
IEEE ROBOTICS & AUTOMATION MAGAZINE SEPTEMBER 2024 1070-9932/24©2024IEEE154

Distributed
Optimization
Methods for

Multi-Robot Systems
Part 2—A Survey

Although the field of distributed
optimization is well developed,
relevant literature focused on the
application of distributed optimi-
zation to multi-robot problems is
limited. This survey constitutes
the second part of a two-part
series on distributed optimization
applied to multi-robot problems.
In this article, we survey three
main classes of distributed opti-
mization algorithms—distributed
first-order (DFO) methods, dis-
tributed sequential convex pro-
gramming methods, and alternating direction method of
multipliers (ADMM) methods—focusing on fully distributed
methods that do not require coordination or computation by a
central computer. We describe the fundamental structure of
each category and note important variations around this
structure, designed to address its associated drawbacks. Fur-
ther, we provide practical implications of noteworthy
assumptions made by distributed optimization algorithms,
noting the classes of robotics problems suitable for these
algorithms. Moreover, we identify important open research
challenges in distributed optimization, specifically for robot-
ics problem.

INTRODUCTION
In this article, we survey the literature in distributed optimiza-
tion, specifically with an eye toward problems in multi-robot
coordination. As we demonstrated in the first article in this
two-part series [1], many multi-robot problems can be written
as a sum of local objective functions, subject to an intersection
of local constraints. Such problems can be solved with a pow-
erful and growing arsenal of distributed optimization algo-
rithms. Distributed optimization consists of multiple
computation nodes working together to minimize a common
objective function through local computation iterations and
network-constrained communication steps, providing both
computational and communication benefits by eliminating the
need for data aggregation. Distributed optimization is also
robust against the failure of individual nodes, as it does not

©SHUTTERSTOCK.COM/ANTONOV SERG

By Ola Shorinwa  , Trevor Halsted,
Javier Yu  , and Mac Schwager 

Digital Object Identifier 10.1109/MRA.2024.3352852
Date of publication 1 February 2024; date of current version 11 September 2024.

S U R V E Y

Authorized licensed use limited to: Stanford University. Downloaded on September 13,2024 at 19:03:42 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4344-5945
https://orcid.org/0000-0002-5552-8780
https://orcid.org/0000-0002-7871-3663
http://www.SHUTTERSTOCK.COM

155SEPTEMBER 2024 IEEE ROBOTICS & AUTOMATION MAGAZINE

rely on a central computation station, and many distributed
optimization algorithms have inherent privacy-preserving
properties, keeping the local data, objective function, and
constraint function private to each robot while still allowing
for all robots to benefit from one another. Distributed optimi-
zation has not yet been widely employed in robotics, and
there exist many open opportunities for research in this
space, which we highlight in this survey.

Although the field of distributed optimization is well estab-
lished in many areas, such as computer networking and power
systems, problems in robotics have a number of distinguish-
ing features that are not often considered in the major applica-
tion areas of distributed optimization. Notably, robots move,
unlike their analogous counterparts in these other disciplines,
which makes their networks time varying and prone to band-
width limitations, packet drops, and delays. Robots often use
optimization within a receding horizon or model predictive
control (MPC) loop, so fast convergence to an optimal solu-
tion is essential in robotics. In addition, optimization problems
in robotics are often constrained (e.g., with safety constraints,
input constraints, or kinodynamics constraints in planning
problems) and nonconvex [for example, simultaneous localiza-
tion and mapping (SLAM) is a nonconvex optimization, as is
trajectory planning and state estimation for any nonlinear robot
model]. Many existing surveys on distributed optimization do
not address these unique characteristics of robotics problems.

This survey constitutes the second part of a two-part series
on distributed optimization for multi-robot systems. The first
part consisted of a tutorial focused on the applicability of dis-
tributed optimization to multi-robot problems. In it, we dem-
onstrated how a broad range of multi-robot problems can be
cast in a form that is appropriate for distributed optimization,
and we provided practical guidelines for implementing dis-
tributed optimization algorithms. In this survey, we highlight
relevant distributed optimization algorithms and note the
classes of robotics problems to which these algorithms can
be applied. Noting the large body of work in distributed opti-
mization, we categorize distributed optimization algorithms
into three broad classes and identify the practical implica-
tions of these algorithms for robotics problems, including the
challenges arising in the implementation of these algorithms
on robotics platforms.

This survey is aimed at robotics researchers who are inter-
ested in research at the intersection of distributed optimization
and multi-robot systems as well as robotics practitioners who
want to harness the benefits of distributed optimization algo-
rithms in solving practical robotics problems (see Figure 1). In
this survey, we limit our discussion to optimization problems
over real-valued decision variables. Although discrete opti-
mization problems (i.e., integer programs or mixed-integer
programs) arise in some robotics applications, these problems
are beyond the scope of this survey. However, we note that
distributed algorithms for integer and mixed-integer problems
have been discussed in a number of different works [2], [3], [4].
Further, we limit our discussion to derivative-based methods,
in contrast to derivative-free (zeroth-order) distributed optimi-

zation algorithms. We note that derivative-free optimization
methods have been discussed extensively in [5], [6], [7], [8],
[9], and [10].

In many robotics applications, such as field robotics, com-
munication with a central computer (or the cloud) might be
infeasible, even though each robot can communicate locally
with other neighboring robots. Consequently, we focus par-
ticularly on distributed optimization algorithms that permit
robots to use local robot-to-robot communication to compute
an optimal solution, rather than algorithms that require coor-
dination by a central computer. These methods yield a glob-
ally optimal solution for convex problems and, in general, a
locally optimal solution for nonconvex problems, producing
the same solution quality that would be obtained if a central-
ized method were applied. Although many distributed opti-
mization algorithms are not inherently “online” (in the sense
that these algorithms were not originally designed to be exe-
cuted while the robot is actively gathering data or completing
a task, providing information that changes its objective and
constraint functions), we note that many of these algorithms
can be applied in these online problems within the MPC
framework, where a new optimization problem is solved peri-
odically from streaming data.

In this survey, we provide a taxonomy of the different
algorithms for performing distributed optimization, based on
their defining mathematical characteristics. We identify three
classes: DFO algorithms, distributed sequential convex pro-
gramming, and distributed extensions to the ADMM:
1)	 DFO algorithms: The most common class of distributed

optimization methods is based on the idea of averaging

(a)

(b)

FIGURE 1. A motivation for distributed optimization: consider an
estimation scenario in which a robot seeks to localize a target
when given sensor measurements. (a) The robot can compute
an optimal solution when given only its observations. (b) By
using distributed optimization techniques, each robot in a net-
worked system of robots can compute the optimal solution when
given all robots’ observations, without actually sharing individual
sensor models or measurements with one another.

Authorized licensed use limited to: Stanford University. Downloaded on September 13,2024 at 19:03:42 UTC from IEEE Xplore. Restrictions apply.

IEEE ROBOTICS & AUTOMATION MAGAZINE SEPTEMBER 2024156

local gradients computed by each computational node
to perform an approximate gradient descent update [11],
and in this work, we refer to them as DFO algorithms.
DFO algorithms can be further subdivided into distrib-
uted (sub)gradient descent, distributed gradient track-
ing, distributed stochastic gradient descent, and
distributed dual averaging (DDA) algorithms, with each
subcategory differing from the others based on the
order of the update steps and the nature of the gradients
used. In general, DFO algorithms use consensus meth-
ods to achieve a shared solution for the optimization
problem. Many DFO algorithms allow for dynamic
communication networks (including unidirectional and
bidirectional networks) [12], [13] and limited computa-
tion resources [14], but they are often not well suited to
constrained problems.

2)	 Distributed sequential convex programming: Sequential
convex optimization is a common technique in centralized
optimization that involves minimizing a sequence of con-
vex approximations to the original (usually nonconvex)
problem. Under certain conditions, the sequence of sub-
problems converges to a local optimum of the original
problem. Newton’s method and the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) method are common examples.
The same concepts are used by a number of distributed
optimization algorithms, and we refer to these algorithms
as distributed sequential convex programming methods.
Generally, these methods use consensus techniques to con-
struct the convex approximations of the joint objective
function. One example is the network Newton method
[15], which uses consensus to approximate the inverse
Hessian of the objective to construct a quadratic approxi-
mation of the joint problem. The NEXT family of algo-
rithms [16] provides a flexible framework, which can
utilize a variety of convex surrogate functions to approxi-
mate the joint problem and is specifically designed to opti-
mize nonconvex objective functions. Although many
distributed sequential convex programming methods are
not suitable for problems with dynamic communication
networks, a few distributed sequential convex program-
ming algorithms are amenable to these problems [16].

3)	 ADMM: The last class of algorithms covered in this survey
is based on the ADMM [17]. The ADMM works by mini-
mizing the augmented Lagrangian of the optimization
problem, using alternating updates to the primal and dual
variables [18]. This method naturally accommodates con-
strained problems (with the assumption that we can con-
vert inequality constraints to equality constraints by using
slack variables). The original method is distributed but not
in the sense we consider in this survey. Specifically, the
original ADMM requires a central computation hub to col-
lect all local primal computations from the nodes to per-
form a centralized dual update step. The ADMM was first
modified to remove this requirement for a central node in
[19], where it was used for distributed signal processing.
The algorithm from [19] has since become known as the

consensus ADMM (C-ADMM), although the original paper
[19] did not use this terminology. A number of other dis-
tributed variants have been developed to address many
unique characteristics, including unidirectional communi-
cation networks and limited communication bandwidth
[20], [21], which are often present in robotics problems.

EXISTING SURVEYS
A number of other recent surveys on distributed optimization
exist and provide useful background when working with the
algorithms covered in this article. Some of these surveys
cover applications of distributed optimization in distributed
power systems [22], big data problems [23], and game theory
[24], while others focus primarily on first-order methods for
problems in multiagent control [25]. Other articles broadly
address DFO optimization methods, including a discussion
on the communication–computation tradeoffs [26], [27].
Another survey [28] covers exclusively nonconvex optimiza-
tion in both batch and data streaming contexts but again ana-
lyzes only first-order methods. Finally, [29] covers a wide
breadth of distributed optimization algorithms with a variety
of assumptions, focusing exclusively on convex optimization
problems. Building on the first article in this two-part series
[1], which formulates multi-robot problems within the frame-
work of distributed optimization, our survey differs from
other existing surveys in that it specifically targets applica-
tions of distributed optimization to multi-robot problems:
identifying suitable distributed optimization algorithms that
address the practical issues arising in multi-robot problems
and providing references demonstrating the application of
distributed optimization to multi-robot problems. As a result,
this survey highlights the practical implications of the
assumptions made by many distributed optimization algo-
rithms and provides a condensed taxonomic overview of use-
ful methods for these applications. Other useful background
material can be found for distributed computation [30], [31]
and on multi-robot systems in [32] and [33].

CONTRIBUTIONS
This survey article has three primary objectives:
1)	 survey the literature across three different classes of dis-

tributed optimization algorithms, noting the defining math-
ematical characteristics of each category

2)	 highlight noteworthy assumptions made by distributed opti-
mization algorithms and provide existing applications of
distributed optimization algorithms to multi-robot problems

3)	 propose open research problems in distributed optimiza-
tion for robotics.

ORGANIZATION
In the “Notation and Preliminaries” section, we introduce
mathematical notation and preliminaries, and in the “Prob-
lem Formulation” section, we present the general formulation
for the distributed optimization problem and describe the
general framework shared by distributed optimization algo-
rithms. The “DFO Algorithms,” “Distributed Sequential

Authorized licensed use limited to: Stanford University. Downloaded on September 13,2024 at 19:03:42 UTC from IEEE Xplore. Restrictions apply.

157SEPTEMBER 2024 IEEE ROBOTICS & AUTOMATION MAGAZINE

Convex Programming,” and “ADMM” sections survey the
literature in each of the three categories and provide details
for representative algorithms in each category. The “Distrib-
uted Optimization in Robotics and Related Applications” sec-
tion provides existing applications of distributed optimization
in the robotics literature. In the “Research Opportunities in
Distributed Optimization for Multi-robot Systems” section,
we discuss open research problems in applying distributed
optimization to multi-robot systems and robotics in general,
and we offer concluding remarks in the “Conclusion” section.

NOTATION AND PRELIMINARIES
In this section, we introduce the notation used in this article
and provide the definitions of mathematical concepts relevant
to the discussion of the distribution optimization algorithms.
We denote the gradient of a function :f R Rn " as fd and
its Hessian as .f2d We denote the vector containing all ones
as ,1n where n represents the number of elements in the vec-
tor. Next, we begin with the definition of stochastic matrices
that arise in DFO optimization algorithms.

DEFINITION 1: NONNEGATIVE MATRIX
A matrix W Rn n! # is referred to as a nonnegative matrix if
w 0ij $ for all , , , .i j n1 f! " ,

DEFINITION 2: STOCHASTIC MATRIX
A nonnegative matrix W Rn n! # is referred to as a row-sto-
chastic matrix if

	 .W1 1n n= � (1)

In other words, the sum of all elements in each row of the
matrix equals one. We refer to W as a column-stochastic
matrix if

	 .W1 1n n= << � (2)

Likewise, for a doubly stochastic matrix W,

	 , .W W1 1 1 1andn n n n= = << � (3)

Now we provide the definition of some relevant properties
of a sequence.

DEFINITION 3: SUMMABLE SEQUENCE
A sequence () ,k k 0a $" , with ,k N! is a summable sequence
if ()k 02a for all k and

	 () .k
k 0

31a
3

=

/ � (4)

DEFINITION 4: SQUARE-SUMMABLE SEQUENCE
A sequence () ,k k 0a $" , with ,k N! is a square-summable
sequence if ()k 02a for all k and

	 () .k
k

2

0

31a
3

=

^ h/ � (5)

We next discuss some relevant notions of the connectivity
of a graph.

DEFINITION 5: CONNECTIVITY
OF AN UNDIRECTED GRAPH
An undirected graph G is connected if a path exists between
every pair of vertices (i, j), where , .i j V! Note that such a
path might traverse other vertices in .G

DEFINITION 6: CONNECTIVITY OF A DIRECTED GRAPH
A directed graph G is strongly connected if a directed path
exists between every pair of vertices (i, j), where , .i j V! In
addition, a directed graph G is weakly connected if the
underlying undirected graph is connected. The underlying
undirected graph Gu of a directed graph G refers to a graph
with the same set of vertices as G and a set of edges obtained
by considering each edge in G a bidirectional edge. Conse-
quently, every strongly connected directed graph is weakly
connected; however, the converse is not true.

