
1211070-9932/24©2024IEEE SEPTEMBER 2024 IEEE ROBOTICS & AUTOMATION MAGAZINE

Distributed optimization provides a framework for deriving
distributed algorithms for a variety of multi-robot problems.
This tutorial constitutes the first part of a two-part series on
distributed optimization applied to multi-robot problems,
which seeks to advance the application of distributed optimi-
zation in robotics. In this tutorial, we demonstrate that many

canonical multi-robot problems can be cast within a distribut-
ed optimization framework, such as multi-robot simultaneous
localization and mapping (SLAM), multi-robot target track-
ing, and multi-robot task assignment problems. We identify
three broad categories of distributed optimization algorithms:
distributed first-order (DFO) methods, distributed sequential
convex programming, and the alternating direction method of
multipliers (ADMM). We describe the basic algorithmic struc-
ture of each category and provide representative algorithms

Part 1—A Tutorial

Distributed
Optimization
Methods for

Multi-Robot Systems
By Ola Shorinwa , Trevor Halsted, Javier Yu , and Mac Schwager

Digital Object Identifier 10.1109/MRA.2024.3358718
Date of publication 13 February 2024; date of current version 11 September 2024.

©SHUTTERSTOCK.COM/FLASH VECTOR

T U T O R I A L

Authorized licensed use limited to: Stanford University. Downloaded on September 13,2024 at 19:00:50 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4344-5945
https://orcid.org/0000-0002-5552-8780
https://orcid.org/0000-0002-7871-3663
http://www.SHUTTERSTOCK.COM

IEEE ROBOTICS & AUTOMATION MAGAZINE SEPTEMBER 2024122

within each category. We then work through a simulation
case study of multiple drones collaboratively tracking a
ground vehicle. We compare solutions to this problem using a
number of different distributed optimization algorithms. In
addition, we implement a distributed optimization algorithm
in hardware on a network of Raspberry Pis communicating
with XBee modules to illustrate robustness to the challenges
of real-world communication networks.

INTRODUCTION
Distributed optimization is the problem of minimizing a joint
objective function subject to constraints using an algorithm
implemented on a network of communicating computation
nodes. In this tutorial, we specifically consider the computa-
tion nodes as robots and the network as a multi-robot mesh net-
work. While distributed optimization has
been a long-standing topic of research in
the optimization community (e.g., [1] and
[2]), its usage in multi-robot systems is
limited to only a handful of examples.
However, we contend that many problems
in multi-robot coordination and collabora-
tion can be formulated and solved within
the framework of distributed optimiza-
tion, yielding a powerful new tool for
multi-robot systems. We show in this tuto-
rial that cooperative estimation [3], dis-
tributed SLAM, multiagent learning [4],
and collaborative motion planning [5] are
all amenable to approaches based on dis-
tributed optimization.

This tutorial constitutes the first part
of a two-part series on distributed opti-
mization methods for multi-robot systems. In the first part
(the tutorial), we focus on introducing the concepts of dis-
tributed optimization in application to a broad class of multi-
robot problems. The second part (the survey) will provide
a survey of existing distributed optimization methods and
highlight open research problems in distributed optimization
for multi-robot systems. This series is directed toward robot-
ics researchers and practitioners interested in learning about
distributed optimization techniques and their potential to
yield novel solutions to problems in multi-robot coordination.

We consider problems that are separable, meaning that the
joint objective function can be expressed as a sum over each
robot’s local objective functions and that the joint constraints
can be expressed as the intersection over the robots’ local con-
straints. Each robot requires knowledge only of its own local
objective and constraints and communicates only with one-hop
neighbors in a mesh network. The algorithms we discuss are
homogeneous, in that each robot executes the same algorithmic
steps. There is no specialized leader robot and no hierarchy or
differentiated role assignments, and no robot has knowledge of
the joint objective or constraints. In general, these algorithms
are iterative, with each robot sharing its intermediate decision
variables and/or problem gradients with its one-hop neighbors

at each iteration. As the iterations proceed, the decision vari-
ables of all the robots converge to a common solution of the
optimization problem. In convex problems, each robot obtains
a globally optimal solution to the joint problem. In nonconvex
problems, the robots typically reach consensus on a locally
optimal solution. (This is the behavior we often observe in
practice, although analytical convergence and consensus guar-
antees for the nonconvex case remain an open area of research.)

We describe three broad classes of optimization algo-
rithms: DFO methods (in which the update procedure for
the iterates requires each robot to compute a gradient of
its local objective function), distributed sequential convex
methods (in which the update procedure for the iterates
requires the robots to compute higher-order derivatives,
such as Hessians, in addition to gradients), and ADMM

methods (in which each robot optimizes
a full subproblem at each iteration). We
give key examples from each class and
discuss their implementation details.
We also implement these algorithms in
an example scenario in which multiple
aerial robots collaborate to estimate the
trajectory of a moving target. Finally,
we demonstrate a hardware implemen-
tation of an ADMM algorithm on a net-
work of Raspberry Pis communicating
with XBee radios.

