i

0

0

subject to V

V

x
i

i

i

i

V

6

6

!

# !

=

!

/
�

(7)

where x Rn!  denotes the optimization variable and : ,f R Ri
n "  

: ,g R Ri
n "  and :h R Ri

n "  denote the local objective func-
tion, equality constraint function, and inequality constraint 
function of robot i, respectively. The joint optimization prob-
lem (7) can be solved locally by each robot if all the robots 
share their objective and constraint functions with one another. 
Alternatively, the solution can be computed centrally if all the 
local functions are collated at a central station. However, 
robots typically possess limited computation and communica-
tion resources, which precludes each robot from sharing its 
local functions with other robots, particularly in problems with 
high-dimensional problem data, such as images, lidar, and 
other perception measurements.

Distributed optimization algorithms enable each robot to com-
pute a solution of (7) locally without sharing its local objective, 
constraints, or data. These algorithms assign a copy of the opti-
mization variable to each robot, enabling each robot to update its 
own copy locally and in parallel with the other robots. Moreover, 
distributed optimization algorithms enforce consensus among the 
robots for agreement on a common solution of the optimization 
problem. Consequently, these algorithms solve an equivalent 
reformulation of the optimization problem in (7), given by

	

( )

( , )

( )

( )

min f x

x x i j

g x i

h x i

0

0

subject to E

V

V

,x i
i

i
i

i j

i i

i i

V Vi

6

6

6

!

!

# !

=

=

6 ! !" ,
/

�

(8)

where x Ri
n!  denotes robot i’s local copy of the optimization 

variable. We note that the consensus constraints in (8) ensure 
agreement among all the robots, with the assumption that the 
communication graph is connected. Moreover, the consensus 
constraints are enforced between neighboring robots only, 

providing compatibility with a point-to-point communication 
network, where robots can communicate only with their one-
hop neighbors. To simplify notation, we introduce the set 

( ) , ( ) ,x g x h x0 0Xi i i i i i; #= =" ,  representing the feasible set 
given the constraint functions gi  and .hi  Consequently, we 
can express the problem in (8) succinctly, as follows:

	
( )min f x

subject to

,x i
i

i
i

i j

VX Vi i 6! !!

( , ) .x x i j E6 !=

" ,
/

�
(9)

In the following sections, we discuss three broad classes 
of distributed optimization methods, namely, DFO methods, 
distributed sequential convex programming methods, and the 
ADMM. We note that DFO methods and distributed sequen-
tial convex programming methods implicitly enforce the con-
sensus constraints in (9), while the ADMM enforces these 
constraints explicitly. While not all the methods that we survey 
explicitly address constraints of the form ( ) ,g x 0i =  ( ) ,h x 0i #  
we note in each section considerations to accommodate these 
additional terms. In some cases, it is also appropriate to incor-
porate the constraints as penalty terms in the cost function.

Before proceeding, we highlight the general framework 
that distributed optimization algorithms share. Distributed 
optimization algorithms are iterative algorithms in which each 
robot executes a number of operations over discrete iterations 

, ,k 0 1 f=  until convergence, where each iteration consists of 
a communication and computation step. During each commu-
nication round, each robot shares a set of its local variables 
with its neighbors, referred to as its “communicated” variables 

,Q ( )
i
k  which we distinguish from its “internal” variables ,P( )

i
k  

which are not shared with its neighbors. In general, each algo-
rithm requires initialization of the local variables of each robot 
in addition to algorithm-specific parameters, denoted by .R ( )

i
k  

We note that some algorithms require all the robots to utilize a 
common step-size at initialization; however, these parameters 
can be initialized prior to deployment of the robots.

DFO ALGORITHMS
The optimization problem in (7) (in its unconstrained form) 
can be solved through gradient descent, where the optimiza-
tion variable is updated using

	 ( )x x f x( ) ( ) ( ) ( )k k k k1 da= -+ � (10)

with f x( )kd ^ h denoting the gradient of the objective function 
at ,x( )k  given by

	 ( ) ( )f x f x
i

i
V

d d=
!

/ � (11)

given some scheduled step-size .( )ka  Inherently, computation 
of ( )f x( )kd  requires knowledge of the local objective func-
tions or gradients by all robots in the network, which is infea-
sible in many problems.

DFO algorithms extend the centralized gradient scheme to 
the distributed setting, where robots communicate with one-hop 
neighbors without knowledge of the local objective functions 
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or gradients of all robots. In DFO methods, each robot updates 
its local variable by using a weighted combination of the local 
variables or gradients of its neighbors according to the weights 
specified by a stochastic weighting matrix W, allowing for the 
dispersion of information on the objective function or its gradient 
through the network. The stochastic matrix W must be compat-
ible with the underlying communication network, with a nonzero 
element wij  when robot j can send information to robot i.

From the perspective of a single robot, the update equations 
in DFO methods represent a tradeoff between the optimality 
of the robot’s individual solution based on its local objective 
function and agreement with its neighbors. Consensus enables 
the robot to incorporate global information about the objective 
function’s shape into its update, thereby allowing it to approxi-
mate a gradient descent step on the global cost function rather 
than on its local cost function.