In distributed optimization in multi-robot systems, robots
perform communication and computation steps to minimize
some global objective function. We focus on problems in
which the robots’ exchange of information must respect the
topology of an underlying distributed communication graph,
which could possibly change over time. This communication
graph, denoted as () (), () ,t t tG V E= ^ h consists of vertices

() , ,t N1V f= " , and edges () () ()t t tE V V#3 over which
pairwise communication can occur. For undirected graphs, we
denote the set of neighbors of robot i as () .tNi For directed
graphs, we refer to the set of robots that can send informa-
tion to robot i as the set of in neighbors of robot i, denoted
by () .tN i

+ Likewise, for directed graphs, we refer to the set
of robots that can receive information from robot i as the out
neighbors of robot i, denoted by () .tN i

-

DEFINITION 7: CONVERGENCE RATE
Provided that a sequence x()k" , converges to ,x* if there
exists a positive scalar ,r R! with ,r 1$ and a constant

,R!m with ,02m such that

	 lim
x x

x x
()

()

k k r

k 1

m
-

-
=

" *

*

3

+

� (6)

then r defines the order of convergence of the sequence x()k" ,
to .x* Moreover, the asymptotic error constant is given by .m

If r 1= and ,1m = then x()k" , converges to x* sublinearly.
However, if r 1= and ,11m then x()k" , converges to x* lin-
early. Likewise, x()k" , converges to x* quadratically if r 2=
and cubically if .r 3=

DEFINITION 8: SYNCHRONOUS ALGORITHM
An algorithm is synchronous if each robot (computational node)
has to wait at a predetermined point for a specific message
from other robots (computational nodes) before proceeding. In
general, the end of an iteration of the algorithm represents the
predetermined synchronization point. Conversely, in an

Authorized licensed use limited to: Stanford University. Downloaded on September 13,2024 at 19:03:42 UTC from IEEE Xplore. Restrictions apply.

IEEE ROBOTICS & AUTOMATION MAGAZINE SEPTEMBER 2024158

asynchronous algorithm, each robot completes each iteration at
its own pace, without having to wait at a predetermined point.
In other words, at any given time, the number of iterations of an
asynchronous algorithm completed by each robot could differ
from the number of iterations completed by other robots.

PROBLEM FORMULATION
We consider a general class of separable distributed optimization
problems in which we express a joint objective function as the
sum over local objective functions. From a multi-robot perspec-
tive, each robot knows only its own local function, but the robots
collectively seek to find the optimum to the global function. In
this general formulation, we also consider a set of joint con-
straints consisting of an intersection over local constraints. Each
robot knows only its own local constraints and its local objec-
tive function. The resulting optimization problem is given by

	

()

()

()

min f x

g x i

h x i

0

0

subject to V

V

x
i

i

i

i

V

6

6

!

!

=

!

/
�

(7)

where x Rn! denotes the optimization variable and : ,f R Ri
n "

: ,g R Ri
n " and :h R Ri

n " denote the local objective func-
tion, equality constraint function, and inequality constraint
function of robot i, respectively. The joint optimization prob-
lem (7) can be solved locally by each robot if all the robots
share their objective and constraint functions with one another.
Alternatively, the solution can be computed centrally if all the
local functions are collated at a central station. However,
robots typically possess limited computation and communica-
tion resources, which precludes each robot from sharing its
local functions with other robots, particularly in problems with
high-dimensional problem data, such as images, lidar, and
other perception measurements.

Distributed optimization algorithms enable each robot to com-
pute a solution of (7) locally without sharing its local objective,
constraints, or data. These algorithms assign a copy of the opti-
mization variable to each robot, enabling each robot to update its
own copy locally and in parallel with the other robots. Moreover,
distributed optimization algorithms enforce consensus among the
robots for agreement on a common solution of the optimization
problem. Consequently, these algorithms solve an equivalent
reformulation of the optimization problem in (7), given by

	

()

(,)

()

()

min f x

x x i j

g x i

h x i

0

0

subject to E

V

V

,x i
i

i
i

i j

i i

i i

V Vi

6

6

6

!

!

!

=

=

6 ! !" ,
/

�

(8)

where x Ri
n! denotes robot i’s local copy of the optimization

variable. We note that the consensus constraints in (8) ensure
agreement among all the robots, with the assumption that the
communication graph is connected. Moreover, the consensus
constraints are enforced between neighboring robots only,

providing compatibility with a point-to-point communication
network, where robots can communicate only with their one-
hop neighbors. To simplify notation, we introduce the set

() , () ,x g x h x0 0Xi i i i i i; #= =" , representing the feasible set
given the constraint functions gi and .hi Consequently, we
can express the problem in (8) succinctly, as follows:

	
()min f x

subject to

,x i
i

i
i

i j

VX Vi i 6! !!

(,) .x x i j E6 !=

" ,
/

�
(9)

In the following sections, we discuss three broad classes
of distributed optimization methods, namely, DFO methods,
distributed sequential convex programming methods, and the
ADMM. We note that DFO methods and distributed sequen-
tial convex programming methods implicitly enforce the con-
sensus constraints in (9), while the ADMM enforces these
constraints explicitly. While not all the methods that we survey
explicitly address constraints of the form () ,g x 0i = () ,h x 0i #
we note in each section considerations to accommodate these
additional terms. In some cases, it is also appropriate to incor-
porate the constraints as penalty terms in the cost function.

Before proceeding, we highlight the general framework
that distributed optimization algorithms share. Distributed
optimization algorithms are iterative algorithms in which each
robot executes a number of operations over discrete iterations

, ,k 0 1 f= until convergence, where each iteration consists of
a communication and computation step. During each commu-
nication round, each robot shares a set of its local variables
with its neighbors, referred to as its “communicated” variables

,Q ()
i
k which we distinguish from its “internal” variables ,P()

i
k

which are not shared with its neighbors. In general, each algo-
rithm requires initialization of the local variables of each robot
in addition to algorithm-specific parameters, denoted by .R ()

i
k

We note that some algorithms require all the robots to utilize a
common step-size at initialization; however, these parameters
can be initialized prior to deployment of the robots.

DFO ALGORITHMS
The optimization problem in (7) (in its unconstrained form)
can be solved through gradient descent, where the optimiza-
tion variable is updated using

	 ()x x f x() () () ()k k k k1 da= -+ � (10)

with f x()kd ^ h denoting the gradient of the objective function
at ,x()k given by

	 () ()f x f x
i

i
V

d d=
!

/ � (11)

given some scheduled step-size .()ka Inherently, computation
of ()f x()kd requires knowledge of the local objective func-
tions or gradients by all robots in the network, which is infea-
sible in many problems.

DFO algorithms extend the centralized gradient scheme to
the distributed setting, where robots communicate with one-hop
neighbors without knowledge of the local objective functions

Authorized licensed use limited to: Stanford University. Downloaded on September 13,2024 at 19:03:42 UTC from IEEE Xplore. Restrictions apply.

159SEPTEMBER 2024 IEEE ROBOTICS & AUTOMATION MAGAZINE

or gradients of all robots. In DFO methods, each robot updates
its local variable by using a weighted combination of the local
variables or gradients of its neighbors according to the weights
specified by a stochastic weighting matrix W, allowing for the
dispersion of information on the objective function or its gradient
through the network. The stochastic matrix W must be compat-
ible with the underlying communication network, with a nonzero
element wij when robot j can send information to robot i.

From the perspective of a single robot, the update equations
in DFO methods represent a tradeoff between the optimality
of the robot’s individual solution based on its local objective
function and agreement with its neighbors. Consensus enables
the robot to incorporate global information about the objective
function’s shape into its update, thereby allowing it to approxi-
mate a gradient descent step on the global cost function rather
than on its local cost function.

Many DFO algorithms use a doubly stochastic matrix, a
row-stochastic matrix [34], or a column-stochastic matrix,
depending on the model of the communication network con-
sidered, while other methods use a push-sum approach. In
addition, many methods further require symmetry of the dou-
bly stochastic weighting matrix with .W W= < The weight
matrix exerts a significant influence on the convergence rates
of DFO algorithms, and thus, an appropriate choice of these
weights is required for convergence of DFO methods.

The order of the update procedures for the local variables
of each robot and the gradient used by each robot in perform-
ing its local update procedures differ among DFO algorithms,
giving rise to four broad classes of DFO methods: distributed
(sub)gradient descent and diffusion algorithms, gradient track-
ing algorithms, distributed stochastic gradient algorithms,
and DDA. While distributed (sub)gradient descent algorithms
require a decreasing step-size for convergence to an optimal
solution, gradient tracking algorithms converge to an optimal
solution without this condition. We discuss these distributed
methods in the following sections.

DISTRIBUTED (SUB)GRADIENT DESCENT
AND DIFFUSION ALGORITHMS
Tsitsiklis introduced a model for distributed gradient descent
(DGD) in the 1980s in [35] and [11] (see also [30]). The
works of Nedić and Ozdaglar in [14] revisit the problem,
marking the beginning of interest in consensus-based frame-
works for distributed optimization over the past decade. This
basic model of DGD consists of an update term that involves
consensus on the optimization variable as well as a step in
the direction of the local gradient for each node:

	 x w x f x() () () ()
i
k

ij
j i

j
k

i
k

i i
k1

Ni

da= -
,!

+ ^ h
" ,
/ � (12)

where robot i updates its variable using a weighted combina-
tion of its neighbors’ variables determined by the weights ,wij
with ()kia denoting its local step-size at iteration k.

For convergence to the optimal joint solution, these meth-
ods require the step-size to asymptotically decay to zero. As
proved in [36], if ()ka is chosen such that the sequence ()ka" ,

is square summable but not summable, then the optimization
variables of all robots converge to the optimal joint solution
given the standard assumptions of a connected network, prop-
erly chosen weights, and bounded (sub)gradients. In contrast,
the choice of a constant step-size for all time steps guarantees
only the convergence of each robot’s iterates to a neighbor-
hood of the optimal joint solution. In practice, this means that
a multi-robot system implementing DGD must coordinate on
scheduling the decrease of the step-size. Nonetheless, DGD
can generally tolerate some level of asynchrony or stochas-
ticity. Algorithm 1 summarizes the update step for the DGD
method in [14], with the step-size / ,k() ()k 0a a= with .0()0 2a

We note that the update procedure given in (12) requires
a doubly stochastic weighting matrix, which, in general, is
incompatible with directed communication networks. Other
DGD algorithms [37], [38], [39], [40] utilize the push-sum
consensus protocol [41] in place of the consensus terms in (12),
extending the application of DGD schemes to problems with
directed communication networks.

In general, with a constant step-size, distributed (sub)gradi-
ent descent algorithms converge at a rate of /O k1^ h to a neigh-
borhood of the optimal solution in convex problems [42]. With
a decreasing step-size, some distributed (sub)gradient descent
algorithms converge to an optimal solution at /logO k k^ h by
using an accelerated gradient scheme, such as the Nesterov
gradient method [43].

DISTRIBUTED GRADIENT TRACKING ALGORITHMS
Although distributed (sub)gradient descent algorithms con-
verge to an optimal joint solution, the requirement of a
square-summable sequence ,()ka" , which results in a decay-
ing step-size, reduces the convergence speed of these meth-
ods. Gradient tracking methods address this limitation by
allowing each robot to utilize the changes in its local gradient
between successive iterations as well as a local estimate of
the average gradient across all robots in its update proce-
dures, enabling the use of a constant step-size while retaining
convergence to the optimal joint solution.

The EXTRA algorithm introduced by Shi et al. in [44]
uses a fixed step-size while still achieving exact convergence.

Initialization: ,k x0 R
()
i

n0
! !

Internal variables: P()
i
k
4=

Communicated variables: xQ() ()
i
k

i
k

=

Parameters: (,)wR() ()
i
k k

ia=

do in parallel i V6 !

   Communicate Q()
i
k to all j N i!

   Receive Q()
j
k from all j N i!

   
()

k

x w x f x

()
()

() () () ()

{ }

k

i
k

ij
j i

j
k k

i i
k

0

1

N i

d

a a

a

=

= -
,!

+ /

   k k 1! +

while stopping criterion is not satisfied

ALGORITHM 1. DGD.

Authorized licensed use limited to: Stanford University. Downloaded on September 13,2024 at 19:03:42 UTC from IEEE Xplore. Restrictions apply.

IEEE ROBOTICS & AUTOMATION MAGAZINE SEPTEMBER 2024160

EXTRA replaces the gradient term with the difference in the
gradients of the previous two iterates. Because the contribu-
tion of this gradient difference term decays as the iterates con-
verge to the optimal joint solution, EXTRA does not require
the step-size to decay in order to converge to the exact optimal
joint solution. EXTRA achieves linear convergence [42], and
a variety of gradient tracking algorithms have since offered
improvements on its linear rate [45] for convex problems with
strongly convex objective functions.

The DIGing algorithm [46] whose update equations are
shown in Algorithm 2, is one such similar method that extends
the faster convergence properties of EXTRA to the domain
of directed and time-varying graphs. DIGing requires com-
munication of two variables, effectively doubling the commu-
nication cost per iteration when compared to DGD but greatly
increasing the diversity of communication infrastructure that
it can be deployed on.

Many other gradient tracking algorithms involve variations
on the variables updated using consensus and the order of the
update steps, such as NIDS [48] and Exact Diffusion [49], [50],
[51], [52]. These algorithms, which generally require the use of
doubly stochastic weighting matrices, have been extended to
problems with row-stochastic or column-stochastic matrices
[12], [13], [53], [54] and push-sum consensus [55] for distrib-
uted optimization in directed networks. To achieve faster con-
vergence rates, many of these algorithms require each robot to
communicate multiple local variables to its neighbors during
each communication round. In addition, we note that some of
these algorithms require all robots to use the same step-size,
which can prove challenging in some situations. Several works
offer a synthesis of various gradient tracking methods, not-
ing the similarities among these methods. Under the canonical
form proposed in [56] and [57], these algorithms and oth-
ers differ only in the choice of several constant parameters.
Jakovetić also provides a unified form for various gradient
tracking algorithms in [58]. Some other works consider accel-
erated variants using Nesterov gradient descent [59], [60], [61].
Gradient tracking algorithms can be considered primal–dual
methods with an appropriately defined augmented Lagrangian
function [46], [62].

In general, gradient tracking algorithms address uncon-
strained distributed convex optimization problems, but these
methods have been extended to nonconvex problems [63] and
constrained problems using projected gradient descent [64],
[65], [66]. Some other methods [67], [68], [69], [70] perform
dual ascent on the dual problem of (7), where the robots com-
pute their local primal variables from the related minimiza-
tion problem by using their dual variables. These methods
require doubly stochastic weighting matrices but allow for
time-varying communication networks. DFO methods have
been extended to the constrained setting [71], where each robot
performs a subsequent proximal projection step to obtain solu-
tions that satisfy the problem constraints.