In some cases, it may not be obvious
that a multi-robot problem is of the appro-
priate form for a distributed optimization
algorithm. One may have to manipulate
the problem formulation to express it as a
separable optimization. We demonstrate

in this tutorial that many core multi-robot problems, namely,
multi-robot SLAM, multi-robot target tracking, multi-robot
task assignment, collaborative trajectory planning, and multi-
robot learning, can be cast in this form. Optimization-based
approaches often provide new flexibility, new insights, and
new performance guarantees in solving multi-robot prob-
lems. For example, multi-robot target tracking problems are
typically solved via filtering or smoothing approaches, lead-
ing to challenges in managing the cross correlation of local
measurements [6]. Formulating multi-robot target tracking
problems as optimization problems avoids these drawbacks.

CENTRALIZED VERSUS DISTRIBUTED
OPTIMIZATION
In principle, multi-robot problems can be solved through
centralized optimization. This could be done by passing all
information to a leader robot or a base station to perform the
computation centrally. However, such centralized techniques
are not scalable to large groups of robots, require large
amounts of communication to aggregate the data at one
 location, and introduce a single point of vulnerability (the
leader or base station) to faults and attacks. Instead, distrib-
uted optimization algorithms enable each robot to obtain an

“
MANY PROBLEMS
IN MULTI-ROBOT

COORDINATION AND
COLLABORATION

CAN BE FORMULATED
AND SOLVED WITHIN

THE FRAMEWORK
OF DISTRIBUTED
OPTIMIZATION.

Authorized licensed use limited to: Stanford University. Downloaded on September 13,2024 at 19:00:50 UTC from IEEE Xplore. Restrictions apply.

123SEPTEMBER 2024 IEEE ROBOTICS & AUTOMATION MAGAZINE

optimal solution of the joint problem locally through com-
munications with one-hop neighbors, without a leader or sin-
gle point of failure.

Distributed optimization algorithms also have an inherent
data privacy property. The robots co-optimize a joint objective
without sharing their local “problem data” with one another.
Specifically, while robots communicate the value of their local
decision variables and/or gradients, they do not expose the func-
tional form of their objective and constraint functions or directly
communicate raw sensor data with one another. This may facili-
tate cooperation across competing manufacturers or competing
service providers without exposing propri-
etary data or violating data privacy laws.

Despite their many advantages, distrib-
uted optimization algorithms do come with
some drawbacks compared to centralized
methods. Since each robot progressively
obtains more information via commu-
nication with its neighbors, we observe
that distributed optimization algorithms
require a greater number of iterations for
convergence than their centralized coun-
terparts, and they often require a longer
computation time to converge compared to
centralized methods, particularly in small-
scale problems. However, there seems to be
little research comparing the empirical or
theoretical performance of distributed versus centralized opti-
mization algorithms, which presents an interesting direction for
future research. Some distributed algorithms can also be sensitive
to hyperparameter tuning, can have a strong reliance on synchro-
nous algorithmic updates, and can be intolerant of dynamically
changing networks. In this tutorial, we highlight which algo-
rithm classes suffer from these challenges and discuss practical
ways to accommodate these requirements in robotics problems.

CONTRIBUTIONS
This tutorial article has four primary objectives:
1) describe three main classes of distributed optimization

algorithms
2) highlight the practical implications of typical assumptions

made by distributed optimization algorithms and provide
potential strategies for addressing the associated challenges

3) demonstrate the formulation of many canonical multi-
robot problems as distributed optimization problems

4) provide a case study comparing multiple different distribut-
ed optimization algorithms in a multidrone target tracking
scenario, both in simulation and on networking hardware.

ORGANIZATION
We present notation and mathematical preliminaries in the
“Notation and Preliminaries” section and formulate the
general separable distributed optimization problem in the
“Problem Formulation” section. The “Classes of Distributed
Optimization Algorithms” section describes the three main
categories of distributed optimization algorithms and pro-

vides representative algorithms for each category. In the
“Multi-robot Problems Posed as Distributed Optimizations”
section, we demonstrate that many multi-robot problems
can be cast within the framework of distributed optimiza-
tion. In the “Notes on Implementation, Practical Perfor-
mance, and Limitations” section, we offer implementation
tips and practical performance observations and discuss lim-
itations of these methods. The “Distributed Multidrone Vehi-
cle Tracking: A Case Study” section gives a demonstration of
distributed optimization algorithms applied to a multidrone
vehicle tracking problem in simulation and hardware, and we

give concluding remarks in the “Conclu-
sion” section.

NOTATION AND PRELIMINARIES
In this section, we introduce the notation
used in this article and provide the defini-
tions of mathematical concepts relevant to
the discussion of the distribution optimiza-
tion algorithms. We denote the gradient of
a function :f RRn " as fd and its Hes-
sian as .f2d We denote the vector contain-
ing all ones as ,1n where n represents the
number of elements in the vector. We next
discuss some relevant notions of the con-
nectivity of a graph.

DEFINITION 1: CONNECTIVITY OF AN
UNDIRECTED GRAPH
An undirected graph G is connected if a path exists between
every pair of vertices (i, j), where V, .i j ! Note that such a
path might traverse other vertices in .G

DEFINITION 2: CONNECTIVITY OF A DIRECTED GRAPH
A directed graph G is strongly connected if a directed path
exists between every pair of vertices (i, j), where V, .i j ! In
addition, a directed graph G is weakly connected if the
underlying undirected graph is connected. The underlying
undirected graph Gu of a directed graph G refers to a graph
with the same set of vertices as G and a set of edges obtained
by considering each edge in G a bidirectional edge. Conse-
quently, every strongly connected directed graph is weakly
connected; however, the converse is not true.

