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Distributed optimization provides a framework for deriving 
distributed algorithms for a variety of multi-robot problems. 
This tutorial constitutes the first part of a two-part series on 
distributed optimization applied to multi-robot problems, 
which seeks to advance the application of distributed optimi-
zation in robotics. In this tutorial, we demonstrate that many 

canonical multi-robot problems can be cast within a distribut-
ed optimization framework, such as multi-robot simultaneous 
localization and mapping (SLAM), multi-robot target track-
ing, and multi-robot task assignment problems. We identify 
three broad categories of distributed optimization algorithms: 
distributed first-order (DFO) methods, distributed sequential 
convex programming, and the alternating direction method of 
multipliers (ADMM). We describe the basic algorithmic struc-
ture of each category and provide representative algorithms 
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within each category. We then work through a simulation 
case study of multiple drones collaboratively tracking a 
ground vehicle. We compare solutions to this problem using a 
number of different distributed optimization algorithms. In 
addition, we implement a distributed optimization algorithm 
in hardware on a network of Raspberry Pis communicating 
with XBee modules to illustrate robustness to the challenges 
of real-world communication networks.

INTRODUCTION
Distributed optimization is the problem of minimizing a joint 
objective function subject to constraints using an algorithm 
implemented on a network of communicating computation 
nodes. In this tutorial, we specifically consider the computa-
tion nodes as robots and the network as a multi-robot mesh net-
work. While distributed optimization has 
been a long-standing topic of research in 
the optimization community (e.g., [1] and 
[2]), its usage in multi-robot systems is 
limited to only a handful of examples. 
However, we contend that many problems 
in multi-robot coordination and collabora-
tion can be formulated and solved within 
the framework of distributed optimiza-
tion, yielding a powerful new tool for 
multi-robot systems. We show in this tuto-
rial that cooperative estimation [3], dis-
tributed SLAM, multiagent learning [4], 
and collaborative motion planning [5] are 
all amenable to approaches based on dis-
tributed optimization.

This tutorial constitutes the first part 
of a two-part series on distributed opti-
mization methods for multi-robot systems. In the first part 
(the tutorial), we focus on introducing the concepts of dis-
tributed optimization in application to a broad class of multi-
robot problems. The second part (the survey) will provide 
a survey of existing distributed optimization methods and 
highlight open research problems in distributed optimization 
for multi-robot systems. This series is directed toward robot-
ics researchers and practitioners interested in learning about 
distributed optimization techniques and their potential to 
yield novel solutions to problems in multi-robot coordination.

We consider problems that are separable, meaning that the 
joint objective function can be expressed as a sum over each 
robot’s local objective functions and that the joint constraints 
can be expressed as the intersection over the robots’ local con-
straints. Each robot requires knowledge only of its own local 
objective and constraints and communicates only with one-hop 
neighbors in a mesh network. The algorithms we discuss are 
homogeneous, in that each robot executes the same algorithmic 
steps. There is no specialized leader robot and no hierarchy or 
differentiated role assignments, and no robot has knowledge of 
the joint objective or constraints. In general, these algorithms 
are iterative, with each robot sharing its intermediate decision 
variables and/or problem gradients with its one-hop neighbors 

at each iteration. As the iterations proceed, the decision vari-
ables of all the robots converge to a common solution of the 
optimization problem. In convex problems, each robot obtains 
a globally optimal solution to the joint problem. In nonconvex 
problems, the robots typically reach consensus on a locally 
optimal solution. (This is the behavior we often observe in 
practice, although analytical convergence and consensus guar-
antees for the nonconvex case remain an open area of research.) 

We describe three broad classes of optimization algo-
rithms: DFO methods (in which the update procedure for 
the iterates requires each robot to compute a gradient of 
its local objective function), distributed sequential convex 
methods (in which the update procedure for the iterates 
requires the robots to compute higher-order derivatives, 
such as Hessians, in addition to gradients), and ADMM 

methods (in which each robot optimizes 
a full subproblem at each iteration). We 
give key examples from each class and 
discuss their implementation details. 
We also implement these algorithms in 
an example scenario in which multiple 
aerial robots collaborate to estimate the 
trajectory of a moving target. Finally, 
we demonstrate a hardware implemen-
tation of an ADMM algorithm on a net-
work of Raspberry Pis communicating 
with XBee radios.

In some cases, it may not be obvious 
that a multi-robot problem is of the appro-
priate form for a distributed optimization 
algorithm. One may have to manipulate 
the problem formulation to express it as a 
separable optimization. We demonstrate 

in this tutorial that many core multi-robot problems, namely, 
multi-robot SLAM, multi-robot target tracking, multi-robot 
task assignment, collaborative trajectory planning, and multi-
robot learning, can be cast in this form. Optimization-based 
approaches often provide new flexibility, new insights, and 
new performance guarantees in solving multi-robot prob-
lems. For example, multi-robot target tracking problems are 
typically solved via filtering or smoothing approaches, lead-
ing to challenges in managing the cross correlation of local 
measurements [6]. Formulating multi-robot target tracking 
problems as optimization problems avoids these drawbacks.

CENTRALIZED VERSUS DISTRIBUTED  
OPTIMIZATION
In principle, multi-robot problems can be solved through 
centralized optimization. This could be done by passing all 
information to a leader robot or a base station to perform the 
computation centrally. However, such centralized techniques 
are not scalable to large groups of robots, require large 
amounts of communication to aggregate the data at one 
 location, and introduce a single point of vulnerability (the 
leader or base station) to faults and attacks. Instead, distrib-
uted optimization algorithms enable each robot to obtain an 
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optimal solution of the joint problem locally through com-
munications with one-hop neighbors, without a leader or sin-
gle point of failure.

Distributed optimization algorithms also have an inherent 
data privacy property. The robots co-optimize a joint objective 
without sharing their local “problem data” with one another. 
Specifically, while robots communicate the value of their local 
decision variables and/or gradients, they do not expose the func-
tional form of their objective and constraint functions or directly 
communicate raw sensor data with one another. This may facili-
tate cooperation across competing manufacturers or competing 
service providers without exposing propri-
etary data or violating data privacy laws.

Despite their many advantages, distrib-
uted optimization algorithms do come with 
some drawbacks compared to centralized 
methods. Since each robot progressively 
obtains more information via commu-
nication with its neighbors, we observe 
that distributed optimization algorithms 
require a greater number of iterations for 
convergence than their centralized coun-
terparts, and they often require a longer 
computation time to converge compared to 
centralized methods, particularly in small- 
scale problems. However, there seems to be 
little research comparing the empirical or 
theoretical performance of distributed versus centralized opti-
mization algorithms, which presents an interesting direction for 
future research. Some distributed algorithms can also be sensitive 
to hyperparameter tuning, can have a strong reliance on synchro-
nous algorithmic updates, and can be intolerant of dynamically 
changing networks. In this tutorial, we highlight which algo-
rithm classes suffer from these challenges and discuss practical 
ways to accommodate these requirements in robotics problems.

CONTRIBUTIONS
This tutorial article has four primary objectives:
1) describe three main classes of distributed optimization 

algorithms
2) highlight the practical implications of typical assumptions 

made by distributed optimization algorithms and provide 
potential strategies for addressing the associated challenges

3) demonstrate the formulation of many canonical multi-
robot problems as distributed optimization problems

4) provide a case study comparing multiple different distribut-
ed optimization algorithms in a multidrone target tracking 
scenario, both in simulation and on networking hardware.

ORGANIZATION
We present notation and mathematical preliminaries in the 
“Notation and Preliminaries” section and formulate the 
general separable distributed optimization problem in the 
“Problem Formulation” section. The “Classes of Distributed 
Optimization Algorithms” section describes the three main 
categories of distributed optimization algorithms and pro-

vides representative algorithms for each category. In the 
“Multi-robot Problems Posed as Distributed Optimizations” 
section, we demonstrate that many multi-robot problems 
can be cast within the framework of distributed optimiza-
tion. In the “Notes on Implementation, Practical Perfor-
mance, and Limitations” section, we offer implementation 
tips and practical performance observations and discuss lim-
itations of these methods. The “Distributed Multidrone Vehi-
cle Tracking: A Case Study” section gives a demonstration of 
distributed optimization algorithms applied to a multidrone 
vehicle tracking problem in simulation and hardware, and we 

give concluding remarks in the “Conclu-
sion” section.

NOTATION AND PRELIMINARIES
In this section, we introduce the notation 
used in this article and provide the defini-
tions of mathematical concepts relevant to 
the discussion of the distribution optimiza-
tion algorithms. We denote the gradient of 
a function :f RRn "  as fd  and its Hes-
sian as .f2d  We denote the vector contain-
ing all ones as ,1n  where n represents the 
number of elements in the vector. We next 
discuss some relevant notions of the con-
nectivity of a graph.