In deep learning problems, the associated objective function
often consists of a sum over a very large number of data points.
Computing exact gradients for such problems can be prohibi-
tively costly, so gradients are approximated by randomly sam-
pling a subset of the data at each iteration and computing the
gradient only over those data. Such methods, called stochastic
gradient descent, dominate in deep learning. In [72], stochastic
gradients are used in place of gradients in the DGD algorithm,
and the resulting algorithm is shown to converge.

DDA
Dual averaging, first posed in [73] and extended in [74], takes a
similar approach to distributed (sub)gradient descent methods
in solving the optimization problem in (7), with the added ben-
efit of providing a mechanism for handling problem constraints
through a projection step, in a like manner to projected (sub)
gradient descent methods. However, the original formulations
of the dual averaging method require knowledge of all compo-
nents of the objective function or its gradient, which is unavail-
able to all robots. The DDA method circumvents this limitation
by modifying the update equations through a doubly stochastic
weighting matrix to allow for updates of each robot’s variable
by using its local gradients and a weighted combination of the
variables of its neighbors [75].

Similar to distributed (sub)gradient descent methods, DDA
requires a sequence of decreasing step-sizes to converge to the
optimal solution. Algorithm 3 provides the update equations

Initialization: , , ()k x y f x0 R
() () ()
i

n
i i i

0 0 0
! d! =

Internal variables: P()
i
k
4=

Communicated variables: (,)x yQ() ()
i
k

i
k

i
k=

Parameters: ,()wR()
i
k

ia=

do in parallel i V6 !

   Communicate Q()
i
k to all j N i!

   Receive Q()
j
k from all j N i!

   
() ()

x w x y

y w y f x f x

() () ()

()

{ }

() () ()

{ }
i
k

ij
j i

j
k

i
k

i
k

ij
j i

j
k

i i
k

i i
k

1

1 1

N

N

i

i

d d

a= -

= + -
,

,!

!

+

+ +

/

/

   k k 1! +
while stopping criterion is not satisfied

ALGORITHM 2. DIGing.

Initialization: , ,k x z x0 R
() () ()
i

n
i i

0 0 0
! ! =

Internal variables: zP ()
i i

k
=

Communicated variables: xQ() ()
i
k

i
k

=

Parameters: (, , ())wR(())k k
i i $a z=

do in parallel i V6 !

   Communicate Q()
i
k to all j N i!

   Receive Q()
j
k from all j N i!

   
()

()

argmin

z w z f x

x x z x1

() () ()

() ()
()

{ }
i
k

ij
j i

j
k

i i
k

i
k

x
i
k

k

1

1 1

N

X

i

i

d

a
z

= +

= +

,

<

!

!

+

+ +' 1

/

   k k 1! +

while stopping criterion is not satisfied

ALGORITHM 3. DDA.

Authorized licensed use limited to: Stanford University. Downloaded on September 13,2024 at 19:03:42 UTC from IEEE Xplore. Restrictions apply.

161SEPTEMBER 2024 IEEE ROBOTICS & AUTOMATION MAGAZINE

in the DDA algorithm along with the projection step, which
involves a proximal function (),xz often defined as / .x1 2 2

2< <^ h
After the projection step, the robot’s variable satisfies the prob-
lem constraints described by the constraints set .X Some of
the same extensions made to distributed (sub)gradient descent
algorithms have been studied for DDA, including analysis
of the algorithm under communication time delays [76] and
replacement of the doubly stochastic weighting matrix with
push-sum consensus [77].

DISTRIBUTED SEQUENTIAL CONVEX PROGRAMMING
Sequential convex programming is a class of optimization
methods, typically for nonconvex problems, that proceed itera-
tively by approximating the nonconvex problem with a convex
surrogate computed from the current values of the decision
variables. This convex surrogate is optimized, and the resulting
decision variables are used to compute the convex surrogate
for the next iterate. Newton’s method is a classic example of a
sequential convex method, in which the convex surrogate is a
quadratic approximation of the original objective function.
Several methods have been proposed for distributed sequential
convex programming, as we survey here. As with DFO meth-
ods, distributed sequential convex programming takes the per-
spective of using consensus to approximate the global
objective function, with the addition of approximating not only
the global gradient but also the global Hessian. The benefit of
this approach is that convergence typically requires fewer itera-
tions and is less dependent on carefully selecting a step-size.
This comes at the expense of requiring the robots to communi-
cate more information in order to approximate the second-
order characteristics of the global objective function.

APPROXIMATE NEWTON METHODS
Newton’s method and its variants are commonly used for
solving convex optimization problems, and they provide sig-
nificant improvements in the convergence rate when second-
order function information is available [78]. To apply
Newton’s method to the distributed optimization problem in
(7), the network Newton-K (NN-K) algorithm [15] takes a
penalty-based approach that introduces consensus among the
robots’ variables as components of the objective function.
The NN-K method reformulates the constrained form of the
distributed problem in (7) as the following unconstrained
optimization problem:

	 ()min f x x w x
,x i

i
i

i i ij
j i

j
R V V Ni

n
a +

,6

<

! ! ! !

rc m"" ,,
/ / � (13)

where W I W= -r and a is a weighting hyperparameter.
However, the Newton descent step requires computing the

inverse of the joint problem’s Hessian, which cannot be direct-
ly computed in a distributed manner, as its inverse is dense.
To allow for distributed computation of the Hessian inverse,
the NN-K uses the first K terms of the Taylor series expan-
sion I X Xj

j1
0R- = 3-
=^ h to compute the approximate Hessian

inverse, as introduced in [79]. Approximation of the Hes-

sian inverse comes at an additional communication cost and
requires an additional K communication rounds per update
of the primal variable. Algorithm 4 summarizes the update
procedures in the NN-K method, in which e denotes the
local step-size for the Newton step. Selection of the step-size
parameter does not require any coordination among robots.
As presented in Algorithm 4, the NN-K proceeds through two
sets of update equations: an outer set of updates that initializes
the Hessian approximation and computes the decision variable
update and an inner Hessian approximation update; a commu-
nication round precedes the execution of either set of update
equations. Increasing K, the number of intermediary commu-
nication rounds, improves the accuracy of the approximated
Hessian inverse at the cost of increasing the communication
cost per primal variable update.

A follow-up work optimizes a quadratic approximation
of the augmented Lagrangian of the general distributed opti-
mization problem (7) in which the primal variable update
involves computing a P-approximate Hessian inverse to per-
form a Newton descent step, and the dual variable update uses
gradient ascent [80]. The resulting exact second-order method
(ESOM) algorithm provides a faster convergence rate than the
NN-K at the cost of one additional round of communication
for the dual ascent step. Notably, replacing the augmented
Lagrangian in the ESOM formulation with its linear approxi-
mation results in the EXTRA update equations, showing the
relationship between both approaches.

In some cases, computation of the Hessian is impossible
because second-order information is not available or intracta-
ble due to the large dimensions of the problem. Quasi-Newton
methods like the BFGS algorithm approximate the Hessian
when it cannot be directly computed. The distributed BFGS
(D-BFGS) algorithm [81] replaces the second-order information

Initialization: ,k x0 R
()
i

n0
! !

Internal variables: ,()g DP() () ()
i
k

i
k

i
k

=

Communicated variables: ,()x dQ () ()
i i

k
i
k 1

=
+

Parameters: , , ,()K wR i ia e= r

do in parallel i V6 !

    ()D f x w I2() ()
i
k

i i
k

ii
1 2da= +
+ r

   Communicate x()
i
k to all j N i!

  
()g f x w x

d D g

() () ()

() () ()

{ }
i
k

i i
k

ij
j i

j
k

i i
k

i
k

1

0 1 1 1

N i

da= +

=-

,!

+

+ - +

r

^ h

/

   for p 0= to K 1- do
      Communicate d()

i
p to all j N i!

       ()d D w d g w d() () () () ()

{ }
i
p

i
k

ii i
p

i
k

ij
j i

j
p1 1 1 1

N i

= - -
,!

+ + - +r r; E/

   end

    x x d() () ()
i
k

i
k

i
K1

e= +
+

   k k 1! +

while stopping criterion is not satisfied

ALGORITHM 4. NN-K.

Authorized licensed use limited to: Stanford University. Downloaded on September 13,2024 at 19:03:42 UTC from IEEE Xplore. Restrictions apply.

IEEE ROBOTICS & AUTOMATION MAGAZINE SEPTEMBER 2024162

in the primal update in ESOM with a BFGS approximation (i.e.,
it replaces D()

i
k in a call to the Hessian approximation equations

in Algorithm 4 with an approximation) and results in essentially
a “doubly” approximate Hessian inverse. In [82], the D-BFGS
method is extended so that the dual update also uses a distrib-
uted quasi-Newton update scheme rather than gradient ascent.
The resulting primal–dual quasi-Newton method requires two
consecutive iterative rounds of communication, doubling the
communication overhead per primal variable update compared
to its predecessors (NN-K, ESOM, and D-BFGS). However, the
resulting algorithm is shown by the authors to still converge
faster in terms of required communication. In addition, asyn-
chronous variants of the approximate Newton methods have
been developed [83].

CONVEX SURROGATE METHODS
While the approximate Newton methods in [80], [81], and
[82] optimize a quadratic approximation of the augmented
Lagrangian of (13), other distributed methods allow for more
general and direct convex approximations of the distributed
optimization problem. These convex approximations general-
ly require the gradient of the joint objective function, which is
inaccessible to any single robot. In the NEXT family of algo-
rithms [16], dynamic consensus is used to allow each robot to
approximate the global gradient, and that gradient is then used
to compute a convex approximation of the joint objective func-
tion locally. A variety of surrogate functions ()U $ are proposed,
including linear, quadratic, and block convex functions, which
allows for greater flexibility in tailoring the algorithm to indi-
vidual applications. Using its surrogate of the joint objective
function, each robot updates its local variables iteratively by
solving its surrogate for the problem and then taking a
weighted combination of the resulting solution with the solu-
tions of its neighbors. To ensure convergence, NEXT algo-
rithms require a series of decreasing step-sizes, resulting in

generally slower convergence rates as well as additional
hyperparameter tuning.

The SONATA [84] algorithm extends the surrogate function
principles of NEXT and proposes a variety of nondoubly sto-
chastic weighting schemes that can be used to perform gradi-
ent averaging similar to the push-sum protocols. The authors of
SONATA also show that several configurations of the algorithm
result in already proposed distributed optimization algorithms,
including Aug-DGM [85], Push-DIG [46], and ADD-OPT [53].

ADMM
Considering the optimization problem in (9) with only agree-
ment constraints, we have

	 ()min f x
,x i

i
i

i
R VVi

n 6! ! !" ,
/ � (14)

	 (,) .x x i jsubject to Ei j 6 != � (15)

The method of multipliers solves this problem by alternat-
ing between minimizing the augmented Lagrangian of the
optimization problem with respect to the primal variables

, ,x xn1 f (the “primal update”) and taking a gradient step
to maximize the augmented Lagrangian with respect to the
dual (the “dual update”). The augmented Lagrangian of (14)
is given by

()(,) ()q f x q x x x x
2

xL ,a i
i

N

i i j i j i j
ji

N

2
2

11 Ni

< <
t

+ - + -= <

!==

` j/// � (16)

where q ,i j represents a dual variable for the consensus con-
straints between robots i and j, , (,) ,q q i j E,i j 6 !=

<<6 @ and
, , , .x x xx N1 2 f= < < <<6 @ The parameter 02t represents a pen-

alty term on the violations of the consensus constraints. The
quadratic penalty term is what distinguishes the augmented
Lagrangian, and it also distinguishes the method of multipli-
ers from dual ascent. The main benefit of using the augment-
ed Lagrangian is that the quadratic term essentially serves as
a proximal operator and helps to ensure convergence.

In the ADMM, given the separability of the global objec-
tive function, the primal update is executed as successive
minimizations over each primal variable (i.e., choose the
minimizing x1 with all other variables fixed, then choose the
minimizing ,x2 and so on). Most ADMM-based approaches
do not satisfy our definition of distributed in that either the
primal updates take place sequentially rather than in parallel
or the dual update requires centralized computation [86], [87],
[88]. However, the C-ADMM provides an ADMM-based opti-
mization method that is fully distributed: the nodes alternate
between updating their primal and dual variable and commu-
nicating with neighboring nodes [19], [89].

To achieve a distributed update of the primal and dual vari-
ables, the C-ADMM alters the agreement constraints among
agents with an existing communication link by introducing aux-
iliary primal variables in (9) (instead of the constraint ,x xi j=
we have two constraints: x zi ij= and) .x zj ij= Considering the
optimization steps across the entire network, the C-ADMM
proceeds by optimizing the original primal variables, then the
auxiliary primal variables, and then the dual variables, as in the

Initialization: , , (), ()k x y f x Ny f x0 R
() () () () () ()
i

n
i i i i

k
i i i

0 0 0 1 0 0
! d d! r= = -

+u

Internal variables: , ,()x xP () () ()
i i

k
i
k

i
k
r= u u

Communicated variables: ,()z yQ() () ()
i
k

i
k

i
k

=

Parameters: (, , ()),w UR X(())
i i
k k

i$a=
do in parallel i V6 !

   
; ,()

()

argminx U x x

z x x x

() () ()

() () () () ()

i
k

x
i
k

i
k

i
k

i
k k

i
k

i
k

X i

r

a

=

= + -

!

u u

u

   Communicate Q()
i
k to all j N i!

   Receive Q()
j
k from all j N i!

    () ()

()

x w z

y w y f x f x

N y f x

() ()

()

{ }

() () ()

() () ()

{ }
i
k

ij
j i

j
k

i
k

ij
j i

j
k

i i
k

i i
k

i
k

i
k

i i
k

1

1 1

1 1 1

N

N i

i

$

d d

dr

=

= + -

= -

,

,!

!

+

+ +

+ + +u

6 @

/

/

   k k 1! +

while stopping criterion is not satisfied

ALGORITHM 5. NEXT.

Authorized licensed use limited to: Stanford University. Downloaded on September 13,2024 at 19:03:42 UTC from IEEE Xplore. Restrictions apply.

163SEPTEMBER 2024 IEEE ROBOTICS & AUTOMATION MAGAZINE

original formulation of the ADMM. We can perform minimi-
zation with respect to the primal variables and gradient ascent
with respect to the dual variables on an augmented Lagrang-
ian that is fully distributed among the robots. Further, we note
that although the ADMM is typically applied to equality-con-
strained problems, the method can be extended to inequality-
constrained problems quite easily. In particular, we note that
inequality-constrained problems can be expressed as equali-
ty-constrained problems using indicator functions. With this
approach, corresponding update procedures for constrained
optimization problems can be derived using the ADMM.