DEFINITION 3: STOCHASTIC MATRIX
A nonnegative matrix W Rn n! # is referred to as a row-sto-
chastic matrix if

 .W1 1n n= (1)

In other words, the sum of all elements in each row of the matrix
equals one. We refer to W as a column-stochastic matrix if

 .W1 1n n= << (2)

Likewise, for a doubly stochastic matrix W,

 , .W W1 1 1 1andn n n n= = << (3)

“
OPTIMIZATION-BASED
APPROACHES OFTEN

PROVIDE NEW FLEXIBILITY,
NEW INSIGHTS, AND
NEW PERFORMANCE

GUARANTEES IN SOLVING
MULTI-ROBOT PROBLEMS.

Authorized licensed use limited to: Stanford University. Downloaded on September 13,2024 at 19:00:50 UTC from IEEE Xplore. Restrictions apply.

IEEE ROBOTICS & AUTOMATION MAGAZINE SEPTEMBER 2024124

In distributed optimization in multi-robot systems, robots
perform communication and computation steps to mini-
mize some joint objective function. We focus on problems in
which the robots’ exchange of information must respect the
topology of an underlying distributed communication graph,
which could possibly change over time. This communication
graph, denoted as () (tG = V (), ()),t tE consists of vertices
V () { , , }t N1 f= and edges V V() () ()t t tE #3 over which
pairwise communication can occur. For undirected graphs, we
denote the set of neighbors of robot i as ().tNi For directed
graphs, we refer to the set of robots that can send informa-
tion to robot i as the set of in neighbors of robot i, denoted
by ().tNi

+ Likewise, for directed graphs, we refer to the set
of robots that can receive information from robot i as the out
neighbors of robot i, denoted by ().tNi

-

PROBLEM FORMULATION
We consider a general separable distributed optimization
problem of the form

 V
V

()

()
()

min f x

g x i
h x i

0
0

subject to
V

x
i

i

i

i

6

6

!

!

=
!

/

(4)

where x Rn! denotes the joint optimization variable,
:f RRi

n " is the local objective function for robot i,
:g RRi

n " is the equality constraint function of robot i, and
:h R Ri

n " denotes its inequality constraint function. Each
robot Vi ! has access to its local objective constraint functions
but has no knowledge of the local objective and constraint func-
tions of the other robots. Such problems arise in many robotics
applications where the local objective functions depend on data
collected locally by each robot, often in the form of measure-
ments taken by sensors attached to the robots. The robots seek
to collectively solve this joint optimization problem without a
leader or central coordinator. We note that not all robots need to
have a local constraint function. In these cases, the correspond-
ing constraint functions are omitted in (4).

We consider distributed algorithms in which each robot
maintains a local copy of the optimization variable, with xi
denoting robot i’s local vector of optimization variables. Dis-
tributed optimization algorithms solve an equivalent reformu-
lation of the optimization problem (4), given by

V
V

()

(,)
()
() .

min f x

x x i j
g x i
h x i

0
0

subject to E
V V{ ,x i

i
i

i

i j

i i

i i

i

6

6

6

!

!

!

=

=

6 !
!

}
/

(5)

We call (,)x x i j Ei j 6 != the consensus constraints.
Under the assumption that the communication graph is con-
nected for undirected graphs and weakly connected for direct-
ed graphs, the optimal cost in (5) is equivalent to that in (4), and
the minimizing arguments xi

) in (5) are equal to the minimizing
argument x) of (4) for all robots , , .i n1 f= To simplify nota-
tion, we introduce the set { () , () },x g x h x0 0Xi i i i i i; #= =

representing the feasible set given the constraint functions gi
and .hi Consequently, we can express the problem in (5) suc-
cinctly as follows:

()

(,) .

min f x

x x i jsubject to E
V V{ ,x i

i
i

i

i j

Xi i

6 !=

6!
!

! }
/

(6)

CLASSES OF DISTRIBUTED OPTIMIZATION ALGORITHMS
In this section, we categorize distributed optimization algo-
rithms into three broad classes—DFO methods, distributed
sequential convex programming, and ADMM methods—
based on shared mechanisms for achieving convergence (and
not necessarily based on their applicability to multi-robot
problems). We provide a brief overview of each category by
considering a representative distributed algorithm within
each category. In the subsequent discussion, we consider the
separable optimization problem in (6).

Before describing the specific algorithms that solve dis-
tributed optimization problems, we first consider the general
framework that all these approaches share. Each algorithm
progresses over discrete iterations , ,k 0 1 f= until conver-
gence. In general, each iteration consists of a communication
step and a computation step. Besides assuming that each robot
has the sole capability of evaluating its local objective function
,fi we distinguish between the “internal” variables P()

i
k that

the robot computes at each iteration k and the “communicated”
variables Q()

i
k that the robot communicates to its neighbors.

Each algorithm also involves parameters ,R()
i
k which generally

require coordination among all the robots but can typically be
assigned before deployment of the system.