DEFINITION 1: CONNECTIVITY OF AN  
UNDIRECTED GRAPH
An undirected graph G  is connected if a path exists between 
every pair of vertices (i, j), where V, .i j !  Note that such a 
path might traverse other vertices in .G

DEFINITION 2: CONNECTIVITY OF A DIRECTED GRAPH
A directed graph G  is strongly connected if a directed path 
exists between every pair of vertices (i, j), where V, .i j !  In 
addition, a directed graph G  is weakly connected if the 
underlying undirected graph is connected. The underlying 
undirected graph Gu  of a directed graph G  refers to a graph 
with the same set of vertices as G  and a set of edges obtained 
by considering each edge in G  a bidirectional edge. Conse-
quently, every strongly connected directed graph is weakly 
connected; however, the converse is not true.

DEFINITION 3: STOCHASTIC MATRIX
A nonnegative matrix W Rn n! #  is referred to as a row-sto-
chastic matrix if

 .W1 1n n=  (1)

In other words, the sum of all elements in each row of the matrix 
equals one. We refer to W as a column-stochastic matrix if

 .W1 1n n= <<  (2)

Likewise, for a doubly stochastic matrix W,

 , .W W1 1 1 1andn n n n= = <<  (3)
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In distributed optimization in multi-robot systems, robots 
perform communication and computation steps to mini-
mize some joint objective function. We focus on problems in 
which the robots’ exchange of information must respect the 
topology of an underlying distributed communication graph, 
which could possibly change over time. This communication 
graph, denoted as ( ) (tG = V ( ), ( )),t tE  consists of vertices 
V ( ) { , , }t N1 f=  and edges V V( ) ( ) ( )t t tE #3  over which 
pairwise communication can occur. For undirected graphs, we 
denote the set of neighbors of robot i as ( ).tNi  For directed 
graphs, we refer to the set of robots that can send informa-
tion to robot i as the set of in neighbors of robot i, denoted 
by ( ).tNi

+  Likewise, for directed graphs, we refer to the set 
of robots that can receive information from robot i as the out 
neighbors of robot i, denoted by ( ).tNi

-

PROBLEM FORMULATION
We consider a general separable distributed optimization 
problem of the form

 V
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where x Rn!  denotes the joint optimization variable, 
:f RRi

n "  is the local objective function for robot i, 
:g RRi

n "  is the equality constraint function of robot i, and 
:h R Ri

n "  denotes its inequality constraint function. Each 
robot Vi !  has access to its local objective constraint functions 
but has no knowledge of the local objective and constraint func-
tions of the other robots. Such problems arise in many robotics 
applications where the local objective functions depend on data 
collected locally by each robot, often in the form of measure-
ments taken by sensors attached to the robots. The robots seek 
to collectively solve this joint optimization problem without a 
leader or central coordinator. We note that not all robots need to 
have a local constraint function. In these cases, the correspond-
ing constraint functions are omitted in (4).

We consider distributed algorithms in which each robot 
maintains a local copy of the optimization variable, with xi  
denoting robot i’s local vector of optimization variables. Dis-
tributed optimization algorithms solve an equivalent reformu-
lation of the optimization problem (4), given by

 
V
V

 

( )

( , )
( )
( ) .

min f x

x x i j
g x i
h x i

0
0

subject to E
V V{ ,x i

i
i

i

i j

i i

i i

i

6

6

6

!

!

# !

=

=

6 !
!

}
/

 

(5)

We call ( , )x x i j Ei j 6 !=  the consensus constraints. 
Under the assumption that the communication graph is con-
nected for undirected graphs and weakly connected for direct-
ed graphs, the optimal cost in (5) is equivalent to that in (4), and 
the minimizing arguments xi

)  in (5) are equal to the minimizing 
argument x)  of (4) for all robots , , .i n1 f=  To simplify nota-
tion, we introduce the set { ( ) , ( ) },x g x h x0 0Xi i i i i i; #= =  

representing the feasible set given the constraint functions gi  
and .hi  Consequently, we can express the problem in (5) suc-
cinctly as follows:
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CLASSES OF DISTRIBUTED OPTIMIZATION ALGORITHMS
In this section, we categorize distributed optimization algo-
rithms into three broad classes—DFO methods, distributed 
sequential convex programming, and ADMM methods—
based on shared mechanisms for achieving convergence (and 
not necessarily based on their applicability to multi-robot 
problems). We provide a brief overview of each category by 
considering a representative distributed algorithm within 
each category. In the subsequent discussion, we consider the 
separable optimization problem in (6).

Before describing the specific algorithms that solve dis-
tributed optimization problems, we first consider the general 
framework that all these approaches share. Each algorithm 
progresses over discrete iterations , ,k 0 1 f=  until conver-
gence. In general, each iteration consists of a communication 
step and a computation step. Besides assuming that each robot 
has the sole capability of evaluating its local objective function 
,fi  we distinguish between the “internal” variables P( )

i
k  that 

the robot computes at each iteration k and the “communicated” 
variables Q( )

i
k  that the robot communicates to its neighbors. 

Each algorithm also involves parameters ,R( )
i
k  which generally 

require coordination among all the robots but can typically be 
assigned before deployment of the system.

In distributed optimization, all the robots seek to collectively 
minimize the joint objective function in (6) while achieving con-
sensus on a common set of minimizing optimization variables. 
Each of the three classes we describe treats the consensus con-
straints in (6) differently. In DFO methods, from the perspec-
tive of a single robot, the update iterations represent a tradeoff 
between the optimality of a robot’s individual solution based on 
its local objective function versus reaching agreement with its 
neighbors, either on the decision variable directly or on the gra-
dient of the global objective. Asymptotically, the robots’ deci-
sion variables or gradients converge to a consensus, leading to 
global optimality for convex problems. In distributed sequential 
convex methods, individual robots use communication to build 
approximate global Hessians and gradients to execute approxi-
mate second-order update steps, asymptotically leading each 
agent to obtain a global minimum in the convex case. Final-
ly, for the ADMM, these consensus constraints are enforced 
explicitly through an augmented Lagrangian constrained opti-
mization approach. The key insight underlying this approach is 
that minimizing the local objective functions subject to these 
additional agreement constraints is equivalent to minimizing 
the joint objective function over a collective decision variable.

DFO METHODS
Gradient descent methods have been widely applied to 
solve broad classes of optimization problems, particularly 
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 unconstrained problems. To simplify the discussion of these 
methods, we consider the unconstrained variant of (6), where 
we retain only the consensus constraints and disregard the 
constraint functions ( )g xi i  and ( ).h xi i  We note that exten-
sions of gradient descent to constrained optimization typical-
ly involve a projection of the iterates to the feasible set, a 
method known as projected gradient descent. In the second 
part of our series [7], we discuss extensions of gradient 
descent methods to constrained optimization in greater 
detail. In general, gradient descent methods require only the 
computation of the gradient (i.e., the first derivative of the 
objective and constraint functions); hence, these methods are 
also referred to as first-order methods. When applied to the 
unconstrained joint optimization problem, the updates to the 
optimization variable take the form

 ( )x x f x( ) ( ) ( ) ( )k k k k1 da= -+  (7)

where ( )ka  denotes a diminishing step-size and ( )f x( )kd  
denotes the gradient of the objective function, given by

 ( ) ( ).f x f x
Vi

id d=
!

/  (8)

From (8), computation of ( )f xd  requires knowledge of the 
objective function of all the robots, which is unavailable to 
any individual robot, and thus requires aggregation of this 
information at a central node.

DFO algorithms circumvent this underlying challenge by 
enabling each robot to utilize only its local gradients while 
communicating with its neighbors to reach consensus on a 
common solution. In many DFO methods, a robot aggregates 
the information of its neighbors by taking the weighted combi-
nation of the local variables or gradients as specified by a sto-
chastic weighting matrix W. The stochastic matrix W must be 
compatible with the underlying communication network (i.e., 
wij  is nonzero only if robot j can send information to robot i).

We begin with a basic distributed gradient descent method, 
described by the update procedure

 x w x f x( ) ( ) ( ) ( )

{ }
i
k

ij
j i

j
k k

i i
k1

Ni

da= -
,!

+ ^ h/  (9)

where each robot mixes its local estimates with those of its 
neighbors by taking a weighted combination of these local 
estimates before taking a step in the direction of its local gra-
dient. More generally, a subgradient ( )f x( )

i i
k

2  (where fi2  
denotes the subgradient of )fi  can be utilized in place of the 
gradient of the local objective function, yielding the canonical 
distributed subgradient method [8]. This paradigm, consisting 
of taking a weighted combination of local estimates prior to a 
descent step, is referred to as the combine-then-adapt (CTA) 
paradigm. In contrast, in adapt-then-combine (ATC) methods, 
each robot updates its local optimization variable using its 
gradient prior to combining its local variable with that of its 
neighbors, with the update procedure given by

 x w x f x( ) ( ) ( ) ( )

{ }
i
k

ij
j i

j
k k

i i
k1

Ni

da= -
,!