Algorithm 6 summarizes the update procedures for the
local primal and dual variables of each agent in constrained
optimization problems, where yi represents the dual variable
that enforces agreement between robot i and its neighbors. We
have incorporated the solution of the auxiliary primal variable
update into the update procedure for ,x()

i
k 1+ noting that the

auxiliary primal variable update can be performed implicitly
/ .z x x1 2ij i j= +) ^ ^h h6 @ The parameter t that weights the qua-

dratic terms in La is also the step-size in the gradient ascent
of the dual variable. We note that the update procedure for
x()

i
k 1+ requires solving an optimization problem, which might

be computationally intensive for certain objective functions.
To simplify the update complexity, the optimization can be
solved inexactly using a linear approximation of the objective
function, such as [90], [91], and [92], or a quadratic approxi-
mation using the Hessian, such as decentralized quadratically
approximated ADMM [93]. The convergence rate of ADMM
methods depends on the value of the penalty parameter .t Sev-
eral works discuss effective strategies for optimally selecting
t [94]. In general, convergence of the C-ADMM and its vari-
ants is guaranteed only when the dual variables sum to zero, a
condition that could be challenging to satisfy in problems with
unreliable communication networks. Other distributed ADMM
variants that do not require this condition have been developed
[95], [96]. However, these methods incur a greater communica-
tion overhead to provide robustness in these problems. Gradi-
ent tracking algorithms are related to the C-ADMM when the
minimization problem in the primal update procedure is solved
using a single gradient decent update.

The C-ADMM, as presented in Algorithm 6, requires each
robot to optimize over a local copy of the global decision vari-
able x. However, many robotic problems have a fundamental
structure that makes maintaining global knowledge at every
individual robot unnecessary: each robot’s data relate only to
a subset of the global optimization variables, and each agent
requires only a subset of the optimization variable for its role.
For instance, in distributed SLAM, a memory-efficient solution
would require a robot to optimize only over its local map and
communicate with other robots only messages of shared inter-
est. Other examples arise in distributed environmental monitor-
ing by multiple robots [97]. The SOVA method [98] leverages
the separability of the optimization variable to achieve orders-
of-magnitude improvement in convergence rates, computation,
and communication complexity over C-ADMM methods. The
general approach of SOVA can also be found in partitioning-

based methods, such as in [99], [100], and [101], which also
accommodate asynchronous or lossy communication. Like
SOVA, these methods exploit the partitioning of the state vari-
ables, in that robot i need not estimate the states that are not
relevant to its local objective function.

In SOVA, each agent optimizes only over variables rel-
evant to its data or role, enabling robotic applications in which
agents have minimal access to computation and communication
resources. SOVA introduces consistency constraints between
each agent’s local optimization variable and its neighbors, map-
ping the elements of the local optimization variables, given by

,x x j iN Vij i ji j i6 6! !U U=

where ijU and jiU map elements of xi and x j to a common
space. The C-ADMM represents a special case of SOVA
where ijU is always the identity matrix. The update procedures
for each agent reduce to the equations given in Algorithm 7.

Initialization: , ,k x y0 0R
() ()
i

n
i

0 0
! ! =

Internal variables: yP() ()
i
k

i
k

=

Communicated variables: xQ() ()
i
k

i
k

=

Parameters: R()
i
k
t=

do in parallel i V6 !

   
()argminx f x x y

x x x2
1

() ()

() ()

i
k

x
i i i i

k

i i
k

j
k

j

1

2

2

X

N

i i

i

g

t

= +

+ - +

<

!

!

+

` j

)

3/

   Communicate Q()
i
k to all j N i!

   Receive Q()
j
k from all j N i!

    y y x x() () () ()
i
k

i
k

i
k

j
k

j

1 1 1

N i

t= + -
!

+ + +` j/

   k k 1! +

while stopping criterion is not satisfied

ALGORITHM 6. C-ADMM.

Initialization: , ,k x y0 0R
() ()
i

n
i

0 0i! ! =

Internal variables: yP() ()
i
k

i
k

=

Communicated variables: xQ() ()
i
k

i
k

=

Parameters: R()
i
k
t=

do in parallel i V6 !

   
()argminx f x x y

x x x2
1

() ()

() ()

i
k

x
i i i i

k

ij i ij i
k

ji j
k

j

1

2

2

N

Xi i

i

g

t U U U

= +

+ - +

<

!

!

+

` j

)

3/

   Communicate Q()
i
k to all j N i!

   Receive Q()
j
k from all j N i!

    y y x x() () () ()
i
k

i
k

ij
j

ij i
k

ji j
k1

N i

t U U U= + -<

!

+ ` j/

   k k 1! +

while stopping criterion is not satisfied

ALGORITHM 7. SOVA.

Authorized licensed use limited to: Stanford University. Downloaded on September 13,2024 at 19:03:42 UTC from IEEE Xplore. Restrictions apply.

IEEE ROBOTICS & AUTOMATION MAGAZINE SEPTEMBER 2024164

DISTRIBUTED OPTIMIZATION IN ROBOTICS
AND RELATED APPLICATIONS
In this section, we discuss some existing applications of dis-
tributed optimization to robotics problems. To simplify the
presentation, we highlight a number of these applications in
the following notable problems in robotics: synchronization,
localization, mapping, and target tracking; online and deep
learning problems; and task assignment, planning, and con-
trol. We refer the reader to the first article in this two-part
series [1] for a case study on multidrone target tracking, which
compares solutions using several different distributed optimi-
zation algorithms.

SYNCHRONIZATION, LOCALIZATION,
MAPPING, AND TRACKING
Distributed optimization algorithms have found notable
applications in robot localization from relative measure-
ments [102], [103], including in networks with asynchronous
communication [104]. More generally, DFO algorithms have
been applied to optimization problems on manifolds, includ-
ing SE(3) localization [105], [106], [107], [108], synchroniza-
tion problems [109], and formation control in SO(3) [110],
[111]. In pose graph optimization, distributed optimization
has been employed through majorization–minimization
schemes, which minimize an upper bound of the objective
function [112], using gradient descent on Riemannian mani-
folds [113], [114], and block coordinate descent [115]. Other
pose graph optimization methods have utilized distributed
sequential programming algorithms using a quadratic
approximation model of the nonconvex objective function,
with Gauss–Seidel updates to enable distributed local com-
putations among the robots [116]. Further, the ADMM has
been employed in bundle adjustment and pose graph optimi-
zation problems, which involve the recovery of the 3D posi-
tions and orientations of a map and camera [117], [118],
[119]. However, many of these algorithms require a central
node for the dual variable updates, making them semidis-
tributed. Nonetheless, a few fully distributed ADMM-based
algorithms exist for bundle adjustment and cooperative
localization problems [120], [121]. Other applications of dis-
tributed optimization arise in target tracking [122], signal
estimation [19], and parameter estimation in global naviga-
tion satellite systems [123].

ONLINE AND DEEP LEARNING PROBLEMS
Distributed optimization has also been applied in online
dynamic problems. In these problems, each robot gains
knowledge of its time-varying objective function in an
online fashion after taking an action or decision. A number
of DFO algorithms have been designed for these problems
[124], [125], [126]. Similarly, DDA has been adapted for
online scenarios with both static communication graphs
[127], [128] and time-varying communication topology
[129], [130]. The push-sum variant of dual averaging has
also been used for distributed training of deep learning
algorithms and has been shown to be useful in avoiding pit-

falls of other synchronous distributed training frameworks,
which face notable challenges in problems with communi-
cation deadlocks [131]. Many of these algorithms empha-
size parallelization.

In addition, distributed sequential convex programming
algorithms have been developed for a number of learning prob-
lems where data are distributed, including semisupervised sup-
port vector machines [132], neural network training [133], and
clustering [134]. Moreover, the ADMM has been applied to
online problems, such as estimation and surveillance problems
involving wireless sensor networks [135], [136]. The ADMM
has also be applied to distributed deep learning in robot net-
works in [137].

TASK ASSIGNMENT, PLANNING, AND CONTROL
Distributed optimization has been applied to task assignment
problems posed as optimization problems. Some works [138]
employ distributed optimization using a distributed simplex
method [139] to obtain an optimal assignment of the robots to
a desired target formation. Other works employ the
C-ADMM for distributed task assignment [140], [141]. Fur-
ther applications of distributed optimization arise in motion
planning [142], trajectory tracking problems involving teams
of robots using nonlinear MPC [143], and collaborative
manipulation [144], [145], which employs fully distributed
variants of the ADMM. One feature common to these prob-
lems is that the joint decision variables, which consist of con-
trol inputs or action variables concatenated over all the
robots, can often be partitioned so that each robot needs to
consider only its own actions, as in [98], [99], [100], and
[101]. This can lead to significantly faster convergence com-
pared methods in which each agent has a complete copy of
the joint decision variables, as discussed at the end of the
“ADMM” section.

RESEARCH OPPORTUNITIES IN DISTRIBUTED
OPTIMIZATION FOR MULTI-ROBOT SYSTEMS
In this section, we highlight challenges in the application of
existing distributed optimization algorithms to multi-robot
problems, each of which represents a promising direction for
future research.

NONCONVEX AND CONSTRAINED
ROBOTICS PROBLEMS
Distributed optimization methods have primarily focused on
solving unconstrained convex optimization problems, which
constitute a limited subset of robotics problems. Many robot-
ics problems involve nonconvex objectives or constraints. For
example, problems in multi-robot motion planning, SLAM,
learning, distributed manipulation, and target tracking are
often nonconvex and/or constrained.

Both DFO methods and C-ADMM methods can be modi-
fied for nonconvex and constrained problems; however, few
examples of practical algorithms or rigorous analyses of
performance for such modified algorithms exist in the lit-
erature. One way to implement the C-ADMM for nonconvex

Authorized licensed use limited to: Stanford University. Downloaded on September 13,2024 at 19:03:42 UTC from IEEE Xplore. Restrictions apply.

165SEPTEMBER 2024 IEEE ROBOTICS & AUTOMATION MAGAZINE

problems is to solve each primal update step as a nonconvex
optimization (e.g., through a quasi-Newton method or interior
point method). Another option is to perform successive qua-
dratic approximations in an outer loop and use the C-ADMM
to solve each resulting quadratic problem in an inner loop. The
tradeoff between these two options has not yet been explored
in the literature, especially in the context of nonconvex prob-
lems in robotics.

BANDWIDTH-CONSTRAINED, LOSSY,
OR DYNAMIC COMMUNICATION
In many robotics problems, each robot exchanges informa-
tion with its neighbors over a communication network with
a limited communication bandwidth, which effectively lim-
its the size of the message packets that can be transmitted
among robots. Moreover, in practical situations, the com-
munication links among robots sometimes fail, resulting in
packet losses. However, many distributed optimization
methods do not consider communication among agents as
an expensive unreliable resource, given that many of these
methods were developed for problems with reliable com-
munication infrastructure (e.g., multicore computing or
computing in a hardwired cluster). Information quantiza-
tion has been extensively employed in many disciplines to
allow for the efficient exchange of information over band-
width-constrained networks. Quantization involves encod-
ing the data to be transmitted into a format that utilizes a
lower number of bits, often resulting in lower precision.
Transmission of the encoded data incurs a lower communi-
cation overhead, enabling each robot to communicate with
its neighbors within the bandwidth constraints. A few dis-
tributed optimization algorithms have been designed for
these problems, including quantized DFO algorithms. Some
of these algorithms assume that all robots can communi-
cate with a central node [146], [147], making them unsuit-
able for a variety of robotics of problems, while others do
not make this assumption [148], [149], [150], [151]. In addi-
tion, quantized distributed variants of the ADMM also
exist [21], [152], [153].

Generally, quantization introduces error between each
robot’s solution and the optimal solution. However, in some
of these algorithms, the quantization error decays during the
execution of the algorithms under certain assumptions on the
quantizer and the quantization interval [148], [149]. However,
quantization in distributed optimization algorithms generally
results in slower convergence rates, which poses a challenge
in robotics problems where a solution is required rapidly, such
as MPC problems, highlighting the need for the development
of more effective algorithms. Further, only a few distributed
optimization algorithms consider problems with lossy com-
munication networks [154], [155], [156].

In many practical situations, the communication network
among robots changes as robots move, giving rise to a time-
varying communication graph. While many DFO optimization
algorithms [46] and some distributed sequential program-
ming algorithms [16], [84] tolerate dynamic communication

networks under the condition of bounded connectivity, in
general, distributed ADMM algorithms are not amenable to
problems with dynamic communication networks. This is an
interesting avenue for future research.

LIMITED COMPUTATION RESOURCES
Another valuable direction for future research is in develop-
ing algorithms specifically for computationally limited robot-
ic platforms, in which the timeliness of the solution is as
important as the solution quality [157], [158]. In general,
many distributed optimization methods involve computation-
ally challenging procedures that require significant computa-
tional power, especially distributed methods for constrained
problems [90], [91], [92]. These methods ignore the signifi-
cance of computation time, assuming that agents have access
to significant computational power. These assumptions often
do not hold in robotics problems. Typically, robotics prob-
lems unfold over successive time periods, with an associated
optimization phase at each step of the problem. Thus, agents
must compute their solutions fast enough to proceed with
computing a reasonable solution for the next problem, which
requires efficient distributed optimization methods. Develop-
ing such algorithms specifically for multi-robot systems is an
interesting topic for future work.

COORDINATION AND SYNCHRONIZATION
Many distributed optimization algorithms implicitly assume
coordination in several aspects of implementation. First,
while most algorithms accommodate an arbitrary initializa-
tion of the initial solution of each robot (at least in convex
problems), they often place stringent requirements on the
initialization of the algorithms’ parameters. For instance,
DFO methods assume a common step-size across all robots
and in some cases a scheduled decrease in that step-size
[14], [44], [46]. Similarly, DFO algorithms and distributed
sequential convex programming algorithms require the
specification of a stochastic matrix, which must be compati-
ble with the underlying communication network. However,
generating doubly stochastic matrices for directed commu-
nication networks is nontrivial if each robot does not know
the global network topology [159]. The ADMM and its dis-
tributed variants require the selection of a common penalty
parameter .t

Second, some DFO, distributed sequential programming,
and distributed ADMM algorithms require synchronous exe-
cution (see Definition 8). If robots have variable computation
times and a synchronous distributed optimization algorithm
is being used, one solution is to implement a distributed bar-
rier scheme, where each robot waits until all its neighbors
have computed and communicated their most recent update
before proceeding. However, barrier schemes can lead to sig-
nificantly increased time to convergence, as some robots idle
while waiting for their neighbors. To address this issue, a
number of asynchronous distributed optimization algorithms
have been developed [47], [81], [83], [121], [160], which allow
each robot to perform its local updates asynchronously,

Authorized licensed use limited to: Stanford University. Downloaded on September 13,2024 at 19:03:42 UTC from IEEE Xplore. Restrictions apply.