In distributed optimization, all the robots seek to collectively
minimize the joint objective function in (6) while achieving con-
sensus on a common set of minimizing optimization variables.
Each of the three classes we describe treats the consensus con-
straints in (6) differently. In DFO methods, from the perspec-
tive of a single robot, the update iterations represent a tradeoff
between the optimality of a robot’s individual solution based on
its local objective function versus reaching agreement with its
neighbors, either on the decision variable directly or on the gra-
dient of the global objective. Asymptotically, the robots’ deci-
sion variables or gradients converge to a consensus, leading to
global optimality for convex problems. In distributed sequential
convex methods, individual robots use communication to build
approximate global Hessians and gradients to execute approxi-
mate second-order update steps, asymptotically leading each
agent to obtain a global minimum in the convex case. Final-
ly, for the ADMM, these consensus constraints are enforced
explicitly through an augmented Lagrangian constrained opti-
mization approach. The key insight underlying this approach is
that minimizing the local objective functions subject to these
additional agreement constraints is equivalent to minimizing
the joint objective function over a collective decision variable.

DFO METHODS
Gradient descent methods have been widely applied to
solve broad classes of optimization problems, particularly

Authorized licensed use limited to: Stanford University. Downloaded on September 13,2024 at 19:00:50 UTC from IEEE Xplore. Restrictions apply.

125SEPTEMBER 2024 IEEE ROBOTICS & AUTOMATION MAGAZINE

 unconstrained problems. To simplify the discussion of these
methods, we consider the unconstrained variant of (6), where
we retain only the consensus constraints and disregard the
constraint functions ()g xi i and ().h xi i We note that exten-
sions of gradient descent to constrained optimization typical-
ly involve a projection of the iterates to the feasible set, a
method known as projected gradient descent. In the second
part of our series [7], we discuss extensions of gradient
descent methods to constrained optimization in greater
detail. In general, gradient descent methods require only the
computation of the gradient (i.e., the first derivative of the
objective and constraint functions); hence, these methods are
also referred to as first-order methods. When applied to the
unconstrained joint optimization problem, the updates to the
optimization variable take the form

 ()x x f x() () () ()k k k k1 da= -+ (7)

where ()ka denotes a diminishing step-size and ()f x()kd
denotes the gradient of the objective function, given by

 () ().f x f x
Vi

id d=
!

/ (8)

From (8), computation of ()f xd requires knowledge of the
objective function of all the robots, which is unavailable to
any individual robot, and thus requires aggregation of this
information at a central node.

DFO algorithms circumvent this underlying challenge by
enabling each robot to utilize only its local gradients while
communicating with its neighbors to reach consensus on a
common solution. In many DFO methods, a robot aggregates
the information of its neighbors by taking the weighted combi-
nation of the local variables or gradients as specified by a sto-
chastic weighting matrix W. The stochastic matrix W must be
compatible with the underlying communication network (i.e.,
wij is nonzero only if robot j can send information to robot i).

We begin with a basic distributed gradient descent method,
described by the update procedure

 x w x f x() () () ()

{ }
i
k

ij
j i

j
k k

i i
k1

Ni

da= -
,!

+ ^ h/ (9)

where each robot mixes its local estimates with those of its
neighbors by taking a weighted combination of these local
estimates before taking a step in the direction of its local gra-
dient. More generally, a subgradient ()f x()

i i
k

2 (where fi2
denotes the subgradient of)fi can be utilized in place of the
gradient of the local objective function, yielding the canonical
distributed subgradient method [8]. This paradigm, consisting
of taking a weighted combination of local estimates prior to a
descent step, is referred to as the combine-then-adapt (CTA)
paradigm. In contrast, in adapt-then-combine (ATC) methods,
each robot updates its local optimization variable using its
gradient prior to combining its local variable with that of its
neighbors, with the update procedure given by

 x w x f x() () () ()

{ }
i
k

ij
j i

j
k k

i i
k1

Ni

da= -
,!

+ ^ ^ hh/ (10)

where x R()
j
k n! denotes the local variable of neighboring

robot j and each robot updates its local variable x()
i
k 1+ using

the local gradient before communicating its local variable
with its neighbors and aggregating their respective updates.
Consequently, we can further categorize DFO methods into
two broad subclasses—ATC methods and CTA methods—
based on the relative order of the communication and compu-
tation procedures.

In general, the algorithms given by (9) and (10) do not con-
verge to the optimal solution of the joint optimization problem.
To see this, consider the case where ,x xi = * V,i6 ! where
x* denotes the optimal solution of the joint optimization prob-
lem. In the ATC approach, we can express the update proce-
dure as the difference between two terms: w x()

{ }j i ij j
k

NiR ,! and
.f x() ()

{ }j i
k

i i
k

Ni daR ,! ^ h Given that W is row stochastic, the first
term in ATC and CTA approaches simplifies to .x* However,
in ATC approaches, the second term represents a weighted
combination of the local gradients of each robot, which is not
necessarily zero. In fact, we have only ()f x 0Vi idR =*! in the
general case. Likewise, in CTA methods, the second term rep-
resents the local gradient of each agent, which is not necessar-
ily zero. As a result, the iterate x()

i
k 1+ moves away from the

optimal solution .x*

If ()ka did not asymptotically converge to zero, then
the iterates would converge only to a neighborhood of the
globally optimal value [observe that substituting the opti-
mal value into (10) or (9) yields a nonzero innovation] [9].
If the step-size satisfies the conditions ()kk 0 3aR =3

= and
() ,kk 0 31aR3= then convergence of the iterates to an opti-

mal solution is guaranteed [10], [11]. An example of a step-
size rule satisfying these conditions is given by / .k() ()k 0a a=
Although both conditions are sufficient for convergence, only
the nonsummable condition is necessary [12]. In practice, an
optimal diminishing step-size is given by / ,k() ()k 0a a=
which is not square summable [13], [12].