Many DFO algorithms use a doubly stochastic matrix, a 
row-stochastic matrix [34], or a column-stochastic matrix, 
depending on the model of the communication network con-
sidered, while other methods use a push-sum approach. In 
addition, many methods further require symmetry of the dou-
bly stochastic weighting matrix with .W W= <  The weight 
matrix exerts a significant influence on the convergence rates 
of DFO algorithms, and thus, an appropriate choice of these 
weights is required for convergence of DFO methods.

The order of the update procedures for the local variables 
of each robot and the gradient used by each robot in perform-
ing its local update procedures differ among DFO algorithms, 
giving rise to four broad classes of DFO methods: distributed 
(sub)gradient descent and diffusion algorithms, gradient track-
ing algorithms, distributed stochastic gradient algorithms, 
and DDA. While distributed (sub)gradient descent algorithms 
require a decreasing step-size for convergence to an optimal 
solution, gradient tracking algorithms converge to an optimal 
solution without this condition. We discuss these distributed 
methods in the following sections.

DISTRIBUTED (SUB)GRADIENT DESCENT 
AND DIFFUSION ALGORITHMS
Tsitsiklis introduced a model for distributed gradient descent 
(DGD) in the 1980s in [35] and [11] (see also [30]). The 
works of Nedić and Ozdaglar in [14] revisit the problem, 
marking the beginning of interest in consensus-based frame-
works for distributed optimization over the past decade. This 
basic model of DGD consists of an update term that involves 
consensus on the optimization variable as well as a step in 
the direction of the local gradient for each node:

	 x w x f x( ) ( ) ( ) ( )
i
k

ij
j i

j
k

i
k

i i
k1

Ni

da= -
,!

+ ^ h
" ,
/ � (12)

where robot i updates its variable using a weighted combina-
tion of its neighbors’ variables determined by the weights ,wij  
with ( )kia  denoting its local step-size at iteration k.

For convergence to the optimal joint solution, these meth-
ods require the step-size to asymptotically decay to zero. As 
proved in [36], if ( )ka  is chosen such that the sequence ( )ka" , 

is square summable but not summable, then the optimization 
variables of all robots converge to the optimal joint solution 
given the standard assumptions of a connected network, prop-
erly chosen weights, and bounded (sub)gradients. In contrast, 
the choice of a constant step-size for all time steps guarantees 
only the convergence of each robot’s iterates to a neighbor-
hood of the optimal joint solution. In practice, this means that 
a multi-robot system implementing DGD must coordinate on 
scheduling the decrease of the step-size. Nonetheless, DGD 
can generally tolerate some level of asynchrony or stochas-
ticity. Algorithm 1 summarizes the update step for the DGD 
method in [14], with the step-size / ,k( ) ( )k 0a a=  with .0( )0 2a

We note that the update procedure given in (12) requires 
a doubly stochastic weighting matrix, which, in general, is 
incompatible with directed communication networks. Other 
DGD algorithms [37], [38], [39], [40] utilize the push-sum 
consensus protocol [41] in place of the consensus terms in (12), 
extending the application of DGD schemes to problems with 
directed communication networks.

In general, with a constant step-size, distributed (sub)gradi-
ent descent algorithms converge at a rate of /O k1^ h to a neigh-
borhood of the optimal solution in convex problems [42]. With 
a decreasing step-size, some distributed (sub)gradient descent 
algorithms converge to an optimal solution at /logO k k^ h by 
using an accelerated gradient scheme, such as the Nesterov 
gradient method [43].

DISTRIBUTED GRADIENT TRACKING ALGORITHMS
Although distributed (sub)gradient descent algorithms con-
verge to an optimal joint solution, the requirement of a 
square-summable sequence ,( )ka" ,  which results in a decay-
ing step-size, reduces the convergence speed of these meth-
ods. Gradient tracking methods address this limitation by 
allowing each robot to utilize the changes in its local gradient 
between successive iterations as well as a local estimate of 
the average gradient across all robots in its update proce-
dures, enabling the use of a constant step-size while retaining 
convergence to the optimal joint solution.

The EXTRA algorithm introduced by Shi et al. in [44] 
uses a fixed step-size while still achieving exact convergence. 

Initialization: ,k x0 R
( )
i

n0
! !

Internal variables: P( )
i
k
4=

Communicated variables: xQ( ) ( )
i
k

i
k

=

Parameters: ( , )wR( ) ( )
i
k k

ia=

do in parallel i V6 !

    Communicate Q( )
i
k  to all j N i!

    Receive Q( )
j
k  from all j N i!