+ ^ ^ hh/  (10)

where x R( )
j
k n!  denotes the local variable of neighboring 

robot j and each robot updates its local variable x( )
i
k 1+  using 

the local gradient before communicating its local variable 
with its neighbors and aggregating their respective updates. 
Consequently, we can further categorize DFO methods into 
two broad subclasses—ATC methods and CTA methods—
based on the relative order of the communication and compu-
tation procedures.

In general, the algorithms given by (9) and (10) do not con-
verge to the optimal solution of the joint optimization problem. 
To see this, consider the case where ,x xi = *  V,i6 !  where 
x*  denotes the optimal solution of the joint optimization prob-
lem. In the ATC approach, we can express the update proce-
dure as the difference between two terms: w x( )

{ }j i ij j
k

NiR ,!  and 
.f x( ) ( )

{ }j i
k

i i
k

Ni daR ,! ^ h  Given that W is row stochastic, the first 
term in ATC and CTA approaches simplifies to .x*  However, 
in ATC approaches, the second term represents a weighted 
combination of the local gradients of each robot, which is not 
necessarily zero. In fact, we have only ( )f x 0Vi idR =*!  in the 
general case. Likewise, in CTA methods, the second term rep-
resents the local gradient of each agent, which is not necessar-
ily zero. As a result, the iterate x( )

i
k 1+  moves away from the 

optimal solution .x*

If ( )ka  did not asymptotically converge to zero, then 
the iterates would converge only to a neighborhood of the 
globally optimal value [observe that substituting the opti-
mal value into (10) or (9) yields a nonzero innovation] [9]. 
If the step-size satisfies the conditions ( )kk 0 3aR =3

=  and 
( ) ,kk 0 31aR3=  then convergence of the iterates to an opti-

mal solution is guaranteed [10], [11]. An example of a step-
size rule satisfying these conditions is given by / .k( ) ( )k 0a a=  
Although both conditions are sufficient for convergence, only 
the nonsummable condition is necessary [12]. In practice, an 
optimal diminishing step-size is given by / ,k( ) ( )k 0a a=  
which is not square summable [13], [12].

In extensions of these basic approaches, we replace the gra-
dient f x( )

i i
k

d ^ h with a new variable y( )
i
k  that uses consensus 

to aggregate gradient information from the other robots and 
track the average gradient of the joint objective function. Gra-
dient tracking methods, for example, DIGing [14], employ an 
estimate of the average gradient computed through dynamic 
average consensus with

 .y w y f x f x( ) ( ) ( ) ( )

{ }
i
k

ij
j i

j
k

i i
k

i i
k1 1

Ni

d d= + -
,!

+ +^ ^h h6 @/  (11)

The iterate x( )
i
k  of each agent is guaranteed to converge to 

the optimal solution x*  under a constant step-size provided 
the communication network is connected and certain other 
 conditions on the network topology and the objective func-
tions hold [14]. Moreover, the iterate y( )

i
k  converges to the 

average gradient of the individual objective functions [15] 
given convergence of x( )

i
k  to the limit point .x*  At initializa-

tion of the algorithm, all the robots select a common step-size. 
Further, robot i initializes its local variables with x R( )

i
n0

!  
and ( ).y f x( ) ( )

i i i
0 0
2=  Algorithm 1 summarizes the update 
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 procedures in the  distributed gradient tracking method DIG-
ing [14]. We note that ATC methods are compatible with unco-
ordinated step-sizes; i.e., each robot does not have to use the 
same step-size. Unlike ATC methods, CTA methods require 
a common step-size among the robots for convergence to an 
optimal solution.

DISTRIBUTED SEQUENTIAL CONVEX PROGRAMMING
Sequential convex programming entails solving an optimiza-
tion problem by computing a sequence of iterates represent-
ing the solution of a series of approximations of the original 
problem. Newton’s method is a prime example of a sequential 
convex programming method. In Newton’s method, and more 
generally, quasi-Newton methods, we take a quadratic 
approximation of the objective function at an operating point 

,x( )k  resulting in

 
( ) ( ) ( ) ( )

( ) ( ) ( )

f x f x f x x x

x x H x x x
2
1

( ) ( ) ( )

( ) ( ) ( )

k k k

k k k

d= + -

+ - -

<

<

u

 (12)

where (·)H  denotes the Hessian of the objective function, 
,f2d  or its approximation. Subsequently, we compute a solu-

tion to the quadratic program, given by

 ( )( )x x H x f x( ) ( ) ( ) ( )k k k k1 1d= -+ - u  (13)

which requires centralized evaluation of the gradient and 
Hessian of the objective function. Distributed sequential pro-
gramming (DSQP) enables each robot to compute a local 
estimate of the gradient and Hessian of the objective function 
and thus allows for the local execution of the update proce-
dures. We consider the NEXT algorithm [16] to illustrate this 
class of distributed optimization algorithms. We assume that 
each robot uses a quadratic approximation of the optimiza-
tion problem as its convex surrogate model (·) .U  In NEXT, 
each robot maintains an estimate of the average gradient of 
the objective function as well as an estimate of the gradient 
of the objective function excluding its local component [e.g., 

( )f xj i j iR !  for robot i, which we denote by ].( )
i
k
ru  At a current 

iterate ,x( )
i
k  robot i creates a quadratic approximation of the 

optimization problem, given by

 
( ) ( )

( ) ( ) ( )

f x x x

x x H x x x
2
1
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( ) ( ) ( )

x
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i i
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i i
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i i
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!
u u

u u

u
^ h

 
(14)

which takes into account the robot’s local Hessian Hi  or its 
estimate (e.g., computed using a quasi-Newton update 
scheme [17], [18], [19]) and can be solved locally. Each robot 
computes a weighted combination of its current iterate and 
the solution of (14), given by the procedure

 z x x x( ) ( ) ( ) ( ) ( )
i
k

i
k k

i
k

i
k

a= + -u^ h (15)

where ( , )0 1( )k !a  denotes a diminishing step-size. Subse-
quently, robot i computes its next iterate by taking a weighted 
combination of its local estimate z( )

i
k  with that of its neigh-

bors via the procedure

 x w z( ) ( )

{ }
i
k

ij
j i

j
k1

Ni

=
,!

+ /  (16)

for consensus on a common solution of the original optimiza-
tion problem, where the weight w ,i j  must be compatible with 
the underlying communication network. In addition, robot i 
updates its estimates of the average gradient of the objective 
function, denoted by ,yi  using dynamic average consensus in 
the same form as (11). Updating ( )

i
k
ru  takes a similar form. In 

the limit that the iterates approach a common value ,x)  yi  
approaches the average gradient of the joint objective func-
tion at ,x)  and so does .f x( ) ( )

i
k

i i
k

dr +u ^ h  Thus, NEXT reasons 
that an appropriate update for iru  takes the following form:

 ( ).N y f x( ) ( ) ( )
i
k

i
k

i i
k1 1 1

$ dr = -
+ + +u  (17)

Each agent initializes its local variables with ,x R( )
i

n0
!

( ),y f x( ) ( )
i i i
0 0
d=  and ( )Ny f x( ) ( ) ( )

i
k

i i i
1 0 0

dr = -
+u  prior to execut-

ing the above update procedures. We note that NEXT is guar-
anteed to converge to a stationary point of the  optimization 
problem [16]. Algorithm 2 summarizes the update proce-
dures in NEXT [16].

Other algorithms that use distributed sequential convex 
programming include methods that perform a distributed 
Newton’s method [20] and distributed quasi-Newton meth-
ods [21]. Furthermore, algorithms that use consensus on local 
Hessians exist [22], often at the expense of greater communi-
cation overhead.