In extensions of these basic approaches, we replace the gra-
dient f x()

i i
k

d ^ h with a new variable y()
i
k that uses consensus

to aggregate gradient information from the other robots and
track the average gradient of the joint objective function. Gra-
dient tracking methods, for example, DIGing [14], employ an
estimate of the average gradient computed through dynamic
average consensus with

 .y w y f x f x() () () ()

{ }
i
k

ij
j i

j
k

i i
k

i i
k1 1

Ni

d d= + -
,!

+ +^ ^h h6 @/ (11)

The iterate x()
i
k of each agent is guaranteed to converge to

the optimal solution x* under a constant step-size provided
the communication network is connected and certain other
 conditions on the network topology and the objective func-
tions hold [14]. Moreover, the iterate y()

i
k converges to the

average gradient of the individual objective functions [15]
given convergence of x()

i
k to the limit point .x* At initializa-

tion of the algorithm, all the robots select a common step-size.
Further, robot i initializes its local variables with x R()

i
n0

!
and ().y f x() ()

i i i
0 0
2= Algorithm 1 summarizes the update

Authorized licensed use limited to: Stanford University. Downloaded on September 13,2024 at 19:00:50 UTC from IEEE Xplore. Restrictions apply.

IEEE ROBOTICS & AUTOMATION MAGAZINE SEPTEMBER 2024126

 procedures in the distributed gradient tracking method DIG-
ing [14]. We note that ATC methods are compatible with unco-
ordinated step-sizes; i.e., each robot does not have to use the
same step-size. Unlike ATC methods, CTA methods require
a common step-size among the robots for convergence to an
optimal solution.

DISTRIBUTED SEQUENTIAL CONVEX PROGRAMMING
Sequential convex programming entails solving an optimiza-
tion problem by computing a sequence of iterates represent-
ing the solution of a series of approximations of the original
problem. Newton’s method is a prime example of a sequential
convex programming method. In Newton’s method, and more
generally, quasi-Newton methods, we take a quadratic
approximation of the objective function at an operating point

,x()k resulting in

() () () ()

() () ()

f x f x f x x x

x x H x x x
2
1

() () ()

() () ()

k k k

k k k

d= + -

+ - -

<

<

u

 (12)

where (·)H denotes the Hessian of the objective function,
,f2d or its approximation. Subsequently, we compute a solu-

tion to the quadratic program, given by

 ()()x x H x f x() () () ()k k k k1 1d= -+ - u (13)

which requires centralized evaluation of the gradient and
Hessian of the objective function. Distributed sequential pro-
gramming (DSQP) enables each robot to compute a local
estimate of the gradient and Hessian of the objective function
and thus allows for the local execution of the update proce-
dures. We consider the NEXT algorithm [16] to illustrate this
class of distributed optimization algorithms. We assume that
each robot uses a quadratic approximation of the optimiza-
tion problem as its convex surrogate model (·) .U In NEXT,
each robot maintains an estimate of the average gradient of
the objective function as well as an estimate of the gradient
of the objective function excluding its local component [e.g.,

()f xj i j iR ! for robot i, which we denote by].()
i
k
ru At a current

iterate ,x()
i
k robot i creates a quadratic approximation of the

optimization problem, given by

() ()

() () ()

f x x x

x x H x x x
2
1

minimize () () ()

() () ()

x
i i

k
i
k

i i
k

i i
k

i i
k

i i
k

Xi i

d r+ -

+ - -

<

<

!
u u

u u

u
^ h

(14)

which takes into account the robot’s local Hessian Hi or its
estimate (e.g., computed using a quasi-Newton update
scheme [17], [18], [19]) and can be solved locally. Each robot
computes a weighted combination of its current iterate and
the solution of (14), given by the procedure

 z x x x() () () () ()
i
k

i
k k

i
k

i
k

a= + -u^ h (15)

where (,)0 1()k !a denotes a diminishing step-size. Subse-
quently, robot i computes its next iterate by taking a weighted
combination of its local estimate z()

i
k with that of its neigh-

bors via the procedure

 x w z() ()

{ }
i
k

ij
j i

j
k1

Ni

=
,!

+ / (16)

for consensus on a common solution of the original optimiza-
tion problem, where the weight w ,i j must be compatible with
the underlying communication network. In addition, robot i
updates its estimates of the average gradient of the objective
function, denoted by ,yi using dynamic average consensus in
the same form as (11). Updating ()

i
k
ru takes a similar form. In

the limit that the iterates approach a common value ,x) yi
approaches the average gradient of the joint objective func-
tion at ,x) and so does .f x() ()

i
k

i i
k

dr +u ^ h Thus, NEXT reasons
that an appropriate update for iru takes the following form:

 ().N y f x() () ()
i
k

i
k

i i
k1 1 1

$ dr = -
+ + +u (17)

Each agent initializes its local variables with ,x R()
i

n0
!

(),y f x() ()
i i i
0 0
d= and ()Ny f x() () ()

i
k

i i i
1 0 0

dr = -
+u prior to execut-

ing the above update procedures. We note that NEXT is guar-
anteed to converge to a stationary point of the optimization
problem [16]. Algorithm 2 summarizes the update proce-
dures in NEXT [16].