    
( )

k

x w x f x

( )
( )

( ) ( ) ( ) ( )

{ }

k

i
k

ij
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EXTRA replaces the gradient term with the difference in the 
gradients of the previous two iterates. Because the contribu-
tion of this gradient difference term decays as the iterates con-
verge to the optimal joint solution, EXTRA does not require 
the step-size to decay in order to converge to the exact optimal 
joint solution. EXTRA achieves linear convergence [42], and 
a variety of gradient tracking algorithms have since offered 
improvements on its linear rate [45] for convex problems with 
strongly convex objective functions.

The DIGing algorithm [46] whose update equations are 
shown in Algorithm 2, is one such similar method that extends 
the faster convergence properties of EXTRA to the domain 
of directed and time-varying graphs. DIGing requires com-
munication of two variables, effectively doubling the commu-
nication cost per iteration when compared to DGD but greatly 
increasing the diversity of communication infrastructure that 
it can be deployed on.

Many other gradient tracking algorithms involve variations 
on the variables updated using consensus and the order of the 
update steps, such as NIDS [48] and Exact Diffusion [49], [50], 
[51], [52]. These algorithms, which generally require the use of 
doubly stochastic weighting matrices, have been extended to 
problems with row-stochastic or column-stochastic matrices 
[12], [13], [53], [54] and push-sum consensus [55] for distrib-
uted optimization in directed networks. To achieve faster con-
vergence rates, many of these algorithms require each robot to 
communicate multiple local variables to its neighbors during 
each communication round. In addition, we note that some of 
these algorithms require all robots to use the same step-size, 
which can prove challenging in some situations. Several works 
offer a synthesis of various gradient tracking methods, not-
ing the similarities among these methods. Under the canonical 
form proposed in [56] and [57], these algorithms and oth-
ers differ only in the choice of several constant parameters. 
Jakovetić also provides a unified form for various gradient 
tracking algorithms in [58]. Some other works consider accel-
erated variants using Nesterov gradient descent [59], [60], [61]. 
Gradient tracking algorithms can be considered primal–dual 
methods with an appropriately defined augmented Lagrangian 
function [46], [62].

In general, gradient tracking algorithms address uncon-
strained distributed convex optimization problems, but these 
methods have been extended to nonconvex problems [63] and 
constrained problems using projected gradient descent [64], 
[65], [66]. Some other methods [67], [68], [69], [70] perform 
dual ascent on the dual problem of (7), where the robots com-
pute their local primal variables from the related minimiza-
tion problem by using their dual variables. These methods 
require doubly stochastic weighting matrices but allow for 
time-varying communication networks. DFO methods have 
been extended to the constrained setting [71], where each robot 
performs a subsequent proximal projection step to obtain solu-
tions that satisfy the problem constraints.

In deep learning problems, the associated objective function 
often consists of a sum over a very large number of data points. 
Computing exact gradients for such problems can be prohibi-
tively costly, so gradients are approximated by randomly sam-
pling a subset of the data at each iteration and computing the 
gradient only over those data. Such methods, called stochastic 
gradient descent, dominate in deep learning. In [72], stochastic 
gradients are used in place of gradients in the DGD algorithm, 
and the resulting algorithm is shown to converge.

DDA
Dual averaging, first posed in [73] and extended in [74], takes a 
similar approach to distributed (sub)gradient descent methods 
in solving the optimization problem in (7), with the added ben-
efit of providing a mechanism for handling problem constraints 
through a projection step, in a like manner to projected (sub)
gradient descent methods. However, the original formulations 
of the dual averaging method require knowledge of all compo-
nents of the objective function or its gradient, which is unavail-
able to all robots. The DDA method circumvents this limitation 
by modifying the update equations through a doubly stochastic 
weighting matrix to allow for updates of each robot’s variable 
by using its local gradients and a weighted combination of the 
variables of its neighbors [75].

Similar to distributed (sub)gradient descent methods, DDA 
requires a sequence of decreasing step-sizes to converge to the 
optimal solution. Algorithm 3 provides the update equations 
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in the DDA algorithm along with the projection step, which 
involves a proximal function ( ),xz  often defined as / .x1 2 2

2< <^ h  
After the projection step, the robot’s variable satisfies the prob-
lem constraints described by the constraints set .X  Some of 
the same extensions made to distributed (sub)gradient descent 
algorithms have been studied for DDA, including analysis 
of the algorithm under communication time delays [76] and 
replacement of the doubly stochastic weighting matrix with 
push-sum consensus [77].

DISTRIBUTED SEQUENTIAL CONVEX PROGRAMMING
Sequential convex programming is a class of optimization 
methods, typically for nonconvex problems, that proceed itera-
tively by approximating the nonconvex problem with a convex 
surrogate computed from the current values of the decision 
variables. This convex surrogate is optimized, and the resulting 
decision variables are used to compute the convex surrogate 
for the next iterate. Newton’s method is a classic example of a 
sequential convex method, in which the convex surrogate is a 
quadratic approximation of the original objective function. 
Several methods have been proposed for distributed sequential 
convex programming, as we survey here. As with DFO meth-
ods, distributed sequential convex programming takes the per-
spective of using consensus to approximate the global 
objective function, with the addition of approximating not only 
the global gradient but also the global Hessian. The benefit of 
this approach is that convergence typically requires fewer itera-
tions and is less dependent on carefully selecting a step-size. 
This comes at the expense of requiring the robots to communi-
cate more information in order to approximate the second-
order characteristics of the global objective function.