ADMM
The ADMM belongs to the class of optimization algorithms 
referred to as the method of multipliers (or augmented 
Lagrangian methods), which compute a primal–dual solution 
pair of a given optimization problem. The method of multi-
pliers proceeds in an alternating fashion: the primal iterates 
are updated as minimizers of the augmented Lagrangian, and 
subsequently, the dual iterates are updated via dual (gradient) 
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while stopping criterion is not satisfied
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ascent on the augmented Lagrangian. The procedure contin-
ues iteratively until convergence or termination. The aug-
mented Lagrangian of the problem in (6) (with only the 
consensus constraints) is given by

 , q f x q x x x x
2

xL ,a i
i

N

i i j i j i j
ji

N

2
2

11 Ni

t
+ - + -= <

!==

^ ^ ^`h h h j///  
 (18)

where q ,i j  represents a dual variable for the consensus con-
straints between robots i and j, , ( , ) ,q q i j E,i j 6 !=

<<6 @  and 
, , , .x x xx N1 2 f= < < < <6 @  The parameter 02t  represents a pen-

alty term on violations of the consensus constraints. General-
ly, the method of multipliers computes the minimizer of the 
augmented Lagrangian with respect to the joint set of optimi-
zation variables, which hinders distributed computation. In 
contrast, in the ADMM, the minimization procedure is per-
formed block component-wise, enabling parallel distributed 
computation of the minimization subproblem in the consen-
sus problem. However, many ADMM algorithms still require 
some centralized computation, rendering them not fully dis-
tributed in the multi-robot mesh network sense that we con-
sider in this article.

We focus here on ADMM algorithms that are distributed 
over robots in a mesh network, with each robot executing the 
same set of distributed steps. We specifically consider the con-
sensus ADMM (C-ADMM) [23] a representative algorithm 
within this category. The C-ADMM introduces auxiliary 
optimization variables into the consensus constraints in (6) to 
enable fully distributed update procedures. The primal update 
procedure of robot i takes the form

( )argminx f x x y x x x
2
1( ) ( ) ( ) ( )
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x
i i i i

k
i i

k
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k
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X Ni i i
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+ ^ h) 3/
 

(19)

which requires only information locally available to robot i, 
including information received from its neighbors (i.e., 

, ).x j Nj
k

i6 !  As a result, this procedure can be executed 
locally by each agent in parallel. After communicating with its 
neighbors, each robot updates its local dual variable using 
the procedure

 y y x x( ) ( ) ( ) ( )
i
k

i
k

i
k

j
k

j

1 1 1

Ni

t= + -
!

+ + +^ h/  (20)

where yi  denotes the composite dual variable of robot i, cor-
responding to the consensus constraints between robot i and 
its neighbors, which is initialized to zero. Algorithm 3 sum-
marizes the update procedures in the C-ADMM [23].

SYNOPSIS
We summarize the notable features of each category of distrib-
uted algorithms in Table 1, which should be considered when 

ATTRIBUTE
DFO  
(e.g., [14])

DSCP  
(e.g., [16])

ADMM  
(e.g., [23])

Dynamic communication 
networks

ü ü û

Lossy communication ü ü û

Unidirectional 
 communication networks

ü û û

Bidirectional 
 communication networks

ü ü ü

Constrained problems û û ü

Robustness to step-size/
penalty parameter

û û ü

The information displayed is based on the representative algorithm 
(indicated by the citation) considered in each algorithm class. DSCP: 
distributed sequential convex programming.

TABLE 1. Suitable distributed optimization algorithms 
for different complicating attributes common in  
multi-robot problems.
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selecting a distributed algorithm for a multi-robot problem. In 
general, the update procedures in DFO algorithms require low-
er-complexity computational operations, which makes them 
suitable for problems where each robot has  limited access to 
computational resources [9], [14], [24]. Further, DFO algo-
rithms accommodate dynamic unidirectional and bidirectional 
communication networks. However, DFO algorithms are gen-
erally not amenable to constrained problems, limiting their 
applications in some multi-robot problems. On the other hand, 
while DSQP algorithms are suitable for problems with dynam-
ic bidirectional communication networks, these algorithms do 
not generally extend to unidirectional networks [20], [21]. In 
addition, while some DSQP algorithms [16], [25] are suitable 
for constrained optimization, this is not the case for all meth-
ods of this class. In contrast, although distributed algorithms 
based on the ADMM do not address dynamic unidirectional 
communication networks, ADMM-based algorithms apply to 
constrained optimization [23], [26]. Moreover, ADMM-based 
algorithms show better robustness to the selection of algorithm 
parameters, such as the step-size or penalty parameter. Howev-
er, ADMM-based methods incur a greater computational over-
head, as the optimization subproblems arising in the update 
procedures do not necessarily have closed-form solutions.

MULTI-ROBOT PROBLEMS POSED AS  
DISTRIBUTED OPTIMIZATIONS
Many robotics problems have a distributed structure, although 
this structure might not be immediately apparent. In many 
cases, applying distributed optimization methods requires 
reformulating the original problem into a separable form that 
allows for distributed computation of the problem variables 
locally by each robot. In this section, we consider five general 
problem categories that can be solved using distributed optimi-
zation tools: multi-robot SLAM, multi-robot target tracking, 
multi-robot task assignment, collaborative planning, and multi-

robot learning. We note that an optimization-based approach to 
solving some of these problems might not be immediately 
obvious. However, we show that many of these problems can 
be quite easily formulated as distributed optimization problems 
through the introduction of auxiliary optimization variables in 
addition to an appropriate set of consensus constraints.

MULTI-ROBOT SLAM
In multi-robot SLAM problems, a group of robots seek to 
estimate their position and orientation (pose) within a consis-
tent representation of their environment (Figure 1). In a full 
landmark-based SLAM approach, we consider optimizing 
over both M map features , ,m mM1 f  as well as N robot 
poses , ,x xN1 f  over a duration of T 1+  time steps:
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(21)

The z terms denote measurements ( , )z zt {  and measure-
ment functions ( , ):z zr u  the expected relative poses z ,i tr  are 
functions of two adjacent poses of robot i derived from robot 
odometry measurements, and the expected relative pose zi

ku  
is a function of the pose of robot i and the position of map 
feature k. We have concatenated the problem variables in 
(21), with , , , , , , , ,x x x x x x xx, , ,i i i i T N0 1 1 2f f= =< < < < < < < <6 6@ @  and 

, , , .m m m mM1 2 f= < < < <6 @  The error terms in the objective func-
tion are weighted by the information matrices ,i tX  and ,i tK  
associated with the measurements collected by robot i.

Although the first set of terms in the objective function of 
the optimization problem (21) is separable among the robots, 
the second set of terms is not. Consequently, the optimiza-
tion problem must be reformulated. Nonseparability of the 
objective function arises from the coupling between the map 
features and the robot poses. To achieve separability of the 
objective function, we can introduce local copies of the vari-
ables corresponding to each feature, with an associated set of 
consensus (equality) constraints to ensure that the resulting 
problem remains equivalent to the original problem (21). The 
resulting problem takes the form
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where robot i maintains ,mit  its local copy of the map m. We note 
that xi  is the trajectory of robot i and is estimated only by robot 
i. The problem (22) is separable among the robots, which 
enforce consensus among their representations of the map; in 
other words, the objective function can be expressed in the form

 ( , , , , ) ( , )f m m m f x mx N i
i

N

i i1 2
1

f =
=

t t t t/  (23)
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FIGURE 1. A factor graph representation of a multi-robot SLAM 
problem, where two robots, robot i (blue circles) and robot j 
(green circles), seek to jointly estimate a set of map features 
{ , , }m m1 2 g  (orange triangles) in addition to their own pose 
trajectory { , , }x x t, ,i t j t 6  from the set of odometry measurements 
{ , }z z, ,i t j tt t  and observations of each map feature { ,  } .k z z i

k
j
k{ {

Authorized licensed use limited to: Stanford University. Downloaded on September 13,2024 at 19:00:50 UTC from IEEE Xplore.  Restrictions apply. 



129SEPTEMBER 2024     IEEE ROBOTICS & AUTOMATION MAGAZINE

where
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Note that the consensus constraints involve only a subset 
of the local variables of each robot. Distributed optimization 
algorithms are amenable to problems of this form without any 
significant modifications. In methods requiring a weighting 
matrix, considering robot i, only variables involved in the 
consensus constraints are combined (mixed) with those of 
its neighbors. Likewise, variants of the ADMM, such as the 
separable optimization variable ADMM [26], can be applied 
to this problem. We can interpret the bundle adjustment 
problem similarly. In this case, the map features represent 
the scene geometry, and the robot poses include the optical 
characteristics of the respective cameras. However, a chal-
lenge in applying this approach in unstructured environ-
ments is ensuring that multiple robots agree on the labels of 
the map landmarks.