IEEE ROBOTICS & AUTOMATION MAGAZINE SEPTEMBER 2024166

eliminating the need for synchronization. These asynchro-
nous variants are guaranteed to converge to an optimal solu-
tion, provided that an integer T Z! exists such that each
robot performs at least one iteration of the algorithm over
T time steps.

HARDWARE IMPLEMENTATION
Finally, we believe there is a gap between the analysis in the
distributed optimization literature and the applicability of
these distributed optimization algorithms to hardware imple-
mentations [26], [27], [29]. The suitability of algorithms to
run efficiently and robustly on robots has still not be thor-
oughly proved. We provide empirical results of a hardware
implementation of C-ADMM over XBee radios in the first
article in this series [1]. While this survey considers adapting
existing distributed optimization algorithms for robotic
implementations, it could also be useful to consider the code-
sign of general-purpose distributed optimization algorithms
with practical hardware setups.

CONCLUSION
Despite the amenability of many robotics problems to distrib-
uted optimization, few applications of distributed optimiza-
tion to multi-robot problems exist. In this work, we have
categorized distributed optimization methods into three
broad classes—distributed first-order methods, distributed
sequential convex programming methods, and the ADMM—
highlighting the distinct mathematical techniques employed
by these algorithms. Further, we have identified a number of
important open challenges in distributed optimization for
robotics, which could be interesting areas for future research.
In general, the opportunities for research in distributed opti-
mization for multi-robot systems are plentiful. Distributed
optimization provides an appealing unifying framework from
which to synthesize solutions for a large variety of problems
in multi-robot systems.

ACKNOWLEDGMENT
This project was funded in part by National Science Founda-
tion (NSF) National Robotics Initiative Awards 1830402 and
1925030. Trevor Halsted was supported by a National
Defense Science and Engineering Graduate Fellowship, and
Javier Yu was supported by an NSF Graduate Research Fel-
lowship. Ola Shorinwa, Trevor Halsted, and Javier Yu con-
tributed equally to this work.

AUTHORS
Ola Shorinwa, Department of Mechanical Engineering,
Stanford University, Stanford, CA 94305 USA. E-mail:
shorinwa@stanford.edu.

Trevor Halsted, Department of Mechanical Engineering,
Stanford University, Stanford, CA 94305 USA. E-mail: halsted@
stanford.edu.

Javier Yu, Department of Aeronautics and Astronautics,
Stanford University, Stanford, CA 94305 USA. E-mail:
javieryu@stanford.edu.

Mac Schwager, Department of Aeronautics and
Astronautics, Stanford University, Stanford, CA 94305 USA.
E-mail: schwager@stanford.edu.

REFERENCES
[1] O. Shorinwa, T. Halsted, J. Yu, and M. Schwager, “Distributed optimization
methods for multi-robot systems: Part I—A tutorial,” presented at the Amer.
Control Conf. (ACC), 2023, pp. 1–8. [Online]. Available: https://msl.stanford.edu/
papers/shorinwa_distributed_2023.pdf

[2] I. Prodan, F. Stoican, S. Olaru, C. Stoica, and S.-I. Niculescu, “Mixed-integer
programming techniques in distributed MPC problems,” in Distributed Model
Predictive Control Made Easy, J. Maestre and R. Negenborn, Eds., Dordrecht,
The Netherlands: Springer-Verlag, 2014, pp. 275–291.

[3] A. Murray, A. Engelmann, V. Hagenmeyer, and T. Faulwasser, “Hierarchical
distributed mixed-integer optimization for reactive power dispatch,” IFAC-
PapersOnLine, vol. 51, no. 28, pp. 368–373, 2018, doi: 10.1016/j.ifacol.2018.11.730.

[4] A. Testa, A. Rucco, and G. Notarstefano, “Distributed mixed-integer linear
programming via cut generation and constraint exchange,” IEEE Trans. Autom.
Control, vol. 65, no. 4, pp. 1456–1467, Apr. 2020, doi: 10.1109/TAC.2019.2920812.

[5] S. Liu, P.-Y. Chen, B. Kailkhura, G. Zhang, A. O. Hero III, and P. K. Varshney,
“A primer on zeroth-order optimization in signal processing and machine learn-
ing: Principals, recent advances, and applications,” IEEE Signal Process. Mag.,
vol. 37, no. 5, pp. 43–54, Sep. 2020, doi: 10.1109/MSP.2020.3003837.

[6] D. Hajinezhad, M. Hong, and A. Garcia, “Zeroth order nonconvex multi-agent
optimization over networks,” 2017, arXiv:1710.09997.

[7] D. Hajinezhad, M. Hong, and A. Garcia, “ZONE: Zeroth-order nonconvex
multiagent optimization over networks,” IEEE Trans. Autom. Control, vol. 64, no.
10, pp. 3995–4010, Oct. 2019, doi: 10.1109/TAC.2019.2896025.

[8] D. Hajinezhad and M. Hong, “Perturbed proximal primal–dual algorithm for
nonconvex nonsmooth optimization,” Math. Program., vol. 176, nos. 1–2, pp.
207–245, 2019, doi: 10.1007/s10107-019-01365-4.

[9] A. Beznosikov, E. Gorbunov, and A. Gasnikov, “Derivative-free method for
composite optimization with applications to decentralized distributed optimiza-
tion,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 4038–4043, 2020, doi: 10.1016/j.ifa-
col.2020.12.2272.

[10] Y. Tang, J. Zhang, and N. Li, “Distributed zero-order algorithms for noncon-
vex multiagent optimization,” IEEE Trans. Control Netw. Syst., vol. 8, no. 1, pp.
269–281, Mar. 2021, doi: 10.1109/TCNS.2020.3024321.

[11] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous deter-
ministic and stochastic gradient optimization algorithms,” IEEE Trans. Autom.
Control, vol. 31, no. 9, pp. 803–812, Sep. 1986, doi: 10.1109/TAC.1986.1104412.

[12] F. Saadatniaki, R. Xin, and U. A. Khan, “Optimization over time-varying direct-
ed graphs with row and column-stochastic matrices,” 2018, arXiv:1810.07393.

[13] R. Xin and U. A. Khan, “A linear algorithm for optimization over directed
graphs with geometric convergence,” IEEE Control Syst. Lett., vol. 2, no. 3, pp.
315–320, Jul. 2018, doi: 10.1109/LCSYS.2018.2834316.

[14] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-agent
optimization,” IEEE Trans. Autom. Control, vol. 54, no. 1, pp. 48–61, Jan. 2009,
doi: 10.1109/TAC.2008.2009515.

[15] A. Mokhtari, Q. Ling, and A. Ribeiro, “Network newton,” in Proc. 48th
Asilomar Conf. Signals, Syst. Comput., 2014, pp. 1621–1625, doi: 10.1109/
ACSSC.2014.7094740.

[16] P. Di Lorenzo and G. Scutari, “NEXT: In-network nonconvex optimization,”
IEEE Trans. Signal Inf. Process. Netw., vol. 2, no. 2, pp. 120–136, Jun. 2016, doi:
10.1109/TSIPN.2016.2524588.

[17] R. T. Rockafellar, “Monotone operators and the proximal point algorithm,”
SIAM J. Control Optim., vol. 14, no. 5, pp. 877–898, 1976, doi: 10.1137/0314056.

[18] S. Boyd et al., “Distributed optimization and statistical learning via the alter-
nating direction method of multipliers,” Found. Trends Mach. Learn., vol. 3, no.
1, pp. 1–122, 2011, doi: 10.1561/2200000016.

[19] G. Mateos, J. A. Bazerque, and G. B. Giannakis, “Distributed sparse linear
regression,” IEEE Trans. Signal Process., vol. 58, no. 10, pp. 5262–5276, Oct.
2010, doi: 10.1109/TSP.2010.2055862.

[20] V. Khatana and M. V. Salapaka, “DC-DistADMM: ADMM algorithm for
cont ra ined dist r ibuted opt imizat ion over d i rected graphs,” 2020,
arXiv:2003.13742.

[21] S. Zhu, M. Hong, and B. Chen, “Quantized consensus ADMM for multi-
agent distributed optimization,” in Proc. IEEE Int. Conf. Acoust., Speech
S igna l Process . (ICA S SP) , 2016 , pp. 4134 – 4138, doi : 10.1109/
ICASSP.2016.7472455.

[22] D. K. Molzahn et al., “A survey of distributed optimization and control algo-
rithms for electric power systems,” IEEE Trans. Smart Grid, vol. 8, no. 6, pp.
2941–2962, Nov. 2017, doi: 10.1109/TSG.2017.2720471.

Authorized licensed use limited to: Stanford University. Downloaded on September 13,2024 at 19:03:42 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1016/j.ifacol.2018.11.730
http://dx.doi.org/10.1109/TAC.2019.2920812
http://dx.doi.org/10.1109/MSP.2020.3003837
http://dx.doi.org/10.1109/TAC.2019.2896025
http://dx.doi.org/10.1007/s10107-019-01365-4
http://dx.doi.org/10.1016/j.ifacol.2020.12.2272
http://dx.doi.org/10.1016/j.ifacol.2020.12.2272
http://dx.doi.org/10.1109/TCNS.2020.3024321
http://dx.doi.org/10.1109/TAC.1986.1104412
http://dx.doi.org/10.1109/LCSYS.2018.2834316
http://dx.doi.org/10.1109/TAC.2008.2009515
http://dx.doi.org/10.1109/ACSSC.2014.7094740
http://dx.doi.org/10.1109/ACSSC.2014.7094740
http://dx.doi.org/10.1109/TSIPN.2016.2524588
http://dx.doi.org/10.1137/0314056
http://dx.doi.org/10.1561/2200000016
http://dx.doi.org/10.1109/TSP.2010.2055862
http://dx.doi.org/10.1109/ICASSP.2016.7472455
http://dx.doi.org/10.1109/ICASSP.2016.7472455
http://dx.doi.org/10.1109/TSG.2017.2720471

167SEPTEMBER 2024 IEEE ROBOTICS & AUTOMATION MAGAZINE

[23] G. Scutari and Y. Sun, “Parallel and distributed successive convex approxi-
mation methods for big-data optimization,” in Multi-Agent Optimization,
F. Facchinei and J. S. Pang, Eds., Cham, Switzerland: Springer-Verlag, 2018,
pp. 141–308.

[24] B. Yang and M. Johansson, “Distributed optimization and games: A tutorial
overview,” Networked Control Systems, A. Bemporad, M. Heemels, and M.
Johansson, Eds., London, U.K.: Springer-Verlag, pp. 109–148, 2010.

[25] A. Nedić and J. Liu, “Distributed optimization for control,” Annu. Rev.
Control, Robot., Auton. Syst., vol. 1, no. 1, pp. 77–103, 2018, doi: 10.1146/
annurev-control-060117-105131.

[26] A. Nedić, A. Olshevsky, and M. G. Rabbat, “Network topology and commu-
nication-computation tradeoffs in decentralized optimization,” Proc. IEEE,
vol. 106, no. 5, pp. 953–976, May 2018, doi: 10.1109/JPROC.2018.2817461.

[27] A. Nedić, “Distributed optimization over networks,” in Multi-Agent
Optimization, F. Facchinei and J. S. Pang, Eds., Cham, Switzerland: Springer-
Verlag, 2018, pp. 1–84.

[28] T.-H. Chang, M. Hong, H.-T. Wai, X. Zhang, and S. Lu, “Distributed learning
in the nonconvex world: From batch data to streaming and beyond,” IEEE Signal
Process. Mag., vol. 37, no. 3, pp. 26–38, May 2020, doi: 10.1109/MSP.
2020.2970170.

[29] T. Yang et al., “A survey of distributed optimization,” Annu. Rev. Control,
vol. 47, pp. 278–305, Jun. 2019, doi: 10.1016/j.arcontrol.2019.05.006.

[30] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation:
Numerical Methods, vol. 23. Englewood Cliffs, NJ, USA: Prentice-Hall 1989.

[31] N. A. Lynch, Distributed Algorithms. New York, NY, USA: Elsevier, 1996.

[32] F. Bullo, J. Cortés, and S. Martínez, Distributed Control of Robotic Networks
(Applied Mathematics Series). Princeton, NJ, USA: Princeton Univ. Press, 2009.
[Online]. Available: http://coordinationbook.info

[33] M. Mesbahi and M. Egerstedt, Graph Theoretic Methods in Multiagent
Networks, vol. 33. Princeton, NJ, USA: Princeton Univ. Press, 2010.

[34] V. S. Mai and E. H. Abed, “Distributed optimization over directed graphs
with row stochasticity and constraint regularity,” Automatica, vol. 102, pp.
94–104, Apr. 2019, doi: 10.1016/j.automatica.2018.07.020.

[35] J. N. Tsitsiklis, “Problems in decentralized decision making and computa-
tion,” Cambridge Lab for Information and Decision Systems, Massachusetts Inst.
Technol., Cambridge, MA, USA, Tech. Rep., 1984. [Online]. Available: https://
www.mit.edu/~jnt/Papers/PhD-84-jnt.pdf

[36] I. Lobel and A. Ozdaglar, “Distributed subgradient methods for convex opti-
mization over random networks,” IEEE Trans. Autom. Control, vol. 56, no. 6, pp.
1291–1306, Jun. 2011, doi: 10.1109/TAC.2010.2091295.

[37] A. Olshevsky and J. N. Tsitsiklis, “Convergence speed in distributed consen-
sus and averaging,” SIAM J. Control Optim., vol. 48, no. 1, pp. 33–55, 2009, doi:
10.1137/060678324.

[38] A. Olshevsky, I. C. Paschalidis, and A. Spiridonoff, “Robust asynchronous
stochastic gradient-push: Asymptotically optimal and network-independent per-
formance for strongly convex functions,” 2018, arXiv:1811.03982.

[39] A. Nedić and A. Olshevsky, “Distributed optimization over time-varying
directed graphs,” IEEE Trans. Autom. Control, vol. 60, no. 3, pp. 601–615, Mar.
2015, doi: 10.1109/TAC.2014.2364096.