APPROXIMATE NEWTON METHODS
Newton’s method and its variants are commonly used for 
solving convex optimization problems, and they provide sig-
nificant improvements in the convergence rate when second-
order function information is available [78]. To apply 
Newton’s method to the distributed optimization problem in 
(7), the network Newton-K (NN-K) algorithm [15] takes a 
penalty-based approach that introduces consensus among the 
robots’ variables as components of the objective function. 
The NN-K method reformulates the constrained form of the 
distributed problem in (7) as the following unconstrained 
optimization problem:

	 ( )min f x x w x
,x i

i
i

i i ij
j i

j
R V V Ni

n
a +

,6

<

! ! ! !

rc m"" ,,
/ / � (13)

where W I W= -r  and a  is a weighting hyperparameter.
However, the Newton descent step requires computing the 

inverse of the joint problem’s Hessian, which cannot be direct-
ly computed in a distributed manner, as its inverse is dense. 
To allow for distributed computation of the Hessian inverse, 
the NN-K uses the first K terms of the Taylor series expan-
sion I X Xj

j1
0R- = 3-
=^ h  to compute the approximate Hessian 

inverse, as introduced in [79]. Approximation of the Hes-

sian inverse comes at an additional communication cost and 
requires an additional K communication rounds per update 
of the primal variable. Algorithm 4 summarizes the update 
procedures in the NN-K method, in which e  denotes the 
local step-size for the Newton step. Selection of the step-size 
parameter does not require any coordination among robots. 
As presented in Algorithm 4, the NN-K proceeds through two 
sets of update equations: an outer set of updates that initializes 
the Hessian approximation and computes the decision variable 
update and an inner Hessian approximation update; a commu-
nication round precedes the execution of either set of update 
equations. Increasing K, the number of intermediary commu-
nication rounds, improves the accuracy of the approximated 
Hessian inverse at the cost of increasing the communication 
cost per primal variable update.

A follow-up work optimizes a quadratic approximation 
of the augmented Lagrangian of the general distributed opti-
mization problem (7) in which the primal variable update 
involves computing a P-approximate Hessian inverse to per-
form a Newton descent step, and the dual variable update uses 
gradient ascent [80]. The resulting exact second-order method 
(ESOM) algorithm provides a faster convergence rate than the 
NN-K at the cost of one additional round of communication 
for the dual ascent step. Notably, replacing the augmented 
Lagrangian in the ESOM formulation with its linear approxi-
mation results in the EXTRA update equations, showing the 
relationship between both approaches.

In some cases, computation of the Hessian is impossible 
because second-order information is not available or intracta-
ble due to the large dimensions of the problem. Quasi-Newton 
methods like the BFGS algorithm approximate the Hessian 
when it cannot be directly computed. The distributed BFGS 
(D-BFGS) algorithm [81] replaces the second-order information 

Initialization: ,k x0 R
( )
i

n0
! !

Internal variables: ,( )g DP( ) ( ) ( )
i
k

i
k

i
k

=

Communicated variables: ,( )x dQ ( ) ( )
i i

k
i
k 1

=
+

Parameters: , , ,( )K wR i ia e= r

do in parallel i V6 !

      ( )D f x w I2( ) ( )
i
k

i i
k

ii
1 2da= +
+ r

    Communicate x( )
i
k  to all j N i!

  
( )g f x w x

d D g

( ) ( ) ( )

( ) ( ) ( )

{ }
i
k

i i
k

ij
j i

j
k

i i
k

i
k

1

0 1 1 1

N i

da= +

=-

,!

+

+ - +

r

^ h

/

    for p 0=  to K 1-  do
        Communicate d( )

i
p  to all j N i!

           ( )d D w d g w d( ) ( ) ( ) ( ) ( )

{ }
i
p

i
k

ii i
p

i
k

ij
j i

j
p1 1 1 1

N i

= - -
,!

+ + - +r r; E/

    end

      x x d( ) ( ) ( )
i
k

i
k

i
K1

e= +
+

    k k 1! +

while stopping criterion is not satisfied

ALGORITHM 4. NN-K.
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in the primal update in ESOM with a BFGS approximation (i.e., 
it replaces D( )

i
k  in a call to the Hessian approximation equations 

in Algorithm 4 with an approximation) and results in essentially 
a “doubly” approximate Hessian inverse. In [82], the D-BFGS 
method is extended so that the dual update also uses a distrib-
uted quasi-Newton update scheme rather than gradient ascent. 
The resulting primal–dual quasi-Newton method requires two 
consecutive iterative rounds of communication, doubling the 
communication overhead per primal variable update compared 
to its predecessors (NN-K, ESOM, and D-BFGS). However, the 
resulting algorithm is shown by the authors to still converge 
faster in terms of required communication. In addition, asyn-
chronous variants of the approximate Newton methods have 
been developed [83].