An alternative approach is pose graph optimization 
(PGO), which avoids explicitly estimating the map by repre-
senting the robots’ trajectories as a graph in which the edges 
represent the estimated transformation among poses. A pose 
i consists of a position (which we represent by the vector )ix  
and an orientation (which we represent by the rotation matrix 

).Ri  In this perspective, the task of determining robot tra-
jectories consists of two stages performed sequentially. In 
the “front end,” the robots process raw sensor measurements 
to estimate relative poses consisting of a relative rotation 
( )R R Rij i j

1. -u  and relative translation ( ).ij j i.x x x-u  The 
second stage is the “back end,” in which robots find opti-
mal robot poses given those relative pose measurements. 
Under the assumption that the robots can perform the front-
end optimization locally [finding ( , )Rij ijxu u  for each edge (i, j) 
in their trajectories], PGO addresses the back-end stage of 
SLAM. The objective function of PGO, in which the robots 
determine the set of poses (consisting of a rotation Ri  and 
translation ix  for each pose i) that best explains the relative 
pose estimates ( , ),Rij ijxu u  is separable and, therefore, amenable 
to distributed optimization techniques:

.min R R R
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R
2 2{( , )} ( , )R
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i j
j i ij F
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j i i ij

2
2
2

Ei i i
n

1

~
x x x- + - -

!x =

u u/

While PGO specifically addresses solving the back 
end of SLAM, some existing distributed techniques that 
do not rely on distributed optimization have also been pro-
posed for the front end, e.g., [27]. We refer to [28], [29], 
[30], and [31] for additional details on SLAM and multi-
robot SLAM.

Distributed optimization algorithms can be readily applied 
to the graph-based SLAM problem in (22). Moreover, we note 
that a number of related robotics problems, including rotation 

averaging/synchronization and shape registration/alignment, 
can be similarly reformulated into a separable form and subse-
quently solved using distributed optimization algorithms [32], 
[33], [34], [35], [36], [37].

MULTI-ROBOT TARGET TRACKING
In the multi-robot target tracking problem, a group of robots 
collect measurements of an agent of interest (referred to as a 
target) and seek to collectively estimate the trajectory of the 
target. Multi-robot target tracking problems arise in many 
robotics applications ranging from environmental monitoring 
and surveillance to autonomous robotics applications, such as 
autonomous driving, where the estimated trajectory of the 
target can be leveraged for scene prediction to enable safe 
operation. Figure 2 illustrates the multi-robot target tracking 
problem where a group of four quadrotors make noisy obser-
vations of a flagged ground vehicle (the target). Each colored 
cone represents the region where each quadrotor can observe 
the vehicle, given the limited measurement range of the sen-
sors onboard the quadrotor.

Multi-robot target tracking problems can be posed as max-
imum a posteriori (MAP) optimization problems where the 
robots seek to compute an estimate that maximizes the pos-
terior distribution of the target’s trajectory given the set of all 
observations of the target made by the robots. When a model 
of the dynamics of target is available, denoted by : ,g R Rn n"  
the resulting optimization problem takes the form

 ( ) ( )x g x y h xminimize ,
x

t t
t
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i t i t
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where x Rt
n!  denotes the pose of the target at time t and 

y R,i t
m!  denotes robot i’s observation of the target at time t 

over a duration of T 1+  time steps. We represent the trajecto-
ry of the target with , , , .x x x xT0 1 f= < < < <6 @  While the first 
term in the objective function corresponds to the error 
between the estimated state of the target at a subsequent time 

FIGURE 2. A multi-robot target tracking scenario with four 
quadrotors (the robots) making noisy observations of a flagged 
ground vehicle (the target). The colored cones represent 
the  regions where each quadrotor can observe the vehicle, 
given the limited measurement range of the sensors onboard 
each quadrotor.
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step and its expected state based on a model of its dynamics, 
the second term corresponds to the error between the obser-
vations collected by each robot and the expected measure-
ment computed from the estimated state of the target, where 
the function :h RRi

n m"  denotes the measurement model of 
robot i. Further, the information matrices Rt

n n!X #  and 
R,i t

m m!K #  for the dynamics and measurement models, 
respectively, weight the contribution of each term in the 
objective function appropriately, reflecting prior confidence 
in the dynamics and measurement models. The MAP optimi-
zation problem in (25) is not separable and, hence, not ame-
nable to distributed optimization in its current form, due to 
coupling in the objective function arising from x. Nonethe-
less, we can arrive at a separable optimization problem 
through a fairly straightforward reformulation [3]. We can 
assign a local copy of x to each robot, with xit  denoting robot 
i’s local copy of x. The reformulated problem becomes
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where , , , .x x x xN1 2 f= < < < <t t t t6 @  Following this reformulation, 
distributed optimization algorithms can be applied to com-
pute an estimate of the trajectory of the target from (26).

MULTI-ROBOT TASK ASSIGNMENT
In the multi-robot task assignment problem, we seek an opti-
mal assignment of N robots to M tasks such that the total cost 
incurred in completing the specified tasks is minimized. 
However, we note that many task assignment problems con-
sist of an equal number of tasks and robots. The standard task 
assignment problem has been studied extensively and is typi-
cally solved using the Hungarian method [38]. However, opti-
mization-based methods have emerged as a competitive 

approach due to their amenability to task assignment prob-
lems with a diverse set of additional constraints, encoding 
individual preferences or other relevant problem information, 
making them a general-purpose approach.

The task assignment problem can be represented as a 
weighted bipartite graph: a graph whose vertices can be divide 
into two sets where no two nodes within a given set share an 
edge. Further, each edge in the graph has an associated weight. 
In task assignment problems, the edge weight c ,i j  represents 
the cost of assigning robot i to task j. Figure 3 depicts a task 
assignment problem represented by a weighted bipartite graph, 
with three robots and three tasks. Each robot knows its task 
preferences only and does not know the task preferences of 
other robots. Equivalently, the task assignment problem can be 
formulated as an integer optimization problem. Many optimi-
zation-based methods solve a relaxation of the integer optimi-
zation problem. Generally, in problems with linear objective 
functions and affine constraints, these optimization-based 
methods are guaranteed to yield an optimal task assignment. 
The associated relaxed optimization problem takes the form
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where x Ri
M!  denotes the optimization variable of robot i, 

representing its task assignment, and , , , .x x x xN1 2 f= 6 @  
Although the objective function of (27) is separable, the opti-
mization problem is not separable, due to coupling of the opti-
mization variables arising in the first constraint. We can 
obtain a separable problem, amenable to distributed optimiza-
tion, by assigning a local copy of x to each robot, resulting in 
the problem
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where x Ri
M N! #t  denotes robot i’s local copy of x and 

, , , .x x x xN0 1 f=t t t t6 @  Although the reformulation in (28) is 
simple, it does not scale efficiently with the number of robots 
and tasks. A more efficient reformulation can be obtained by 
considering the dual formulation of the task assignment prob-
lem. For brevity, we omit a discussion of this approach in this 
article and refer readers to [39], [40], and [41], where this 
reformulation scheme is discussed in detail.

COLLABORATIVE PLANNING, CONTROL,  
AND MANIPULATION
Generally, in collaborative planning problems, we seek to 
compute state and control input trajectories that enable a 

(b)

Task j

(a)

Robot it iii
ci,j

FIGURE 3. A multi-robot task assignment problem represented as 
a bipartite graph, with (a) three (Fetch) robots and (b) three tasks. 
An edge with weight c ,i j  between robot i and task j signifies the 
cost incurred by robot i if it performs task j. In many problems, 
each robot’s task preferences (edge weights) are neither known by 
other robots nor accessible to these robots.
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group of robots to reach a desired state configuration from a 
specified initial state while minimizing a trajectory cost and 
without colliding with other agents. The related multi-robot 
control problem involves computing a sequence of control 
inputs that enable a group of robots to track a desired refer-
ence trajectory or achieve some specified task, such as 
manipulating an object collaboratively. Figure 4 presents a 
collaborative manipulation problem where three quadrotors 
move an object collaboratively. The dashed line represents 
the reference trajectory for manipulating the load.