[40] F. Bénézit, V. Blondel, P. Thiran, J. Tsitsiklis, and M. Vetterli, “Weighted
gossip: Distributed averaging using non-doubly stochastic matrices,” in Proc.
IEEE Int. Symp. Inf. Theory, 2010, pp. 1753–1757, doi: 10.1109/ISIT.
2010.5513273.

[41] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based computation of aggregate
information,” in Proc. 44th Annu. IEEE Symp. Found. Comput. Sci., 2003, pp.
482–491, doi: 10.1109/SFCS.2003.1238221.

[42] K. Yuan, Q. Ling, and W. Yin, “On the convergence of decentralized gradient
descent,” SIAM J. Optim., vol. 26, no. 3, pp. 1835–1854, 2016, doi:
10.1137/130943170.

[43] D. Jakovetić, J. Xavier, and J. M. Moura, “Fast distributed gradient methods,”
IEEE Trans. Autom. Control, vol. 59, no. 5, pp. 1131–1146, May 2014, doi:
10.1109/TAC.2014.2298712.

[44] W. Shi, Q. Ling, G. Wu, and W. Yin, “EXTRA: An exact first-order algo-
rithm for decentralized consensus optimization,” SIAM J. Optim., vol. 25, no. 2,
pp. 944–966, 2015, doi: 10.1137/14096668X.

[45] A. Daneshmand, G. Scutari, and V. Kungurtsev, “Second-order guarantees of
distributed gradient algorithms,” 2018, arXiv:1809.08694.

[46] A. Nedic, A. Olshevsky, and W. Shi, “Achieving geometric convergence for
distributed optimization over time-varying graphs,” SIAM J. Optim., vol. 27, no.
4, pp. 2597–2633, 2017, doi: 10.1137/16M1084316.

[47] S. Zheng et al., “Asynchronous stochastic gradient descent with delay com-
pensation,” in Proc. Int. Conf. Mach. Learn., PMLR, 2017, pp. 4120–4129.

[48] Z. Li, W. Shi, and M. Yan, “A decentralized proximal-gradient method with
network independent step-sizes and separated convergence rates,” IEEE Trans.

Signal Process., vol. 67, no. 17, pp. 4494–4506, Sep. 2019, doi: 10.1109/
TSP.2019.2926022.

[49] K. Yuan, B. Ying, X. Zhao, and A. H. Sayed, “Exact diffusion for distrib-
uted optimization and learning—Part I: Algorithm development,” IEEE Trans.
Signal Process., vol. 67, no. 3, pp. 708–723, Feb. 2019, doi: 10.1109/TSP.
2018.2875898.

[50] K. Yuan, B. Ying, X. Zhao, and A. H. Sayed, “Exact diffusion for distribut-
ed optimization and learning—Part II: Convergence analysis,” IEEE Trans.
Signal Process., vol. 67, no. 3, pp. 724–739, Feb. 2019, doi: 10.1109/TSP.
2018.2875883.

[51] G. Qu and N. Li, “Harnessing smoothness to accelerate distributed optimiza-
tion,” IEEE Trans. Control Netw. Syst., vol. 5, no. 3, pp. 1245–1260, Sep. 2018,
doi: 10.1109/TCNS.2017.2698261.

[52] R. Xin and U. A. Khan, “Distributed heavy-ball: A generalization and acceler-
ation of first-order methods with gradient tracking,” IEEE Trans. Autom. Control,
vol. 65, no. 6, pp. 2627–2633, Jun. 2019, doi: 10.1109/TAC.2019.2942513.

[53] C. Xi, R. Xin, and U. A. Khan, “ADD-OPT: Accelerated distributed directed
optimization,” IEEE Trans. Autom. Control, vol. 63, no. 5, pp. 1329–1339, May
2018, doi: 10.1109/TAC.2017.2737582.

[54] C. Xi, V. S. Mai, R. Xin, E. H. Abed, and U. A. Khan, “Linear convergence
in optimization over directed graphs with row-stochastic matrices,” IEEE Trans.
Autom. Control, vol. 63, no. 10, pp. 3558–3565, Oct. 2018, doi: 10.1109/
TAC.2018.2797164.

[55] J. Zeng and W. Yin, “ExtraPush for convex smooth decentralized optimiza-
tion over directed networks,” J. Comput. Math., vol. 35, no. 4, pp. 383–396, 2017,
doi: 10.4208/jcm.1606-m2015-0452.

[56] A. Sundararajan, B. Van Scoy, and L. Lessard, “A canonical form for first-
order distributed optimization algorithms,” in Proc. Amer. Control Conf.,
Piscataway, NJ, USA: IEEE Press, 2019, pp. 4075–4080, doi: 10.23919/
ACC.2019.8814838.

[57] A. Sundararajan, B. Van Scoy, and L. Lessard, “Analysis and design of first-
order distributed optimization algorithms over time-varying graphs,” IEEE Trans.
Control Netw. Syst., vol. 7, no. 4, pp. 1597–1608, Dec. 2020, doi: 10.1109/
TCNS.2020.2988009.

[58] D. Jakovetić, “A unification and generalization of exact distributed first-order
methods,” IEEE Trans. Signal Inf. Process. Netw., vol. 5, no. 1, pp. 31–46, Mar.
2019, doi: 10.1109/TSIPN.2018.2846183.

[59] G. Qu and N. Li, “Accelerated distributed Nesterov gradient descent,” IEEE
Trans. Autom. Control, vol. 65, no. 6, pp. 2566–2581, Jun. 2020, doi: 10.1109/
TAC.2019.2937496.

[60] R. Xin, D. Jakovetić, and U. A. Khan, “Distributed Nesterov gradient meth-
ods over arbitrary graphs,” IEEE Signal Process. Lett., vol. 26, no. 8, pp. 1247–
1251, Aug. 2019, doi: 10.1109/LSP.2019.2925537.

[61] Q. Lü, X. Liao, H. Li, and T. Huang, “A Nesterov-like gradient tracking algo-
rithm for distributed optimization over directed networks,” IEEE Trans. Syst.,
Man, Cybern. Syst., vol. 51, no. 10, pp. 6258–6270, Oct. 2021, doi: 10.1109/
TSMC.2019.2960770.

[62] F. Mansoori and E. Wei, “A general framework of exact primal-dual first-
order algorithms for distributed optimization,” in Proc. IEEE 58th Conf. Decis.
Control (CDC), Piscataway, NJ, USA: IEEE Press, 2019, pp. 6386–6391, doi:
10.1109/CDC40024.2019.9029902.

[63] T. Tatarenko and B. Touri, “Non-convex distributed optimization,” IEEE
Trans. Autom. Control, vol. 62, no. 8, pp. 3744–3757, Aug. 2017, doi: 10.1109/
TAC.2017.2648041.

[64] S. S. Ram, A. Nedić, and V. V. Veeravalli, “Distributed stochastic subgradi-
ent projection algorithms for convex optimization,” J. Optim. Theory Appl., vol.
147, no. 3, pp. 516–545, 2010, doi: 10.1007/s10957-010-9737-7.

[65] P. Bianchi and J. Jakubowicz, “Convergence of a multi-agent projected sto-
chastic gradient algorithm for non-convex optimization,” IEEE Trans. Autom.
Control, vol. 58, no. 2, pp. 391–405, Feb. 2013, doi: 10.1109/TAC.2012.
2209984.

[66] B. Johansson, M. Rabi, and M. Johansson, “A randomized incremental sub-
gradient method for distributed optimization in networked systems,” SIAM J.
Optim., vol. 20, no. 3, pp. 1157–1170, 2010, doi: 10.1137/08073038X.

[67] M. Maros and J. Jaldén, “PANDA: A dual linearly converging method for
distributed optimization over time-varying undirected graphs,” in Proc. IEEE
Conf. Decis. Control (CDC), Piscataway, NJ, USA: IEEE Press, 2018, pp. 6520–
6525, doi: 10.1109/CDC.2018.8619626.

[68] M. Maros and J. Jaldén, “A geometrically converging dual method for distrib-
uted optimization over time-varying graphs,” IEEE Trans. Autom. Control, vol.
66, no. 6, pp. 2465–2479, Jun. 2021, doi: 10.1109/TAC.2020.3018743.

[69] M. Maros and J. Jaldén, “Eco-PANDA: A computationally economic, geo-
metrically converging dual optimization method on time-varying undirected
graphs,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP),
Piscataway, NJ, USA: IEEE Press, 2019, pp. 5257–5261, doi: 10.1109/
ICASSP.2019.8683797.

Authorized licensed use limited to: Stanford University. Downloaded on September 13,2024 at 19:03:42 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1146/annurev-control-060117-105131
http://dx.doi.org/10.1146/annurev-control-060117-105131
http://dx.doi.org/10.1109/JPROC.2018.2817461
http://dx.doi.org/10.1109/MSP.2020.2970170
http://dx.doi.org/10.1016/j.arcontrol.2019.05.006
http://dx.doi.org/10.1016/j.automatica.2018.07.020
http://dx.doi.org/10.1109/TAC.2010.2091295
http://dx.doi.org/10.1137/060678324
http://dx.doi.org/10.1109/TAC.2014.2364096
http://dx.doi.org/10.1109/ISIT
http://dx.doi.org/10.1109/SFCS.2003.1238221
http://dx.doi.org/10.1137/130943170
http://dx.doi.org/10.1109/TAC.2014.2298712
http://dx.doi.org/10.1137/14096668X
http://dx.doi.org/10.1137/16M1084316
http://dx.doi.org/10.1109/TSP.2019.2926022
http://dx.doi.org/10.1109/TSP.2019.2926022
http://dx.doi.org/10.1109/TSP.2018.2875898
http://dx.doi.org/10.1109/TSP.2018.2875883
http://dx.doi.org/10.1109/TCNS.2017.2698261
http://dx.doi.org/10.1109/TAC.2019.2942513
http://dx.doi.org/10.1109/TAC.2017.2737582
http://dx.doi.org/10.1109/TAC.2018.2797164
http://dx.doi.org/10.1109/TAC.2018.2797164
http://dx.doi.org/10.4208/jcm.1606-m2015-0452
http://dx.doi.org/10.23919/ACC.2019.8814838
http://dx.doi.org/10.23919/ACC.2019.8814838
http://dx.doi.org/10.1109/TCNS.2020.2988009
http://dx.doi.org/10.1109/TCNS.2020.2988009
http://dx.doi.org/10.1109/TSIPN.2018.2846183
http://dx.doi.org/10.1109/TAC.2019.2937496
http://dx.doi.org/10.1109/TAC.2019.2937496
http://dx.doi.org/10.1109/LSP.2019.2925537
http://dx.doi.org/10.1109/TSMC.2019.2960770
http://dx.doi.org/10.1109/TSMC.2019.2960770
http://dx.doi.org/10.1109/CDC40024.2019.9029902
http://dx.doi.org/10.1109/TAC.2017.2648041
http://dx.doi.org/10.1109/TAC.2017.2648041
http://dx.doi.org/10.1007/s10957-010-9737-7
http://dx.doi.org/10.1109/TAC.2012.2209984
http://dx.doi.org/10.1109/TAC.2012.2209984
http://dx.doi.org/10.1137/08073038X
http://dx.doi.org/10.1109/CDC.2018.8619626
http://dx.doi.org/10.1109/TAC.2020.3018743
http://dx.doi.org/10.1109/ICASSP.2019.8683797
http://dx.doi.org/10.1109/ICASSP.2019.8683797
http://dx.doi.org/10.1109/MSP.2020.2970170
http://dx.doi.org/10.1109/TSP.2018.2875898
http://dx.doi.org/10.1109/TSP.2018.2875883

IEEE ROBOTICS & AUTOMATION MAGAZINE SEPTEMBER 2024168

[70] K. Seaman, F. Bach, S. Bubeck, Y. T. Lee, and L. Massoulié, “Optimal algo-
rithms for smooth and strongly convex distributed optimization in networks,” in
Proc. 34th Int. Conf. Mach. Learn., vol. 70, JMLR, 2017, pp. 3027–3036.

[71] G. Lan, S. Lee, and Y. Zhou, “Communication-efficient algorithms for
decentralized and stochastic optimization,” Math. Program., vol. 180, nos. 1–2,
pp. 237–284, 2020, doi: 10.1007/s10107-018-1355-4.

[72] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu, “Can decen-
tralized algorithms outperform centralized algorithms? A case study for decen-
tralized parallel stochastic gradient descent,” in Proc. 31st Int. Conf. Neural Inf.
Process. Syst., 2017, pp. 5336–5346.

[73] Y. Nesterov, “Primal-dual subgradient methods for convex problems,” Math.
Program., vol. 120, no. 1, pp. 221–259, 2009, doi: 10.1007/s10107-007-0149-x.

[74] L. Xiao, “Dual averaging methods for regularized stochastic learning and
online optimization,” J. Mach. Learn. Res., vol. 11, pp. 2543–2596, Oct. 2010.

[75] J. C. Duchi, A. Agarwal, and M. J. Wainwright, “Dual averaging for distributed
optimization: Convergence analysis and network scaling,” IEEE Trans. Autom.
Control, vol. 57, no. 3, pp. 592–606, Mar. 2012, doi: 10.1109/TAC.2011.2161027.

[76] K. I. Tsianos and M. G. Rabbat, “Distributed consensus and optimization
under communication delays,” in Proc. 49th Annu. Allerton Conf. Commun.,
Control, Comput. (Allerton), Piscataway, NJ, USA: IEEE Press, 2011, pp. 974–
982, doi: 10.1109/Allerton.2011.6120272.

[77] K. I. Tsianos, S. Lawlor, and M. G. Rabbat, “Push-sum distributed dual
averaging for convex optimization,” in Proc. IEEE 51st IEEE Conf. Decis.
Control (CDC), Piscataway, NJ, USA: IEEE Press, 2012, pp. 5453–5458, doi:
10.1109/CDC.2012.6426375.

[78] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex Optimization. Cambridge,
U.K.: Cambridge Univ. Press, 2004.

[79] M. Zargham, A. Ribeiro, A. Ozdaglar, and A. Jadbabaie, “Accelerated dual
descent for network flow optimization,” IEEE Trans. Autom. Control, vol. 59, no.
4, pp. 905–920, Apr. 2014, doi: 10.1109/TAC.2013.2293221.

[80] A. Mokhtari, W. Shi, Q. Ling, and A. Ribeiro, “A decentralized second-order
method with exact linear convergence rate for consensus optimization,” IEEE
Trans. Signal Inf. Process. Netw., vol. 2, no. 4, pp. 507–522, Dec. 2016, doi:
10.1109/TSIPN.2016.2613678.

[81] M. Eisen, A. Mokhtari, A. Ribeiro, and A. We, “Decentralized quasi-Newton
methods,” IEEE Trans. Signal Process., vol. 65, no. 10, pp. 2613–2628, May 2017,
doi: 10.1109/TSP.2017.2666776.