CONVEX SURROGATE METHODS
While the approximate Newton methods in [80], [81], and 
[82] optimize a quadratic approximation of the augmented 
Lagrangian of (13), other distributed methods allow for more 
general and direct convex approximations of the distributed 
optimization problem. These convex approximations general-
ly require the gradient of the joint objective function, which is 
inaccessible to any single robot. In the NEXT family of algo-
rithms [16], dynamic consensus is used to allow each robot to 
approximate the global gradient, and that gradient is then used 
to compute a convex approximation of the joint objective func-
tion locally. A variety of surrogate functions ( )U $  are proposed, 
including linear, quadratic, and block convex functions, which 
allows for greater flexibility in tailoring the algorithm to indi-
vidual applications. Using its surrogate of the joint objective 
function, each robot updates its local variables iteratively by 
solving its surrogate for the problem and then taking a 
weighted combination of the resulting solution with the solu-
tions of its neighbors. To ensure convergence, NEXT algo-
rithms require a series of decreasing step-sizes, resulting in 

generally slower convergence rates as well as additional 
hyperparameter tuning.

The SONATA [84] algorithm extends the surrogate function 
principles of NEXT and proposes a variety of nondoubly sto-
chastic weighting schemes that can be used to perform gradi-
ent averaging similar to the push-sum protocols. The authors of 
SONATA also show that several configurations of the algorithm 
result in already proposed distributed optimization algorithms, 
including Aug-DGM [85], Push-DIG [46], and ADD-OPT [53].

ADMM
Considering the optimization problem in (9) with only agree-
ment constraints, we have

	 ( )min f x
,x i

i
i

i
R VVi

n 6! ! !" ,
/ � (14)

	  ( , ) .x x i jsubject to Ei j 6 != � (15)

The method of multipliers solves this problem by alternat-
ing between minimizing the augmented Lagrangian of the 
optimization problem with respect to the primal variables 

, ,x xn1 f  (the “primal update”) and taking a gradient step 
to maximize the augmented Lagrangian with respect to the 
dual (the “dual update”). The augmented Lagrangian of (14) 
is given by

( )( , ) ( )q f x q x x x x
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xL ,a i
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N

i i j i j i j
ji
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11 Ni

< <
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where q ,i j  represents a dual variable for the consensus con-
straints between robots i and j, , ( , ) ,q q i j E,i j 6 !=

<<6 @  and 
, , , .x x xx N1 2 f= < < <<6 @  The parameter 02t  represents a pen-

alty term on the violations of the consensus constraints. The 
quadratic penalty term is what distinguishes the augmented 
Lagrangian, and it also distinguishes the method of multipli-
ers from dual ascent. The main benefit of using the augment-
ed Lagrangian is that the quadratic term essentially serves as 
a proximal operator and helps to ensure convergence.

In the ADMM, given the separability of the global objec-
tive function, the primal update is executed as successive 
minimizations over each primal variable (i.e., choose the 
minimizing x1  with all other variables fixed, then choose the 
minimizing ,x2  and so on). Most ADMM-based approaches 
do not satisfy our definition of distributed in that either the 
primal updates take place sequentially rather than in parallel 
or the dual update requires centralized computation [86], [87], 
[88]. However, the C-ADMM provides an ADMM-based opti-
mization method that is fully distributed: the nodes alternate 
between updating their primal and dual variable and commu-
nicating with neighboring nodes [19], [89].

To achieve a distributed update of the primal and dual vari-
ables, the C-ADMM alters the agreement constraints among 
agents with an existing communication link by introducing aux-
iliary primal variables in (9) (instead of the constraint ,x xi j=  
we have two constraints: x zi ij=  and ) .x zj ij=  Considering the 
optimization steps across the entire network, the C-ADMM 
proceeds by optimizing the original primal variables, then the 
auxiliary primal variables, and then the dual variables, as in the 
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ALGORITHM 5. NEXT.
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original formulation of the ADMM. We can perform minimi-
zation with respect to the primal variables and gradient ascent 
with respect to the dual variables on an augmented Lagrang-
ian that is fully distributed among the robots. Further, we note 
that although the ADMM is typically applied to equality-con-
strained problems, the method can be extended to inequality-
constrained problems quite easily. In particular, we note that 
inequality-constrained problems can be expressed as equali-
ty-constrained problems using indicator functions. With this 
approach, corresponding update procedures for constrained 
optimization problems can be derived using the ADMM.