Other algorithms that use distributed sequential convex
programming include methods that perform a distributed
Newton’s method [20] and distributed quasi-Newton meth-
ods [21]. Furthermore, algorithms that use consensus on local
Hessians exist [22], often at the expense of greater communi-
cation overhead.

ADMM
The ADMM belongs to the class of optimization algorithms
referred to as the method of multipliers (or augmented
Lagrangian methods), which compute a primal–dual solution
pair of a given optimization problem. The method of multi-
pliers proceeds in an alternating fashion: the primal iterates
are updated as minimizers of the augmented Lagrangian, and
subsequently, the dual iterates are updated via dual (gradient)

ALGORITHM 1: DIGing

Initialization: , , ()k x y f x0 R
() () ()
i

n
i i i

0 0 0
! d! =

Internal variables: P()
i
k
Q=

Communicated variables: ,x yQ() ()
i
k

i
k

i
k= ^ h

Parameters: , wR()
i
k

ia= ^ h
do in parallel Vi6 !

Communicate Q()
i
k to all j N i!

Receive Q()
j
k from all j N i!

() ()

x w x y

y w y f x f x

k k 1

() () ()

()

{ }

() () ()

{ }
i
k

ij
j i

j
k

i
k

i
k

ij
j i

j
k

i i
k

i i
k

1

1 1

N

N i

i

!

d d

a= -

= + -

+

,

,!

!

+

+ +

/

/

while stopping criterion is not satisfied

Authorized licensed use limited to: Stanford University. Downloaded on September 13,2024 at 19:00:50 UTC from IEEE Xplore. Restrictions apply.

127SEPTEMBER 2024 IEEE ROBOTICS & AUTOMATION MAGAZINE

ascent on the augmented Lagrangian. The procedure contin-
ues iteratively until convergence or termination. The aug-
mented Lagrangian of the problem in (6) (with only the
consensus constraints) is given by

 , q f x q x x x x
2

xL ,a i
i

N

i i j i j i j
ji

N

2
2

11 Ni

t
+ - + -= <

!==

^ ^ ^`h h h j///
 (18)

where q ,i j represents a dual variable for the consensus con-
straints between robots i and j, , (,) ,q q i j E,i j 6 !=

<<6 @ and
, , , .x x xx N1 2 f= < < < <6 @ The parameter 02t represents a pen-

alty term on violations of the consensus constraints. General-
ly, the method of multipliers computes the minimizer of the
augmented Lagrangian with respect to the joint set of optimi-
zation variables, which hinders distributed computation. In
contrast, in the ADMM, the minimization procedure is per-
formed block component-wise, enabling parallel distributed
computation of the minimization subproblem in the consen-
sus problem. However, many ADMM algorithms still require
some centralized computation, rendering them not fully dis-
tributed in the multi-robot mesh network sense that we con-
sider in this article.

We focus here on ADMM algorithms that are distributed
over robots in a mesh network, with each robot executing the
same set of distributed steps. We specifically consider the con-
sensus ADMM (C-ADMM) [23] a representative algorithm
within this category. The C-ADMM introduces auxiliary
optimization variables into the consensus constraints in (6) to
enable fully distributed update procedures. The primal update
procedure of robot i takes the form

()argminx f x x y x x x
2
1() () () ()

i
k

x
i i i i

k
i i

k
j
k

j

1

2

2

X Ni i i

t= + + - +<

! !

+ ^ h) 3/

(19)

which requires only information locally available to robot i,
including information received from its neighbors (i.e.,

,).x j Nj
k

i6 ! As a result, this procedure can be executed
locally by each agent in parallel. After communicating with its
neighbors, each robot updates its local dual variable using
the procedure

 y y x x() () () ()
i
k

i
k

i
k

j
k

j

1 1 1

Ni

t= + -
!

+ + +^ h/ (20)

where yi denotes the composite dual variable of robot i, cor-
responding to the consensus constraints between robot i and
its neighbors, which is initialized to zero. Algorithm 3 sum-
marizes the update procedures in the C-ADMM [23].

SYNOPSIS
We summarize the notable features of each category of distrib-
uted algorithms in Table 1, which should be considered when

ATTRIBUTE
DFO
(e.g., [14])

DSCP
(e.g., [16])

ADMM
(e.g., [23])

Dynamic communication
networks

ü ü û

Lossy communication ü ü û

Unidirectional
 communication networks

ü û û

Bidirectional
 communication networks

ü ü ü

Constrained problems û û ü

Robustness to step-size/
penalty parameter

û û ü

The information displayed is based on the representative algorithm
(indicated by the citation) considered in each algorithm class. DSCP:
distributed sequential convex programming.

TABLE 1. Suitable distributed optimization algorithms
for different complicating attributes common in
multi-robot problems.

ALGORITHM 2: NEXT

Initialization: , , (), ()k x y f x Ny f x0 R
() () () () () ()
i

n
i i i i i i i

0 0 0 0 0 0
! d d! r= = -u

Internal variables: , ,x xP () () ()
i i

k
i
k

i
k
r= u u^ h

Communicated variables: ,z yQ() () ()
i
k

i
k

i
k

= ^ h
Parameters: , , (),w U XR() ()

i
k k

ii $a= ^ h
do in parallel Vi6 !

; ,argminx U x x

z x x x

() () ()

() () () () ()

i
k

x
i
k

i
k

i
k

i
k k

i
k

i
k

Xi

r

a

=

= + -

!

u u

u^

^

h

h

Communicate Q()
i
k to all j N i!