[82] M. Eisen, A. Mokhtari, and A. Ribeiro, “A primal-dual quasi-Newton meth-
od for exact consensus optimization,” IEEE Trans. Signal Process., vol. 67, no. 23,
pp. 5983–5997, Dec. 2019, doi: 10.1109/TSP.2019.2951216.

[83] F. Mansoori and E. Wei, “A fast distributed asynchronous newton-based opti-
mization algorithm,” IEEE Trans. Autom. Control, vol. 65, no. 7, pp. 2769–2784,
Jul. 2020, doi: 10.1109/TAC.2019.2933607.

[84] Y. Sun and G. Scutari, “Distributed nonconvex optimization for sparse repre-
sentation,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP),
Piscataway, NJ, USA: IEEE Press, 2017, pp. 4044–4048, doi: 10.1109/
ICASSP.2017.7952916.

[85] J. Xu, S. Zhu, Y. C. Soh, and L. Xie, “Augmented distributed gradient meth-
ods for multi-agent optimization under uncoordinated constant stepsizes,” in
Proc. 54th IEEE Conf. Decis. Control (CDC), Piscataway, NJ, USA: IEEE Press,
2015, pp. 2055–2060, doi: 10.1109/CDC.2015.7402509.

[86] B. Houska, J. Frasch, and M. Diehl, “An augmented Lagrangian based algo-
rithm for distributed nonconvex optimization,” SIAM J. Optim., vol. 26, no. 2, pp.
1101–1127, 2016, doi: 10.1137/140975991.

[87] N. Chatzipanagiotis, D. Dentcheva, and M. M. Zavlanos, “An augmented
Lagrangian method for distributed optimization,” Math. Program., vol. 152, nos.
1–2, pp. 405–434, 2015, doi: 10.1007/s10107-014-0808-7.

[88] F. Iutzeler, P. Bianchi, P. Ciblat, and W. Hachem, “Asynchronous distributed
optimization using a randomized alternating direction method of multipliers,” in
Proc. 52nd IEEE Conf. Decis. Control., Piscataway, NJ, USA: IEEE Press, 2013,
pp. 3671–3676, doi: 10.1109/CDC.2013.6760448.

[89] H. Terelius, U. Topcu, and R. M. Murray, “Decentralized multi-agent optimi-
zation via dual decomposition,” IFAC Proc. Volumes, vol. 44, no. 1, pp. 11245–
11251, 2011, doi: 10.3182/20110828-6-IT-1002.01959.

[90] Q. Ling, W. Shi, G. Wu, and A. Ribeiro, “DLM: Decentralized linearized
alternating direction method of multipliers,” IEEE Trans. Signal Process., vol. 63,
no. 15, pp. 4051–4064, Aug. 2015, doi: 10.1109/TSP.2015.2436358.

[91] T.-H. Chang, M. Hong, and X. Wang, “Multi-agent distributed optimization
via inexact consensus ADMM,” IEEE Trans. Signal Process., vol. 63, no. 2, pp.
482–497, Jan. 2015, doi: 10.1109/TSP.2014.2367458.

[92] F. Farina, A. Garulli, A. Giannitrapani, and G. Notarstefano, “A distributed asyn-
chronous method of multipliers for constrained nonconvex optimization,”
Automatica, vol. 103, pp. 243–253, May 2019, doi: 10.1016/j.automatica.2019.02.003.

[93] A. Mokhtari, W. Shi, Q. Ling, and A. Ribeiro, “DQM: Decentralized qua-
dratically approximated alternating direction method of multipliers,” IEEE Trans.

Signal Process., vol. 64, no. 19, pp. 5158–5173, Oct. 2016, doi: 10.1109/
TSP.2016.2548989.

[94] A. Teixeira, E. Ghadimi, I. Shames, H. Sandberg, and M. Johansson, “The
ADMM algorithm for distributed quadratic problems: Parameter selection and
constraint preconditioning,” IEEE Trans. Signal Process., vol. 64, no. 2, pp. 290–
305, Jan. 2015, doi: 10.1109/TSP.2015.2480041.

[95] D. Meng, M. Fazel, and M. Mesbahi, “Proximal alternating direction method
of multipliers for distributed optimization on weighted graphs,” in Proc. 54th
IEEE Conf. Decis. Control (CDC), Piscataway, NJ, USA: IEEE Press, 2015, pp.
1396–1401, doi: 10.1109/CDC.2015.7402406.

[96] A. Makhdoumi and A. Ozdaglar, “Convergence rate of distributed ADMM
over networks,” IEEE Trans. Autom. Control, vol. 62, no. 10, pp. 5082–5095, Oct.
2017, doi: 10.1109/TAC.2017.2677879.

[97] M. L. Elwin, R. A. Freeman, and K. M. Lynch, “Distributed environmental
monitoring with finite element robots,” IEEE Trans. Robot., vol. 36, no. 2, pp.
380–398, Apr. 2020, doi: 10.1109/TRO.2019.2936747.

[98] O. Shorinwa, T. Halsted, and M. Schwager, “Scalable distributed optimiza-
tion with separable variables in multi-agent networks,” in Proc. Amer. Control
Conf. (ACC), Piscataway, NJ, USA: IEEE Press, 2020, pp. 3619–3626, doi:
10.23919/ACC45564.2020.9147590.

[99] T. Erseghe, “A distributed and scalable processing method based upon
ADMM,” IEEE Signal Process. Lett., vol. 19, no. 9, pp. 563–566, Sep. 2012, doi:
10.1109/LSP.2012.2207719.

[100] N. Bastianello, R. Carli, L. Schenato, and M. Todescato, “A partition-
based implementation of the relaxed ADMM for distributed convex optimiza-
tion over lossy networks,” in Proc. IEEE Conf. Decis. Control (CDC),
Piscataway, NJ, USA: IEEE Press, 2018, pp. 3379–3384, doi: 10.1109/CDC.
2018.8619729.

[101] M. Todescato, N. Bof, G. Cavraro, R. Carli, and L. Schenato, “Partition-based
multi-agent optimization in the presence of lossy and asynchronous communica-
tion,” Automatica, vol. 111, Jan. 2020, Art. no. 108648, doi: 10.1016/j.automatica.
2019.108648.

[102] V.-L. Dang, B.-S. Le, T.-T. Bui, H.-T. Huynh, and C.-K. Pham, “A decen-
tralized localization scheme for swarm robotics based on coordinate geometry
and distributed gradient descent,” MATEC Web Conf., vol. 54, Feb. 1–3, 2016,
Art. no. 02002, doi: 10.1051/matecconf/20165402002.

[103] N. A. Alwan and A. S. Mahmood, “Distributed gradient descent localization
in wireless sensor networks,” Arabian J. Sci. Eng., vol. 40, no. 3, pp. 893–899,
2015, doi: 10.1007/s13369-014-1552-2.

[104] M. Todescato, A. Carron, R. Carli, and L. Schenato, “Distributed localiza-
tion from relative noisy measurements: A robust gradient based approach,” in
Proc. Eur. Control Conf. (ECC), Piscataway, NJ, USA: IEEE Press, 2015,
pp. 1914–1919, doi: 10.1109/ECC.2015.7330818.

[105] R. Tron and R. Vidal, “Distributed image-based 3-d localization of camera
sensor networks,” in Proc. 48h IEEE Conf. Decis. Control (CDC) Held Jointly
2009 28th Chin. Control Conf., Piscataway, NJ, USA: IEEE Press, 2009, pp. 901–
908, doi: 10.1109/CDC.2009.5400405.

[106] R. Tron and R. Vidal, “Distributed computer vision algorithms,” IEEE Signal
Process. Mag., vol. 28, no. 3, pp. 32–45, May 2011, doi: 10.1109/MSP.2011.940399.

[107] R. Tron, Distributed Optimization on Manifolds for Consensus Algorithms
and Camera Network Localization. Baltimore, MD, USA: The Johns Hopkins
Univ. Press, 2012.

[108] R. Tron and R. Vidal, “Distributed 3-D localization of camera sensor net-
works from 2-D image measurements,” IEEE Trans. Autom. Control, vol. 59, no.
12, pp. 3325–3340, Dec. 2014, doi: 10.1109/TAC.2014.2351912.

[109] A. Sarlette and R. Sepulchre, “Consensus optimization on manifolds,”
SIAM J. Control Optim., vol. 48, no. 1, pp. 56–76, 2009, doi: 10.1137/060673400.

[110] K.-K. Oh and H.-S. Ahn, “Formation control and network localization via
orientation alignment,” IEEE Trans. Autom. Control, vol. 59, no. 2, pp. 540–545,
Feb. 2014, doi: 10.1109/TAC.2013.2272972.

[111] K.-K. Oh and H.-S. Ahn, “Distributed formation control based on orienta-
tion alignment and position estimation,” Int. J. Control Automat. Syst., vol. 16, no.
3, pp. 1112–1119, Jun. 2018, doi: 10.1007/s12555-017-0280-2.

[112] T. Fan and T. Murphey, “Majorization minimization methods for distributed pose
graph optimization with convergence guarantees,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst. (IROS), 2020, pp. 5058–5065, doi: 10.1109/IROS45743.2020.9341063.

[113] Y. Tian, A. Koppel, A. S. Bedi, and J. P. How, “Asynchronous and parallel
distributed pose graph optimization,” IEEE Robot. Autom. Lett., vol. 5, no. 4, pp.
5819–5826, Oct. 2020, doi: 10.1109/LRA.2020.3010216.

[114] J. Knuth and P. Barooah, “Collaborative localization with heterogeneous
inter-robot measurements by Riemannian optimization,” in Proc. IEEE Int. Conf.
Robot. Automat., Piscataway, NJ, USA: IEEE Press, 2013, pp. 1534–1539, doi:
10.1109/ICRA.2013.6630774.

[115] Y. Tian, K. Khosoussi, and J. P. How, “Block-coordinate descent on the
Riemannian staircase for certifiably correct distributed rotation and pose syn-
chronization,” 2019, arXiv:1911.03721.

Authorized licensed use limited to: Stanford University. Downloaded on September 13,2024 at 19:03:42 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1007/s10107-018-1355-4
http://dx.doi.org/10.1007/s10107-007-0149-x
http://dx.doi.org/10.1109/TAC.2011.2161027
http://dx.doi.org/10.1109/Allerton.2011.6120272
http://dx.doi.org/10.1109/CDC.2012.6426375
http://dx.doi.org/10.1109/TAC.2013.2293221
http://dx.doi.org/10.1109/TSIPN.2016.2613678
http://dx.doi.org/10.1109/TSP.2017.2666776
http://dx.doi.org/10.1109/TSP.2019.2951216
http://dx.doi.org/10.1109/TAC.2019.2933607
http://dx.doi.org/10.1109/ICASSP.2017.7952916
http://dx.doi.org/10.1109/ICASSP.2017.7952916
http://dx.doi.org/10.1109/CDC.2015.7402509
http://dx.doi.org/10.1137/140975991
http://dx.doi.org/10.1007/s10107-014-0808-7
http://dx.doi.org/10.1109/CDC.2013.6760448
http://dx.doi.org/10.3182/20110828-6-IT-1002.01959
http://dx.doi.org/10.1109/TSP.2015.2436358
http://dx.doi.org/10.1109/TSP.2014.2367458
http://dx.doi.org/10.1016/j.automatica.2019.02.003
http://dx.doi.org/10.1109/TSP.2016.2548989
http://dx.doi.org/10.1109/TSP.2016.2548989
http://dx.doi.org/10.1109/TSP.2015.2480041
http://dx.doi.org/10.1109/CDC.2015.7402406
http://dx.doi.org/10.1109/TAC.2017.2677879
http://dx.doi.org/10.1109/TRO.2019.2936747
http://dx.doi.org/10.23919/ACC45564.2020.9147590
http://dx.doi.org/10.1109/LSP.2012.2207719
http://dx.doi.org/10.1109/CDC.2018.8619729
http://dx.doi.org/10.1109/CDC.2018.8619729
http://dx.doi.org/10.1016/j.automatica.2019.108648
http://dx.doi.org/10.1016/j.automatica.2019.108648
http://dx.doi.org/10.1051/matecconf/20165402002
http://dx.doi.org/10.1007/s13369-014-1552-2
http://dx.doi.org/10.1109/ECC.2015.7330818
http://dx.doi.org/10.1109/CDC.2009.5400405
http://dx.doi.org/10.1109/MSP.2011.940399
http://dx.doi.org/10.1109/TAC.2014.2351912
http://dx.doi.org/10.1137/060673400
http://dx.doi.org/10.1109/TAC.2013.2272972
http://dx.doi.org/10.1007/s12555-017-0280-2
http://dx.doi.org/10.1109/IROS45743.2020.9341063
http://dx.doi.org/10.1109/LRA.2020.3010216
http://dx.doi.org/10.1109/ICRA.2013.6630774

169SEPTEMBER 2024 IEEE ROBOTICS & AUTOMATION MAGAZINE

[116] S. Choudhary, L. Carlone, C. Nieto, J. Rogers, H. I. Christensen, and F.
Dellaert, “Distributed mapping with privacy and communication constraints:
Lightweight algorithms and object-based models,” Int. J. Robot. Res., vol. 36, no.
12, pp. 1286–1311, 2017, doi: 10.1177/0278364917732640.

[117] R. Zhang, S. Zhu, T. Fang, and L. Quan, “Distributed very large scale bun-
dle adjustment by global camera consensus,” in Proc. IEEE Int. Conf. Comput.
Vis., 2017, pp. 29–38.

[118] A. Eriksson, J. Bastian, T.-J. Chin, and M. Isaksson, “A consensus-based
framework for distributed bundle adjustment,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2016, pp. 1754–1762.

[119] S. Choudhary, L. Carlone, H. I. Christensen, and F. Dellaert, “Exactly sparse
memory efficient SLAM using the multi-block alternating direction method of
multipliers,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Piscataway,
NJ, USA: IEEE Press, 2015, pp. 1349–1356, doi: 10.1109/IROS.2015.7353543.

[120] K. Natesan Ramamurthy, C.-C. Lin, A. Aravkin, S. Pankanti, and R.
Viguier, “Distributed bundle adjustment,” in Proc. IEEE Int. Conf. Comput. Vis.
Workshops, 2017, pp. 2146–2154.

[121] S. Kumar, R. Jain, and K. Rajawat, “Asynchronous optimization over het-
erogeneous networks via consensus ADMM,” IEEE Trans. Signal Inf. Process.
Netw., vol. 3, no. 1, pp. 114–129, Mar. 2017, doi: 10.1109/TSIPN.2016.2593896.