Algorithm  6 summarizes the update procedures for the 
local primal and dual variables of each agent in constrained 
optimization problems, where yi  represents the dual variable 
that enforces agreement between robot i and its neighbors. We 
have incorporated the solution of the auxiliary primal variable 
update into the update procedure for ,x( )

i
k 1+  noting that the 

auxiliary primal variable update can be performed implicitly 
/ .z x x1 2ij i j= +) ^ ^h h6 @  The parameter t that weights the qua-

dratic terms in La  is also the step-size in the gradient ascent 
of the dual variable. We note that the update procedure for 
x( )

i
k 1+  requires solving an optimization problem, which might 

be computationally intensive for certain objective functions. 
To simplify the update complexity, the optimization can be 
solved inexactly using a linear approximation of the objective 
function, such as [90], [91], and [92], or a quadratic approxi-
mation using the Hessian, such as decentralized quadratically 
approximated ADMM [93]. The convergence rate of ADMM 
methods depends on the value of the penalty parameter .t  Sev-
eral works discuss effective strategies for optimally selecting 
t [94]. In general, convergence of the C-ADMM and its vari-
ants is guaranteed only when the dual variables sum to zero, a 
condition that could be challenging to satisfy in problems with 
unreliable communication networks. Other distributed ADMM 
variants that do not require this condition have been developed 
[95], [96]. However, these methods incur a greater communica-
tion overhead to provide robustness in these problems. Gradi-
ent tracking algorithms are related to the C-ADMM when the 
minimization problem in the primal update procedure is solved 
using a single gradient decent update.

The C-ADMM, as presented in Algorithm 6, requires each 
robot to optimize over a local copy of the global decision vari-
able x. However, many robotic problems have a fundamental 
structure that makes maintaining global knowledge at every 
individual robot unnecessary: each robot’s data relate only to 
a subset of the global optimization variables, and each agent 
requires only a subset of the optimization variable for its role. 
For instance, in distributed SLAM, a memory-efficient solution 
would require a robot to optimize only over its local map and 
communicate with other robots only messages of shared inter-
est. Other examples arise in distributed environmental monitor-
ing by multiple robots [97]. The SOVA method [98] leverages 
the separability of the optimization variable to achieve orders-
of-magnitude improvement in convergence rates, computation, 
and communication complexity over C-ADMM methods. The 
general approach of SOVA can also be found in partitioning-

based methods, such as in [99], [100], and [101], which also 
accommodate asynchronous or lossy communication. Like 
SOVA, these methods exploit the partitioning of the state vari-
ables, in that robot i need not estimate the states that are not 
relevant to its local objective function.

In SOVA, each agent optimizes only over variables rel-
evant to its data or role, enabling robotic applications in which 
agents have minimal access to computation and communication 
resources. SOVA introduces consistency constraints between 
each agent’s local optimization variable and its neighbors, map-
ping the elements of the local optimization variables, given by

,x x j iN Vij i ji j i6 6! !U U=

where ijU  and jiU  map elements of xi  and x j  to a common 
space. The C-ADMM represents a special case of SOVA 
where ijU  is always the identity matrix. The update procedures 
for each agent reduce to the equations given in Algorithm 7.
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ALGORITHM 6. C-ADMM.
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DISTRIBUTED OPTIMIZATION IN ROBOTICS  
AND RELATED APPLICATIONS
In this section, we discuss some existing applications of dis-
tributed optimization to robotics problems. To simplify the 
presentation, we highlight a number of these applications in 
the following notable problems in robotics: synchronization, 
localization, mapping, and target tracking; online and deep 
learning problems; and task assignment, planning, and con-
trol. We refer the reader to the first article in this two-part 
series [1] for a case study on multidrone target tracking, which 
compares solutions using several different distributed optimi-
zation algorithms.

SYNCHRONIZATION, LOCALIZATION,  
MAPPING, AND TRACKING
Distributed optimization algorithms have found notable 
applications in robot localization from relative measure-
ments [102], [103], including in networks with asynchronous 
communication [104]. More generally, DFO algorithms have 
been applied to optimization problems on manifolds, includ-
ing SE(3) localization [105], [106], [107], [108], synchroniza-
tion problems [109], and formation control in SO(3) [110], 
[111]. In pose graph optimization, distributed optimization 
has been employed through majorization–minimization 
schemes, which minimize an upper bound of the objective 
function [112], using gradient descent on Riemannian mani-
folds [113], [114], and block coordinate descent [115]. Other 
pose graph optimization methods have utilized distributed 
sequential programming algorithms using a quadratic 
approximation model of the nonconvex objective function, 
with Gauss–Seidel updates to enable distributed local com-
putations among the robots [116]. Further, the ADMM has 
been employed in bundle adjustment and pose graph optimi-
zation problems, which involve the recovery of the 3D posi-
tions and orientations of a map and camera [117], [118], 
[119]. However, many of these algorithms require a central 
node for the dual variable updates, making them semidis-
tributed. Nonetheless, a few fully distributed ADMM-based 
algorithms exist for bundle adjustment and cooperative 
localization problems [120], [121]. Other applications of dis-
tributed optimization arise in target tracking [122], signal 
estimation [19], and parameter estimation in global naviga-
tion satellite systems [123].