Collaborative multi-robot planning, control, and manipula-
tion problems have been well studied, with a broad variety of 
methods devised for these problems. Among these methods, 
receding horizon control, or model predictive control (MPC), 
approaches have received notable attention due to their flexi-
bility in encoding complex problem constraints and objectives. 
In MPC approaches, these multi-robot problems are formu-
lated as optimization problems over a finite time duration at 
each time step. The resulting optimization problem is solved 
to obtain a sequence of control inputs over the specified time 
duration; however, only the initial control input is applied by 
each robot at the current time step. At the next time step, a 
new optimization problem is formulated, from which a new 
sequence of control inputs is computed to obtain a new control 
input for that time step. This process is repeated until comple-
tion of the task. At time t, the associated MPC optimization 
problem has the form
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where x Ri
ni!  denotes robot i’s state trajectory, u Ri

mi!  
denotes its control input trajectory, and , , , ,x x x xN1 2 f= < < < <6 @  
with , , , .u u u uN1 2 f= < < < <6 @  The objective function of robot 

: ,, fi R RRi
n m "#r r  is often quadratic, given by

 ( , ) ( ) ( ) ( ) ( )f x u x x Q x x u u R u ui i i i i i i i i i i= - - + - -<<u u u u  (30)

where xiu  and uiu  denote the reference state and control input 
trajectory, respectively; Q Ri

n ni i! #  and R Ri
m mi i! #  denote 

the associated weight matrices for the terms in the objective 
function; ;n ni

N
i1R= =r  and .mm i

N
i1R= =r  The dynamics func-

tion of the robots is encoded in : .g R R Rn nm "#r r r  Further, 
other equality constraints can be encoded in g. Inequality 
constraints, such as collision avoidance constraints and other 
state or control input feasibility constraints, are encoded in 

: .h R R Rn m l"#r r  In addition, the first state variable of each 
agent is constrained to be equal to its initial state, denoted by 
.xir  In each instance of the MPC optimization problem, the 

initial state xir  of robot i is specified as its current state at that 
time step. Note that the MPC optimization problem in (29) is 
not generally separable, depending on the equality and 
inequality constraints. However, a separable form of the 

problem can always be obtained by introducing local copies 
of the optimization variables that are coupled in (29). The 
functions g and h can also encode complementarity con-
straints for manipulation and locomotion problems that 
involve making and breaking rigid body contact [42]. In the 
extreme case, where the optimization variables are coupled in 
the objective function and equality and inequality constraints 
in (29), a suitable reformulation takes the form
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where the function iz  outputs the first state variable corre-
sponding to robot i, given the input ,xit  which denotes robot i’s 
local copy of x. Similarly, uit  denotes robot i’s local copy of u, 
with , , ,x x x xN1 2 f= < < < <t t t t6 @  and , , , .u u u uN1 2 f= < < < <t t t t6 @  Distrib-
uted optimization algorithms [5], [43], [44] can be employed 
to solve the resulting MPC optimization problem in (31).

MULTI-ROBOT LEARNING
Multi-robot learning entails the application of deep learning 
methods to approximate functions from data to solve multi-
robot tasks, such as object detection, visual place recognition, 
monocular depth estimation, 3D mapping, and multi-robot 
reinforcement learning. Consider a general multi-robot super-
vised learning problem where we aim to minimize a loss 
function over labeled data collected by all the robots. We can 
write this as

( , ( ; ))min l y f x
( , )x y Di

N

i i
1 ij ij i

i
!

i
=

//

where (·, ·)l  is the loss function, ( , )x yij ij  is data point j col-
lected by robot i with feature vector xij  and label ,yij  Di  is 
the set of data collected by robot i, i  are the neural network 
weights, and ( ; )f x i  is the neural network parameterized 
function we desire to learn. By creating local copies of the 

FIGURE 4. A multi-robot manipulation problem with three 
quadrotors collaboratively manipulating a load rigidly attached 
to each. The dashed line represents the reference trajectory for 
manipulating the load.
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neural network weights ii  and adding consensus constraints 
,i ji i=  we can put the problem in the form of (6), so it is 

amenable to distributed optimization. We stress that this 
problem encompasses a large majority of problems in super-
vised learning. See [45] for an ADMM-based distributed 
optimization approach to solving this problem.

Beyond supervised learning, many multi-robot learning 
problems are formulated within the framework of reinforce-
ment learning. In these problems, the robots learn a control 
policy by interacting with their environments by making 
sequential decisions. The underlying control policy, which 
drives these sequential decisions, is iteratively updated to opti-
mize the performance of all the agents on a specified objec-
tive using the information gathered by each robot during its 
interaction with its environment. Figure 5 describes the rein-
forcement learning paradigm, where a group of robots learn 
from experience. Each robot takes an action and receives an 
observation (and a reward), which provides information on 
the performance of its current control policy in achieving its 
specified objective.

Reinforcement learning approaches can be broadly cat-
egorized into value-based methods and policy-based meth-
ods. Value-based methods seek to compute an estimate of the 
optimal action value function—the Q function—which rep-
resents the expected discounted reward when starting from 
a given state and taking a given action. An optimal policy 
can be extracted from the estimated Q function by select-
ing the action that maximizes the value of the Q function at 
a specified state. In deep value-based methods, deep neural 
networks are utilized in approximating the Q function. In 
contrast, policy-based methods seek to find an optimal policy 
by directly searching over the space of policies. In deep pol-
icy-based methods, the control policy is parameterized using 
deep neural networks. In general, the agents seek to maximize 

the expected infinite-horizon discounted cumulative reward, 
which is posed as the optimization problem

 ( , )R s a s smaximize E , , ,
t

t
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i t i t i i
0 1

0;c =
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i
r

=
i r= G/ /  (32)

where ri  denotes the control policy parameterized by ,i  
R!c  denotes the discount factor [ ( , )],0 1!c  s ,i t  denotes 

the state of robot i at time t, a ,i t  denotes its action at time t, sir  
denotes its initial state, A:R RSi i i "#  denotes the reward 
function of robot i, and N denotes the number of robots. The 
optimization problem in (32) is not separable in its current 
form. However, due to the linearity of the expectation opera-
tor, the optimization problem in (32) can be equivalently 
expressed as
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which is separable among the N robots. Hence, the resulting 
problem can be readily solved using distributed optimization 
algorithms for reinforcement learning problems, such as dis-
tributed Q learning and distributed actor–critic methods [46], 
[47], [48].

NOTES ON IMPLEMENTATION, PRACTICAL 
PERFORMANCE, AND LIMITATIONS
Here, we highlight some relevant issues that arise in the 
application of distributed optimization algorithms in robotics 
problems. In Table 1, we highlight a few characteristics of the 
algorithms in each class of distributed optimization problems. 
We note that the properties of each algorithm class displayed 
in Table 1 are based on the representative algorithm consid-
ered in the algorithm class. We emphasize that subsequent 
research efforts have been devoted to the derivation of algo-
rithms that address the practical issues faced by many of the 
existing algorithms. In this section, we describe alternative 
distributed algorithms that address these issues, often at the 
expense of convergence speed.

SELECTION OF A STOCHASTIC MATRIX
DFO algorithms and distributed sequential convex program-
ming algorithms require the specification of a stochastic 
matrix, which must be compatible with the underlying com-
munication network. In general, generating compatible row-
stochastic and column-stochastic matrices for directed 
communication networks does not pose a significant chal-
lenge. To obtain a row-stochastic matrix, each robot assigns 
a weight to all its in neighbors such that the sum of all its 
weights equals one. Similarly, to obtain a column-stochastic 
matrix, each robot assigns a weight to all its out neighbors 
such that the sum of all its weights equals one. In contrast, 
generating doubly stochastic matrices for directed commu-
nication networks is nontrivial if each robot does not know 
the global network topology. Consequently, in general, 
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FIGURE 5. In multi-robot reinforcement learning problems, a group 
of robots compute a control policy from experience by making 
sequential decisions while interacting with the environment. Each 
robot takes an action and receives an observation (and a reward), 
which provides information on its performance in accomplishing a 
specified task.
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 algorithms that require doubly stochastic matrices are unsuit-
able for problems with directed communication networks.

A number of DFO algorithms allow for the specification 
of row-stochastic or column-stochastic matrices, making this 
class of algorithms appropriate for problems with directed 
communication networks, unlike distributed sequential con-
vex programming algorithms, which generally require the 
specification of a doubly stochastic weighting matrix. Fur-
thermore, a number of distributed sequential convex program-
ming algorithms require symmetry of the doubly stochastic 
weighting matrix [20], [49], [50], [51], posing an even greater 
challenge in problems with directed networks.

The specific choice of a doubly stochastic weighing matrix 
may vary depending on the assumptions made on what glob-
al knowledge is available to the robots in the network. The 
problem of choosing an optimal weight matrix is discussed 
thoroughly in [52], in which the authors show that achieving 
the fastest possible consensus can be posed as a semidefinite 
program, which a computer with global knowledge of the net-
work can solve efficiently. However, we cannot always assume 
that global knowledge of the network is available, especially in 
the case of a time-varying topology. In most cases, Metropolis 
weights facilitate fast mixing without requiring global knowl-
edge, with the assumption that the communication network 
is undirected with bidirectional communication links. Each 
robot can generate its own weight vector after a single commu-
nication round with its neighbors. In fact, Metropolis weights 
perform only slightly suboptimally compared to centralized 
optimization-based methods [53]:
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Distributed algorithms based on the ADMM do not require 
the specification of a stochastic weighting matrix. However, the 
C-ADMM [23] and other distributed variants assume that the 
communication network among all robots is bidirectional, which 
makes these algorithms unsuitable for problems with directed 
communication networks. A number of distributed ADMM 
algorithms for problems with directed communication networks 
have been developed [54], [55], [56]. Owing to the absence of 
bidirectional communication links among the robots, these algo-
rithms utilize a dynamic average consensus scheme to update 
the slack variables at each iteration, which merges information 
from a robot and its neighbors using a stochastic weighting 
matrix. However, some of these distributed algorithms require 
the specification of a doubly stochastic weighting matrix [56], 
which introduces notable challenges in problems with directed 
communication networks, while others allow for the specifica-
tion of a column-stochastic weighting matrix [55].