Receive Q()
j
k from all j N i!

() ()

· ()

x w z

y w y

f x f x

N y f x

k k 1

() ()

()

{ }

()

() ()

() () ()

{ }
i
k

ij
j i

j
k

i
k

ij
j i

j
k

i i
k

i i
k

i
k

i
k

i i
k

1

1

1

1 1 1

N

Ni

i

!

d d

dr

=

=

+ -

= -

+

,

,!

!

+

+

+

+ + +u

6 @

/

/

while stopping criterion is not satisfied

ALGORITHM 3: C-ADMM

Initialization: , ,k x y0 0R
() ()
i

n
i

0 0
! ! =

Internal variables: yP() ()
i
k

i
k

=

Communicated variables: xQ() ()
i
k

i
k

=

Parameters: R()
i
k
t=

do in parallel Vi6 !

()argminx f x x y

x x x2
1

() ()

() ()

i
k

x
i i i i

k

i i
k

j
k

j

1

2

2

N

Xi i

i

g

t

= +

+ - +

<

!

!

+

` j

)

3/

Communicate Q()
i
k to all j N i!

Receive Q()
j
k from all j N i!

y y x x() () () ()
i
k

i
k

i
k

j
k

j

1 1 1

N i

t= + -
!

+ + +` j/

k k 1! +

while stopping criterion is not satisfied

Authorized licensed use limited to: Stanford University. Downloaded on September 13,2024 at 19:00:50 UTC from IEEE Xplore. Restrictions apply.

IEEE ROBOTICS & AUTOMATION MAGAZINE SEPTEMBER 2024128

selecting a distributed algorithm for a multi-robot problem. In
general, the update procedures in DFO algorithms require low-
er-complexity computational operations, which makes them
suitable for problems where each robot has limited access to
computational resources [9], [14], [24]. Further, DFO algo-
rithms accommodate dynamic unidirectional and bidirectional
communication networks. However, DFO algorithms are gen-
erally not amenable to constrained problems, limiting their
applications in some multi-robot problems. On the other hand,
while DSQP algorithms are suitable for problems with dynam-
ic bidirectional communication networks, these algorithms do
not generally extend to unidirectional networks [20], [21]. In
addition, while some DSQP algorithms [16], [25] are suitable
for constrained optimization, this is not the case for all meth-
ods of this class. In contrast, although distributed algorithms
based on the ADMM do not address dynamic unidirectional
communication networks, ADMM-based algorithms apply to
constrained optimization [23], [26]. Moreover, ADMM-based
algorithms show better robustness to the selection of algorithm
parameters, such as the step-size or penalty parameter. Howev-
er, ADMM-based methods incur a greater computational over-
head, as the optimization subproblems arising in the update
procedures do not necessarily have closed-form solutions.

MULTI-ROBOT PROBLEMS POSED AS
DISTRIBUTED OPTIMIZATIONS
Many robotics problems have a distributed structure, although
this structure might not be immediately apparent. In many
cases, applying distributed optimization methods requires
reformulating the original problem into a separable form that
allows for distributed computation of the problem variables
locally by each robot. In this section, we consider five general
problem categories that can be solved using distributed optimi-
zation tools: multi-robot SLAM, multi-robot target tracking,
multi-robot task assignment, collaborative planning, and multi-

robot learning. We note that an optimization-based approach to
solving some of these problems might not be immediately
obvious. However, we show that many of these problems can
be quite easily formulated as distributed optimization problems
through the introduction of auxiliary optimization variables in
addition to an appropriate set of consensus constraints.

MULTI-ROBOT SLAM
In multi-robot SLAM problems, a group of robots seek to
estimate their position and orientation (pose) within a consis-
tent representation of their environment (Figure 1). In a full
landmark-based SLAM approach, we consider optimizing
over both M map features , ,m mM1 f as well as N robot
poses , ,x xN1 f over a duration of T 1+ time steps:

(,)

(,) .

z x x z

z x m z

minimize , , , ,x,m i t i t i t i t
t

T

i

N

i
k

i k i
k

k

M

i

N

1 1
2

0

1

1

2

11

,

,

i t

i t

-

+ -

X

K

+ +

=

-

=

==

r t

u {

//

//

(21)

The z terms denote measurements (,)z zt { and measure-
ment functions (,):z zr u the expected relative poses z ,i tr are
functions of two adjacent poses of robot i derived from robot
odometry measurements, and the expected relative pose zi

ku
is a function of the pose of robot i and the position of map
feature k. We have concatenated the problem variables in
(21), with , , , , , , , ,x x x x x x xx, , ,i i i i T N0 1 1 2f f= =< < < < < < < <6 6@ @ and

, , , .m m m mM1 2 f= < < < <6 @ The error terms in the objective func-
tion are weighted by the information matrices ,i tX and ,i tK
associated with the measurements collected by robot i.

Although the first set of terms in the objective function of
the optimization problem (21) is separable among the robots,
the second set of terms is not. Consequently, the optimiza-
tion problem must be reformulated. Nonseparability of the
objective function arises from the coupling between the map
features and the robot poses. To achieve separability of the
objective function, we can introduce local copies of the vari-
ables corresponding to each feature, with an associated set of
consensus (equality) constraints to ensure that the resulting
problem remains equivalent to the original problem (21). The
resulting problem takes the form

(,)

(,)

(,)

z x x z

z x m z

m m i j

minimize

subject to E

, , , ,
, , , ,

,

m m m
i t i t i t i t

t

T

i

N

i
k

i i k i
k

k

M

i

N

i j

1 1
2

0

1

1

2

11

x ,

,

N
i t

i t

1 2

6 !