ONLINE AND DEEP LEARNING PROBLEMS
Distributed optimization has also been applied in online 
dynamic problems. In these problems, each robot gains 
knowledge of its time-varying objective function in an 
online fashion after taking an action or decision. A number 
of DFO algorithms have been designed for these problems 
[124], [125], [126]. Similarly, DDA has been adapted for 
online scenarios with both static communication graphs 
[127], [128] and time-varying communication topology 
[129], [130]. The push-sum variant of dual averaging has 
also been used for distributed training of deep learning 
algorithms and has been shown to be useful in avoiding pit-

falls of other synchronous distributed training frameworks, 
which face notable challenges in problems with communi-
cation deadlocks [131]. Many of these algorithms empha-
size parallelization.

In addition, distributed sequential convex programming 
algorithms have been developed for a number of learning prob-
lems where data are distributed, including semisupervised sup-
port vector machines [132], neural network training [133], and 
clustering [134]. Moreover, the ADMM has been applied to 
online problems, such as estimation and surveillance problems 
involving wireless sensor networks [135], [136]. The ADMM 
has also be applied to distributed deep learning in robot net-
works in [137].

TASK ASSIGNMENT, PLANNING, AND CONTROL
Distributed optimization has been applied to task assignment 
problems posed as optimization problems. Some works [138] 
employ distributed optimization using a distributed simplex 
method [139] to obtain an optimal assignment of the robots to 
a desired target formation. Other works employ the 
C-ADMM for distributed task assignment [140], [141]. Fur-
ther applications of distributed optimization arise in motion 
planning [142], trajectory tracking problems involving teams 
of robots using nonlinear MPC [143], and collaborative 
manipulation [144], [145], which employs fully distributed 
variants of the ADMM. One feature common to these prob-
lems is that the joint decision variables, which consist of con-
trol inputs or action variables concatenated over all the 
robots, can often be partitioned so that each robot needs to 
consider only its own actions, as in [98], [99], [100], and 
[101]. This can lead to significantly faster convergence com-
pared methods in which each agent has a complete copy of 
the joint decision variables, as discussed at the end of the 
“ADMM” section.

RESEARCH OPPORTUNITIES IN DISTRIBUTED 
OPTIMIZATION FOR MULTI-ROBOT SYSTEMS
In this section, we highlight challenges in the application of 
existing distributed optimization algorithms to multi-robot 
problems, each of which represents a promising direction for 
future research.

NONCONVEX AND CONSTRAINED  
ROBOTICS PROBLEMS
Distributed optimization methods have primarily focused on 
solving unconstrained convex optimization problems, which 
constitute a limited subset of robotics problems. Many robot-
ics problems involve nonconvex objectives or constraints. For 
example, problems in multi-robot motion planning, SLAM, 
learning, distributed manipulation, and target tracking are 
often nonconvex and/or constrained.

Both DFO methods and C-ADMM methods can be modi-
fied for nonconvex and constrained problems; however, few 
examples of practical algorithms or rigorous analyses of 
performance for such modified algorithms exist in the lit-
erature. One way to implement the C-ADMM for nonconvex 

Authorized licensed use limited to: Stanford University. Downloaded on September 13,2024 at 19:03:42 UTC from IEEE Xplore.  Restrictions apply. 



165SEPTEMBER 2024     IEEE ROBOTICS & AUTOMATION MAGAZINE

problems is to solve each primal update step as a nonconvex 
optimization (e.g., through a quasi-Newton method or interior 
point method). Another option is to perform successive qua-
dratic approximations in an outer loop and use the C-ADMM 
to solve each resulting quadratic problem in an inner loop. The 
tradeoff between these two options has not yet been explored 
in the literature, especially in the context of nonconvex prob-
lems in robotics.

BANDWIDTH-CONSTRAINED, LOSSY,  
OR DYNAMIC COMMUNICATION
In many robotics problems, each robot exchanges informa-
tion with its neighbors over a communication network with 
a limited communication bandwidth, which effectively lim-
its the size of the message packets that can be transmitted 
among robots. Moreover, in practical situations, the com-
munication links among robots sometimes fail, resulting in 
packet losses. However, many distributed optimization 
methods do not consider communication among agents as 
an expensive unreliable resource, given that many of these 
methods were developed for problems with reliable com-
munication infrastructure (e.g., multicore computing or 
computing in a hardwired cluster). Information quantiza-
tion has been extensively employed in many disciplines to 
allow for the efficient exchange of information over band-
width-constrained networks. Quantization involves encod-
ing the data to be transmitted into a format that utilizes a 
lower number of bits, often resulting in lower precision. 
Transmission of the encoded data incurs a lower communi-
cation overhead, enabling each robot to communicate with 
its neighbors within the bandwidth constraints. A few dis-
tributed optimization algorithms have been designed for 
these problems, including quantized DFO algorithms. Some 
of these algorithms assume that all robots can communi-
cate with a central node [146], [147], making them unsuit-
able for a variety of robotics of problems, while others do 
not make this assumption [148], [149], [150], [151]. In addi-
tion, quantized distributed variants of the ADMM also 
exist [21], [152], [153].