INITIALIZATION
In general, in convex problems, distributed optimization 
algorithms allow for an arbitrary initialization of the initial 

solution of each robot. However, these algorithms often place 
stringent requirements on the initialization of the algorithms’ 
parameters. DFO methods require initialization of the step-
size and often place conditions on the value of the step-size 
to guarantee convergence. Some distributed gradient tracking 
algorithms [14], [57] assume all robots use a common step-
size, requiring coordination among all robots. Selecting a 
common step-size might involve the execution of a consensus 
procedure by all robots, with additional computation and 
communication overhead. In algorithms that utilize a fixed 
step-size, this procedure needs to be executed only once, at 
the beginning of the optimization algorithm. The ADMM 
and its distributed variants require the selection of a common 
penalty parameter .t  Consequently, all robots must coordi-
nate among themselves in selecting a value for ,t  introducing 
some challenges, particularly in problems where the conver-
gence rate depends strongly on the value of .t  Initialization 
of these algorithm-specific parameters has a significant 
impact on the performance of each algorithm.

In general, the performance of each distributed algorithm 
that we consider is sensitive to the choice of parameters, espe-
cially when local objective functions are poorly conditioned. 
For instance, in DFO methods, choosing a  too large leads 
to divergence of the individual variables, while too small a 
value of a  causes slow convergence. Similarly, the C-ADMM 
(Algorithm 3) has a convergence rate that is highly sensitive 
to the choice of ,t  though convergence is guaranteed for all 

.02t  We study the sensitivity of the convergence rate to the 
parameter choice in each simulation in the “Distributed Mul-
tidrone Vehicle Tracking: A Case Study” section. However, 
the optimal parameter choice for a particular example is not 
prescriptive for the tuning of other implementations. The opti-
mal step-size for a particular algorithm depends on many fac-
tors, including the network size, the network connectivity, and 
the underlying problem. For instance, the size of the network 
affects the value of the step-size that achieves optimal con-
vergence as well as the maximum rate of convergence itself. 
Furthermore, while analytical results for optimal parameter 
selection are available for many of these algorithms, a practi-
cal parameter tuning procedure is useful if an implementation 
does not exactly adhere to the assumptions in the literature.

In the case that parameter tuning is essential to perfor-
mance, it can be reasonable to select suitable parameters for 
an implementation before deploying a system, either using 
analytical results or simulation. The most general (central-
ized) procedure for parameter tuning involves comparing the 
convergence performance of the system on a known problem 
for different parameter values. While a uniform sweep of 
the parameter space may be effective for small problems or 
parameter-insensitive methods, it is not computationally effi-
cient. Given the convergence rate of a distributed method at 
particular choices of parameter, bracketing methods provide 
parameter selections to more efficiently find the convergence 
rate-minimizing parameter. For instance, golden section 
search (GSS) provides a versatile approach for tuning a scalar 
parameter [58]. Finding the optimal step-size in one instance 
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of a problem often provides reasonable parameter choices for a 
problem of similar size, connectivity, and structure.

DYNAMIC OR LOSSY COMMUNICATION
In practical situations, the communication network among 
robots changes over time as the robots move, giving rise to a 
time-varying communication graph. Networked robots in the 
real world can also suffer from dropped message packets as 
well as failed hardware or software components. Lossy com-
munication can be a result of networks where there are many 
robots and communication signal interfere and in situations 
where robots have unstable communication links (e.g., wire-
less connections close to range limits). Generally, DFO opti-
mization algorithms are amenable to problems with dynamic 
communication networks and are guaranteed to converge to 
the optimal solution provided that the communication graph 
is B connected for undirected communication graphs or B 
strongly connected for directed communication graphs [14], 
which implies that the union of the communication graphs 
over B consecutive time steps is connected or strongly con-
nected, respectively. This property is also referred to as 
bounded connectivity. This assumption ensures the diffusion 
of information among all robots. Unlike DFO algorithms, 
many distributed sequential convex programming algorithms 
assume that the communication network remains static. Nev-
ertheless, a few DSQP algorithms are amenable to problems 
with dynamic communication networks [16], [59] and con-
verge to the optimal solution of the problem under the 
assumption that the sequence of communication graphs is B 
strongly connected. Some distributed ADMM algorithms are 
not amenable to problems with dynamic communication net-
works. This is an interesting avenue for future research.

Similarly, dropped messages or packets can be modeled as 
changes to edges in the communication graph where an edge 
temporarily becomes directed. In modern mesh networking 
protocols, dropped packets can be detected through packet 
acknowledgment, and the data can be resent or the robots can 
choose to ignore that communication link during the given 
iteration of distributed optimization. We explore the effect of 
dropping edges from the communication network in Figure 6. 

SYNCHRONIZATION
Synchronization, in the context of distributed optimization, is 
the assumption that robots compute their local updates and 
communicate at the same time, and it ensures that each robot 
has up-to-date communicated variables from its neighbors. 
Many distributed optimization algorithms require synchro-
nous execution for guaranteed convergence to an optimal 
solution [14], [16], [20], [23], [24], [26]. In practice, when  
networks have many agents or heterogeneous computation 
capability, it is unlikely that all robots will finish their local 
computation/communication at exactly the same time, and 
therefore, some practical synchronization scheme is required. 
Fortunately, one simple solution is to have each robot wait to 
receive updates from each of its neighbors before proceeding 
with its next iteration of distributed optimization. This is the 
decentralized version of a barrier algorithm [60] in parallel 
computing. When all robots require roughly the same 
amount of time to perform each iteration, this simple barrier 
approach has a negligible impact on the time to convergence 
of a distributed optimization algorithm. However, if some 
subset of the robots is much slower than the others, then this 
barrier approach can result in long idle times for some robots 
and a longer time to convergence.

Alternatively, DFO algorithms (DIGing, EXTRA, and so 
on) are generally fairly amenable to asynchronous execution, 
and some other methods are explicitly designed for asynchro-
nous execution [61].

DISTRIBUTED MULTIDRONE VEHICLE  
TRACKING: A CASE STUDY
We illustrate the implementation of distributed optimiza-
tion methods using a simulation of a multidrone vehicle 
target tracking problem as a case study. We emphasize that 
the same principles apply to a broad class of robotics prob-
lems that we have outlined in the “Multi-robot Problems 
Posed as Distributed Optimizations” section. In addition, 
we implement the C-ADMM distributed optimization algo-
rithm on a network of Raspberry Pis communicating with 
XBee modules to demonstrate a distributed optimization 
algorithm on hardware.

SIMULATION STUDY
In this simulation, we consider a distributed multidrone vehi-
cle target tracking problem in which robots connected by a 
communication graph, V( , ),G E=  each record range-limit-
ed linear measurements of a moving target and seek to col-
lectively estimate the target’s entire trajectory. We assume 
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FIGURE 6. The computation time to convergence as a function of 
the probability of dropped edges in a mesh network, averaged 
over 50 trials using a geometric random graph with N = 20. 
The stopping condition for each trial is a normalized mean 
square error of .10 6-  Each undirected edge is dropped with the 
given probability at every iteration. DIGing is the only method 
considered that can handle directional lost edges (the dashed 
line). The implementations use optimal hyperparameters, which 
vary according to the probability of dropped edges.
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that each drone can communicate locally with nearby drones 
over the undirected communication graph .G  The drones all 
share a linear model of the target’s dynamics as

 x A x wt t t t1 = ++  (35)

where x Rt
4!  represents the position and velocity of the 

target in some global frame at time t, At  is the dynamics 
matrix associated with a linear model of the target’s 
dynamics, and ~ ( , )w Q0Nt t  represents process noise 
(including the unknown control inputs to the target). 
Restricting our case study to a linear target model in this 
tutorial ensures that the underlying optimization problem is 
convex, leading to strong convergence guarantees and 
robust numerical properties for our algorithm. A more 
expressive nonlinear model can also be used, but this 
requires a more sophisticated distributed optimization algo-
rithm with more challenging numerical properties. At every 
time step when the target is sufficiently close to a drone i 
(which we denote by ),t Ti!  that robot collects an observa-
tion according to the linear measurement model

 y C x v, , ,i t i t t i t= +  (36)

where y R,i t
2!  is a positional measurement, C ,i t  is the mea-

surement matrix of drone i, and ~ ( , )v R0N, ,i t i t  is measure-
ment noise. We again assume a linear measurement model to 
keep this case study as simple as possible. A nonlinear model 
can also be used.