[122] O. Shorinwa, J. Yu, T. Halsted, A. Koufos, and M. Schwager, “Distributed
multi-target tracking for autonomous vehicle fleets,” in Proc. IEEE Int. Conf.
Robot. Automat. (ICRA), Piscataway, NJ, USA: IEEE Press, 2020, pp. 3495–3501,
doi: 10.1109/ICRA40945.2020.9197241.

[123] A. Khodabandeh and P. Teunissen, “Distributed least-squares estimation
applied to GNSS networks,” Meas. Sci. Technol., vol. 30, no. 4, 2019, Art. no.
044005, doi: 10.1088/1361-6501/ab034e.

[124] K. Lu, G. Jing, and L. Wang, “Online distributed optimization with strongly
pseudoconvex-sum cost functions,” IEEE Trans. Autom. Control, vol. 65, no. 1,
pp. 426–433, Jan. 2020, doi: 10.1109/TAC.2019.2915745.

[125] S. Shahrampour and A. Jadbabaie, “Distributed online optimization in
dynamic environments using mirror descent,” IEEE Trans. Autom. Control, vol.
63, no. 3, pp. 714–725, Mar. 2018, doi: 10.1109/TAC.2017.2743462.

[126] Y. Zhang, R. J. Ravier, M. M. Zavlanos, and V. Tarokh, “A distributed
online convex optimization algorithm with improved dynamic regret,” in Proc.
IEEE 58th Conf. Decis. Control (CDC), Piscataway, NJ, USA: IEEE Press, 2019,
pp. 2449–2454, doi: 10.1109/CDC40024.2019.9029474.

[127] S. Hosseini, A. Chapman, and M. Mesbahi, “Online distributed optimiza-
tion via dual averaging,” in Proc. 52nd IEEE Conf. Decis. Control, Piscataway,
NJ, USA: IEEE Press, 2013, pp. 1484–1489, doi: 10.1109/CDC.2013.6760092.

[128] S. Shahrampour and A. Jadbabaie, “Exponentially fast parameter estimation
in networks using distributed dual averaging,” in Proc. 52nd IEEE Conf. Decis.
Control, Piscataway, NJ, USA: IEEE Press, 2013, pp. 6196–6201, doi: 10.1109/
CDC.2013.6760868.

[129] S. Hosseini, A. Chapman, and M. Mesbahi, “Online distributed convex opti-
mization on dynamic networks,” IEEE Trans. Autom. Control, vol. 61, no. 11, pp.
3545–3550, Nov. 2016, doi: 10.1109/TAC.2016.2525928.

[130] S. Lee, A. Nedić, and M. Raginsky, “Stochastic dual averaging for decentralized
online optimization on time-varying communication graphs,” IEEE Trans. Autom.
Control, vol. 62, no. 12, pp. 6407–6414, Dec. 2017, doi: 10.1109/TAC.2017.2650563.

[131] K. I. Tsianos, S. Lawlor, and M. G. Rabbat, “Consensus-based distributed
optimization: Practical issues and applications in large-scale machine learning,”
in Proc. 50th Annu. Allerton Conf. Commun., Control, Comput. (Allerton),
Piscataway, NJ, USA: IEEE Press, 2012, pp. 1543–1550, doi: 10.1109/Allerton.
2012.6483403.

[132] S. Scardapane, R. Fierimonte, P. Di Lorenzo, M. Panella, and A. Uncini,
“Distributed semi-supervised support vector machines,” Neural Netw., vol. 80,
pp. 43–52, Aug. 2016, doi: 10.1016/j.neunet.2016.04.007.

[133] S. Scardapane and P. D. Lorenzo, “A framework for parallel and distributed
training of neural networks,” Neural Netw., vol. 91, pp. 42–54, Jul. 2017, doi:
10.1016/j.neunet.2017.04.004.

[134] R. Altilio, P. Di Lorenzo, and M. Panella, “Distributed data clustering over
networks,” Pattern Recognit., vol. 93, pp. 603–620, Sep. 2019, doi: 10.1016/j.pat-
cog.2019.04.021.

[135] Q. Ling and A. Ribeiro, “Decentralized dynamic optimization through the
alternating direction method of multipliers,” IEEE Trans. Signal Process., vol. 62,
no. 5, pp. 1185–1197, Mar. 2014, doi: 10.1109/TSP.2013.2295055.

[136] H. F. Xu, Q. Ling, and A. Ribeiro, “Online learning over a decentralized
network through ADMM,” J. Oper. Res. Soc. China, vol. 3, no. 4, pp. 537–562,
Dec. 2015, doi: 10.1007/s40305-015-0104-0.

[137] J. Yu, J. A. Vincent, and M. Schwager, “DiNNO: Distributed neural network
optimization for multi-robot collaborative learning,” IEEE Robot. Autom. Lett.,
vol. 7, no. 2, pp. 1896–1903, Apr. 2022, doi: 10.1109/LRA.2022.3142402.

[138] E. Montijano and A. R. Mosteo, “Efficient multi-robot formations using dis-
tributed optimization,” in Proc. 53rd IEEE Conf. Decis. Control, Piscataway, NJ,
USA: IEEE Press, 2014, pp. 6167–6172, doi: 10.1109/CDC.2014.7040355.

[139] M. Bürger, G. Notarstefano, F. Bullo, and F. Allgöwer, “A distributed simplex
algorithm for degenerate linear programs and multi-agent assignments,” Automatica,
vol. 48, no. 9, pp. 2298–2304, 2012, doi: 10.1016/j.automatica.2012.06.040.

[140] R. Haksar, O. Shorinwa, P. Washington, and M. Schwager, “Consensus-
based ADMM for task assignment in multi-robot teams,” in Proc. Int. Symp.
Robot. Res., 2019, pp. 35–51, doi: 10.1007/978-3-030-95459-8_3.

[141] O. Shorinwa, R. N. Haksar, P. Washington, and M. Schwager, “Distributed
multi-robot task assignment via consensus ADMM,” IEEE Trans. Robot., vol. 39,
no. 3, pp. 1781–1800, Jun. 2023, doi: 10.1109/TRO.2022.3228132.

[142] J. Bento, N. Derbinsky, J. Alonso-Mora, and J. S. Yedidia, “A message-pass-
ing algorithm for multi-agent trajectory planning,” in Proc. Adv. Neural Inf.
Process. Syst., 2013, pp. 521–529.

[143] L. Ferranti, R. R. Negenborn, T. Keviczky, and J. Alonso-Mora,
“Coordination of multiple vessels via distributed nonlinear model predictive con-
trol,” in Proc. Eur. Control Conf. (ECC), Piscataway, NJ, USA: IEEE Press, 2018,
pp. 2523–2528, doi: 10.23919/ECC.2018.8550178.

[144] O. Shorinwa and M. Schwager, “Scalable collaborative manipulation with
distributed trajectory planning,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.
(IROS), vol. 1, Piscataway, NJ, USA: IEEE Press, 2020, pp. 9108–9115, doi:
10.1109/IROS45743.2020.9340957.

[145] O. Shorinwa and M. Schwager, “Distributed contact-implicit trajectory opti-
mization for collaborative manipulation,” in Proc. Int. Symp. Multi-Robot Multi-
Agent Syst. (MRS), Piscataway, NJ, USA: IEEE Press, 2021, pp. 56–65, doi:
10.1109/MRS50823.2021.9620665.

[146] F. Alimisis, P. Davies, and D. Alistarh, “Communication-efficient distribut-
ed optimization with quantized preconditioners,” 2021, arXiv:2102.07214.

[147] Y. Yu, J. Wu, and L. Huang, “Double quantization for communication-effi-
cient distributed optimization,” in Proc. Adv. Neural Inform. Process. Syst., 2019,
vol. 32, pp. 4438–4449.

[148] Y. Pu, M. N. Zeilinger, and C. N. Jones, “Quantization design for distributed
optimization,” IEEE Trans. Autom. Control, vol. 62, no. 5, pp. 2107–2120, May
2016, doi: 10.1109/TAC.2016.2600597.

[149] A. Reisizadeh, A. Mokhtari, H. Hassani, and R. Pedarsani, “An exact quan-
tized decentralized gradient descent algorithm,” IEEE Trans. Signal Process., vol.
67, no. 19, pp. 4934–4947, Oct. 2019, doi: 10.1109/TSP.2019.2932876.

[150] C.-S. Lee, N. Michelusi, and G. Scutari, “Finite rate quantized distributed
optimization with geometric convergence,” in Proc. 52nd Asilomar Conf. Signals,
Syst., Comput., Piscataway, NJ, USA: IEEE Press, 2018, pp. 1876–1880, doi:
10.1109/ACSSC.2018.8645345.

[151] H. Li, S. Liu, Y. C. Soh, and L. Xie, “Event-triggered communication and
data rate constraint for distributed optimization of multiagent systems,” IEEE
Trans. Syst., Man, Cybern. Syst., vol. 48, no. 11, pp. 1908–1919, Nov. 2017, doi:
10.1109/TSMC.2017.2694323.

[152] A. Elgabli, J. Park, A. S. Bedi, C. B. Issaid, M. Bennis, and V. Aggarwal,
“Q-GADMM: Quantized group ADMM for communication efficient decentral-
ized machine learning,” IEEE Trans. Commun., vol. 69, no. 1, pp. 164–181, Jan.
2021, doi: 10.1109/TCOMM.2020.3026398.

[153] S. Zhu and B. Chen, “Distributed average consensus with deterministic
quantization: An ADMM approach,” in Proc. IEEE Global Conf. Signal Inf.
Process. (GlobalSIP), Piscataway, NJ, USA: IEEE Press, 2015, pp. 692–696, doi:
10.1109/GlobalSIP.2015.7418285.

[154] N. Bastianello, M. Todescato, R. Carli, and L. Schenato, “Distributed opti-
mization over lossy networks via relaxed Peaceman-Rachford splitting: A robust
ADMM approach,” in Proc. Eur. Control Conf. (ECC), Piscataway, NJ, USA:
IEEE Press, 2018, pp. 477–482, doi: 10.23919/ECC.2018.8550322.

[155] N. Bastianello, R. Carli, L. Schenato, and M. Todescato, “Asynchronous dis-
tributed optimization over lossy networks via relaxed ADMM: Stability and linear
convergence,” IEEE Trans. Autom. Control, vol. 66, no. 6, pp. 2620–2635, Jun.
2021, doi: 10.1109/TAC.2020.3011358.

[156] N. Bof, R. Carli, G. Notarstefano, L. Schenato, and D. Varagnolo,
“Multiagent Newton–Raphson optimization over lossy networks,” IEEE Trans.
Autom. Control, vol. 64, no. 7, pp. 2983–2990, Jul. 2019, doi: 10.1109/
TAC.2018.2874748.

[157] S. M. Trenkwalder, “Computational resources of miniature robots:
Classification and implications,” IEEE Robot. Autom. Lett., vol. 4, no. 3, pp.
2722–2729, Jul. 2019, doi: 10.1109/LRA.2019.2917395.

[158] M. Lahijanian et al., “Resource-performance tradeoff analysis for mobile
robots,” IEEE Robot. Autom. Lett., vol. 3, no. 3, pp. 1840–1847, Jul. 2018, doi:
10.1109/LRA.2018.2803814.

[159] B. Gharesifard and J. Cortés, “Distributed strategies for generating weight-
balanced and doubly stochastic digraphs,” Eur. J. Control, vol. 18, no. 6, pp. 539–
557, 2012, doi: 10.3166/EJC.18.539-557.

[160] X. Lian, W. Zhang, C. Zhang, and J. Liu, “Asynchronous decentralized par-
allel stochastic gradient descent,” in Proc. Int. Conf. Mach. Learn., PMLR, 2018,
pp. 3043–3052.
�

Authorized licensed use limited to: Stanford University. Downloaded on September 13,2024 at 19:03:42 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1177/0278364917732640
http://dx.doi.org/10.1109/IROS.2015.7353543
http://dx.doi.org/10.1109/TSIPN.2016.2593896
http://dx.doi.org/10.1109/ICRA40945.2020.9197241
http://dx.doi.org/10.1088/1361-6501/ab034e
http://dx.doi.org/10.1109/TAC.2019.2915745
http://dx.doi.org/10.1109/TAC.2017.2743462
http://dx.doi.org/10.1109/CDC40024.2019.9029474
http://dx.doi.org/10.1109/CDC.2013.6760092
http://dx.doi.org/10.1109/CDC.2013.6760868
http://dx.doi.org/10.1109/CDC.2013.6760868
http://dx.doi.org/10.1109/TAC.2016.2525928
http://dx.doi.org/10.1109/TAC.2017.2650563
http://dx.doi.org/10.1109/Allerton.2012.6483403
http://dx.doi.org/10.1109/Allerton.2012.6483403
http://dx.doi.org/10.1016/j.neunet.2016.04.007
http://dx.doi.org/10.1016/j.neunet.2017.04.004
http://dx.doi.org/10.1016/j.patcog.2019.04.021
http://dx.doi.org/10.1016/j.patcog.2019.04.021
http://dx.doi.org/10.1109/TSP.2013.2295055
http://dx.doi.org/10.1007/s40305-015-0104-0
http://dx.doi.org/10.1109/LRA.2022.3142402
http://dx.doi.org/10.1109/CDC.2014.7040355
http://dx.doi.org/10.1016/j.automatica.2012.06.040
http://dx.doi.org/10.1007/978-3-030-95459-8_3
http://dx.doi.org/10.1109/TRO.2022.3228132
http://dx.doi.org/10.23919/ECC.2018.8550178
http://dx.doi.org/10.1109/IROS45743.2020.9340957
http://dx.doi.org/10.1109/MRS50823.2021.9620665
http://dx.doi.org/10.1109/TAC.2016.2600597
http://dx.doi.org/10.1109/TSP.2019.2932876
http://dx.doi.org/10.1109/ACSSC.2018.8645345
http://dx.doi.org/10.1109/TSMC.2017.2694323
http://dx.doi.org/10.1109/TCOMM.2020.3026398
http://dx.doi.org/10.1109/GlobalSIP.2015.7418285
http://dx.doi.org/10.23919/ECC.2018.8550322
http://dx.doi.org/10.1109/TAC.2020.3011358
http://dx.doi.org/10.1109/TAC.2018.2874748
http://dx.doi.org/10.1109/TAC.2018.2874748
http://dx.doi.org/10.1109/LRA.2019.2917395
http://dx.doi.org/10.1109/LRA.2018.2803814
http://dx.doi.org/10.3166/EJC.18.539-557

	154_31mra03-shorinwa-3352852