Generally, quantization introduces error between each 
robot’s solution and the optimal solution. However, in some 
of these algorithms, the quantization error decays during the 
execution of the algorithms under certain assumptions on the 
quantizer and the quantization interval [148], [149]. However, 
quantization in distributed optimization algorithms generally 
results in slower convergence rates, which poses a challenge 
in robotics problems where a solution is required rapidly, such 
as MPC problems, highlighting the need for the development 
of more effective algorithms. Further, only a few distributed 
optimization algorithms consider problems with lossy com-
munication networks [154], [155], [156].

In many practical situations, the communication network 
among robots changes as robots move, giving rise to a time-
varying communication graph. While many DFO optimization 
algorithms [46] and some distributed sequential program-
ming algorithms [16], [84] tolerate dynamic communication 

networks under the condition of bounded connectivity, in 
general, distributed ADMM algorithms are not amenable to 
problems with dynamic communication networks. This is an 
interesting avenue for future research.

LIMITED COMPUTATION RESOURCES
Another valuable direction for future research is in develop-
ing algorithms specifically for computationally limited robot-
ic platforms, in which the timeliness of the solution is as 
important as the solution quality [157], [158]. In general, 
many distributed optimization methods involve computation-
ally challenging procedures that require significant computa-
tional power, especially distributed methods for constrained 
problems [90], [91], [92]. These methods ignore the signifi-
cance of computation time, assuming that agents have access 
to significant computational power. These assumptions often 
do not hold in robotics problems. Typically, robotics prob-
lems unfold over successive time periods, with an associated 
optimization phase at each step of the problem. Thus, agents 
must compute their solutions fast enough to proceed with 
computing a reasonable solution for the next problem, which 
requires efficient distributed optimization methods. Develop-
ing such algorithms specifically for multi-robot systems is an 
interesting topic for future work.

COORDINATION AND SYNCHRONIZATION
Many distributed optimization algorithms implicitly assume 
coordination in several aspects of implementation. First, 
while most algorithms accommodate an arbitrary initializa-
tion of the initial solution of each robot (at least in convex 
problems), they often place stringent requirements on the 
initialization of the algorithms’ parameters. For instance, 
DFO methods assume a common step-size across all robots 
and in some cases a scheduled decrease in that step-size 
[14], [44], [46]. Similarly, DFO algorithms and distributed 
sequential convex programming algorithms require the 
specification of a stochastic matrix, which must be compati-
ble with the underlying communication network. However, 
generating doubly stochastic matrices for directed commu-
nication networks is nontrivial if each robot does not know 
the global network topology [159]. The ADMM and its dis-
tributed variants require the selection of a common penalty 
parameter .t

Second, some DFO, distributed sequential programming, 
and distributed ADMM algorithms require synchronous exe-
cution (see Definition 8). If robots have variable computation 
times and a synchronous distributed optimization algorithm 
is being used, one solution is to implement a distributed bar-
rier scheme, where each robot waits until all its neighbors 
have computed and communicated their most recent update 
before proceeding. However, barrier schemes can lead to sig-
nificantly increased time to convergence, as some robots idle 
while waiting for their neighbors. To address this issue, a 
number of asynchronous distributed optimization algorithms 
have been developed [47], [81], [83], [121], [160], which allow 
each robot to perform its local updates asynchronously, 
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eliminating the need for synchronization. These asynchro-
nous variants are guaranteed to converge to an optimal solu-
tion, provided that an integer T Z!  exists such that each 
robot performs at least one iteration of the algorithm over 
T time steps.

HARDWARE IMPLEMENTATION
Finally, we believe there is a gap between the analysis in the 
distributed optimization literature and the applicability of 
these distributed optimization algorithms to hardware imple-
mentations [26], [27], [29]. The suitability of algorithms to 
run efficiently and robustly on robots has still not be thor-
oughly proved. We provide empirical results of a hardware 
implementation of C-ADMM over XBee radios in the first 
article in this series [1]. While this survey considers adapting 
existing distributed optimization algorithms for robotic 
implementations, it could also be useful to consider the code-
sign of general-purpose distributed optimization algorithms 
with practical hardware setups.

CONCLUSION
Despite the amenability of many robotics problems to distrib-
uted optimization, few applications of distributed optimiza-
tion to multi-robot problems exist. In this work, we have 
categorized distributed optimization methods into three 
broad classes—distributed first-order methods, distributed 
sequential convex programming methods, and the ADMM—
highlighting the distinct mathematical techniques employed 
by these algorithms. Further, we have identified a number of 
important open challenges in distributed optimization for 
robotics, which could be interesting areas for future research. 
In general, the opportunities for research in distributed opti-
mization for multi-robot systems are plentiful. Distributed 
optimization provides an appealing unifying framework from 
which to synthesize solutions for a large variety of problems 
in multi-robot systems.
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[25] A. Nedić and J. Liu, “Distributed optimization for control,” Annu. Rev. 
Control, Robot., Auton. Syst., vol. 1, no. 1, pp. 77–103, 2018, doi: 10.1146/
annurev-control-060117-105131.
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