All the drones have the same model for the prior distribu-
tion of the initial state of the target ( , ),x PN 0 0r r  where x R0

4!r  
denotes the mean and P R0

4 4! #r  denotes the covariance. The 
global cost function is of the form
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while the local cost function for drone i is
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In our results, we consider only a batch solution to the 
problem (finding the full trajectory of the target given each 
robot’s full set of measurements). Methods for performing 
the estimate in real time through filtering and smoothing 
steps have been well studied, both in the centralized and dis-
tributed case [62]. An extended version of this multi-robot 
tracking problem is solved with distributed optimization in 
[3]. A rendering of a representative instance of this multi-
robot tracking problem is shown in Figure 2.

In Figures 7 and 8, several distributed optimization algo-
rithms are compared in an instance of the distributed multi-
drone vehicle tracking problem. For this problem instance, 
10 simulated drones seek to estimate the target’s trajectory 
over 16 time steps, resulting in a decision variable dimension 
of .n 64=  We compare four distributed optimization meth-
ods that we consider representative of the taxonomic classes 
outlined in the preceding sections: C-ADMM [23], EXTRA 
[24], DIGing [14], and NEXT-Q [16]. Figure 7 shows that the 
C-ADMM and EXTRA have similar fast convergence rates 
per iteration, while DIGing and NEXT-Q are four and 15 
times slower, respectively, to converge below a mean square 
error of .10 6-  The step-size hyperparameters for each method 
are computed by GSS (for NEXT-Q, which uses a two-param-
eter decreasing step-size, we fix one according to the values 
recommended in [16]).

We note that tuning is essential for achieving robust and 
efficient convergence with most distributed optimization 
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algorithms. Figure 8 shows the sensitivity of these methods 
to variation in step-size and highlights that three of the meth-
ods (all except the C-ADMM) diverge for 
large step-sizes. In the case of EXTRA 
in this example, the optimal step-size 
is close in value to step-sizes that lead 
to divergence, posing a practical chal-
lenge for parameter tuning. While the 
C-ADMM seems to be the most effec-
tive algorithm in this problem instance, 
we note that other algorithms have prop-
erties that are advantageous in other 
instances of this problem or other prob-
lems. Furthermore, the optimal step-size 
depends on the problem structure. For 
instance, in this problem, as the number 
of agents increases, the optimal step-size 
decreases for the C-ADMM and increas-
es for the other methods.

As discussed in the “Dynamic or 
Lossy Communication” section, the convergence of distrib-
uted optimization algorithms may degrade under dynamic 
or lossy communication. In Figure 6, we demonstrate this 
effect given a geometric random graph with .N 20=  For 
all four methods considered, a low probability of missing 
edges does not significantly degrade convergence com-
pared to a static network. In particular, DIGing and NEXT-
Q are robust to dropped edges, while EXTRA diverges for 
high rates of dropped edges, and the C-ADMM converges 
for carefully chosen values of t  but at orders-of-magni-
tude increased computation time. While the C-ADMM 
converges in fewer iterations than the other methods in 
the examples of Figures 7 and 8, the dynamic graph topol-
ogy in Figure 6 means that we cannot precompute matrix 
inverses, resulting in slower computation per iteration (the 
reported computation time is based on a MacBook Pro 
with an M1 Pro chip and 16 GB of unified memory). Of 

the methods considered, only DIGing handles directed 
dropped edges. While NEXT also addresses directed net-

work communication, it requires a dou-
bly stochastic matrix at each iteration. 
Fast distributed construction of dou-
bly stochastic matrices is still an open 
question [63].

HARDWARE IMPLEMENTATION
In this section, we discuss our imple-
mentation of the C-ADMM algorithm on 
hardware. Each robot is equipped with 
local computational resources and com-
munication hardware necessary for peer-
to-peer communication with neighboring 
robots. In the following discussion, we 
provide details of the hardware platform, 
the underlying communication network 
among robots, and the optimization 
problem considered in this section.

We consider the linear least-squares optimization problem

 ( ) ( )min G p z M G p z
p

i i
i

N

i i i
1
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/  (39)

with the optimization variables ,p R32!  ,G Ri
m 32i! #  Mi !  

,Rm mi i#  ,z Ri
mi!  and N 3=  robots, where mi  depends on the 

number of measurements available to robot i. In this experi-
ment, we have , ,m 3 2681 =  , ,m 5 4222 =  and , .m 3 5283 =  
We implement the C-ADMM to solve the problem, with a 
state size consisting of 32 floating-point variables.

The core communication infrastructure that we use consists 
of Digi XBee DigiMesh 2.4 radio-frequency mesh networking 
modules, which allow for peer-to-peer communication among 
robots. Local computation for each robot is performed using 
Raspberry Pi 4B single-board computers. The lower-level 
mesh network is managed by the DigiMesh software, and we 
interact with it through XBee Python Library.

We utilize the neighbor discovery application program-
ming interface provided by Digi International to enable each 
robot to identify neighboring robots. This approach results in 
a fully connected communication network, considering the 
XBee radios have an indoor range of up to 90 m and an out-
door range of up to 1,500 m. The XBee modules used in our 
experiments have a maximum payload size of 92 B. However, 
the local variable of each robot in our experiment consists of 
32 floating-point variables, which exceeds the maximum pay-
load size that can be transmitted by the XBee radios at each 
broadcast round, presenting a communication challenge. To 
overcome this challenge, we break up the local variables into a 
series of packets of size 92 B and perform multiple broadcast 
rounds. The resulting implementation requires approximately 
5.5 s per round of communication in the C-ADMM (i.e., for 
all the robots to exchange their decision variable information). 
In contrast, the Raspberry Pi computation for each iteration of 
the C-ADMM is approximately ,15 sn  so the communication 
time is approximately five orders of magnitude slower than 
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FIGURE 9. The convergence of the iterates computed by each 
robot, using the C-ADMM implemented on hardware, for the 
optimization problem with three robots in (39). The convergence 
errors of all the robots overlap in the figure.
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the computation time in our implementation. This slow com-
munication speed is due to the severe bandwidth limitations 
of the XBee radios. We expect that an optimized implementa-
tion over a state-of-the-art 5-Gb/s WiFi or 5G network would 
reduce this communication time to about .0 2 sn  per round.

As the C-ADMM is robust to wide range of penalty param-
eters (as in Figure 8), we set the penalty parameter in the 
C-ADMM to a value of 5 and do not perform a comprehensive 
search for the penalty parameter. In our experiments, this value 
of the penalty parameter provides suitable performance. In Fig-
ure 9, we provide the convergence error between the iterates of 
each robot and the global solution, which is obtained by aggre-
gating the local data of all the robots and then computing the 
solution centrally. The convergence errors of all the robots’ iter-
ates overlap in the figure, with the error decreasing below 10 5-  
within 250 iterations, showing convergence of the local iterates 
of each robot to the optimal solution. Again, due the severe band-
width limitations of the XBee radios, these 250 iterations cor-
respond to approximately 23 min of wall clock time, of which 
approximately 99.97% was due to communication overhead. 
With a well-engineered 5-Gb/s Wi-Fi or 5G implementation, we 
expect this wall clock time for executing the 250 iterations of the 
C-ADMM in Figure 9 to take approximately 0.005 s.

This small-scale experiment reveals several of the impor-
tant considerations in implementing distributed optimization 
algorithms using physical communication hardware. First, 
while synchrony is crucial for certain methods, including the 
C-ADMM, we can satisfy this requirement even on relatively 
simple equipment by using a barrier strategy. Second, band-
width limitations highlight the importance of considering low-
dimensional representations of the state of the problem and/or 
quantization methods. For instance, communicating the opti-
mization variable requires fewer broadcast rounds than com-
municating the measurements in the example problem that we 
considered. Finally, tuning is an important consideration, and 
the C-ADMM provides a suitable solution due to its robustness 
to the choice of the t  parameter.

CONCLUSION
In this tutorial, we have demonstrated that a number of canoni-
cal problems in multi-robot systems can be formulated and 
solved through the framework of distributed optimization. We 
have identified three broad classes of distributed optimization 
algorithms: DFO methods, distributed sequential convex pro-
gramming methods, and the ADMM. Further, we have 
described the optimization techniques employed by the algo-
rithms within each category, providing a representative algo-
rithm for each category. In addition, we have demonstrated the 
application of distributed optimization in simulation on a dis-
tributed multidrone vehicle tracking problem and on hardware, 
showing the practical effectiveness of distributed optimization 
algorithms. However, important challenges remain in develop-
ing distributed algorithms for constrained nonconvex robotics 
problems and algorithms tailored to the limited computation 
and communication resources of robot platforms, which we 
discuss in greater detail in the second article in this series [7].
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