-

+ -

=

f
X

K

+ +

=

-

=

==

r t

u t {

t t

t t t
//

//

(22)

where robot i maintains ,mit its local copy of the map m. We note
that xi is the trajectory of robot i and is estimated only by robot
i. The problem (22) is separable among the robots, which
enforce consensus among their representations of the map; in
other words, the objective function can be expressed in the form

 (, , , ,) (,)f m m m f x mx N i
i

N

i i1 2
1

f =
=

t t t t/ (23)

xj,t

xi,t

m1

m4 m5

m2

m3

xj,t+1

xi,t+1

xj,t+2

xi,t+2

xj,t+3

xi,t+3

ẑj,t+1

z̆j
1

z̆i
1

z̆i
4

z̆i
5

z̆i
2

z̆i
3

z̆j
2

z̆j
3

ẑj,t+2 ẑj,t+3

ẑi,t+1 ẑi,t+2 ẑi,t+3

FIGURE 1. A factor graph representation of a multi-robot SLAM
problem, where two robots, robot i (blue circles) and robot j
(green circles), seek to jointly estimate a set of map features
{ , , }m m1 2 g (orange triangles) in addition to their own pose
trajectory { , , }x x t, ,i t j t 6 from the set of odometry measurements
{ , }z z, ,i t j tt t and observations of each map feature { , } .k z z i

k
j
k{ {

Authorized licensed use limited to: Stanford University. Downloaded on September 13,2024 at 19:00:50 UTC from IEEE Xplore. Restrictions apply.

129SEPTEMBER 2024 IEEE ROBOTICS & AUTOMATION MAGAZINE

where

(,) (,)

(,) .

f x m z x x z

z x m z

, , , ,

,

i i i i t i t i t i t
t

T

i
k

i i k i
k

k

M

1 1
2

0

1

2

1

,

,

i t

i t

= -

+ -

X

K

+ +

=

-

=

t r t

u t {

/

/

(24)

Note that the consensus constraints involve only a subset
of the local variables of each robot. Distributed optimization
algorithms are amenable to problems of this form without any
significant modifications. In methods requiring a weighting
matrix, considering robot i, only variables involved in the
consensus constraints are combined (mixed) with those of
its neighbors. Likewise, variants of the ADMM, such as the
separable optimization variable ADMM [26], can be applied
to this problem. We can interpret the bundle adjustment
problem similarly. In this case, the map features represent
the scene geometry, and the robot poses include the optical
characteristics of the respective cameras. However, a chal-
lenge in applying this approach in unstructured environ-
ments is ensuring that multiple robots agree on the labels of
the map landmarks.

An alternative approach is pose graph optimization
(PGO), which avoids explicitly estimating the map by repre-
senting the robots’ trajectories as a graph in which the edges
represent the estimated transformation among poses. A pose
i consists of a position (which we represent by the vector)ix
and an orientation (which we represent by the rotation matrix

).Ri In this perspective, the task of determining robot tra-
jectories consists of two stages performed sequentially. In
the “front end,” the robots process raw sensor measurements
to estimate relative poses consisting of a relative rotation
()R R Rij i j

1. -u and relative translation ().ij j i.x x x-u The
second stage is the “back end,” in which robots find opti-
mal robot poses given those relative pose measurements.
Under the assumption that the robots can perform the front-
end optimization locally [finding (,)Rij ijxu u for each edge (i, j)
in their trajectories], PGO addresses the back-end stage of
SLAM. The objective function of PGO, in which the robots
determine the set of poses (consisting of a rotation Ri and
translation ix for each pose i) that best explains the relative
pose estimates (,),Rij ijxu u is separable and, therefore, amenable
to distributed optimization techniques:

.min R R R
w

R
2 2{(,)} (,)R

ij

i j
j i ij F

ij
j i i ij

2
2
2

Ei i i
n

1

~
x x x- + - -

!x =

u u/

While PGO specifically addresses solving the back
end of SLAM, some existing distributed techniques that
do not rely on distributed optimization have also been pro-
posed for the front end, e.g., [27]. We refer to [28], [29],
[30], and [31] for additional details on SLAM and multi-
robot SLAM.

Distributed optimization algorithms can be readily applied
to the graph-based SLAM problem in (22). Moreover, we note
that a number of related robotics problems, including rotation

averaging/synchronization and shape registration/alignment,
can be similarly reformulated into a separable form and subse-
quently solved using distributed optimization algorithms [32],
[33], [34], [35], [36], [37].

MULTI-ROBOT TARGET TRACKING
In the multi-robot target tracking problem, a group of robots
collect measurements of an agent of interest (referred to as a
target) and seek to collectively estimate the trajectory of the
target. Multi-robot target tracking problems arise in many
robotics applications ranging from environmental monitoring
and surveillance to autonomous robotics applications, such as
autonomous driving, where the estimated trajectory of the
target can be leveraged for scene prediction to enable safe
operation. Figure 2 illustrates the multi-robot target tracking
problem where a group of four quadrotors make noisy obser-
vations of a flagged ground vehicle (the target). Each colored
cone represents the region where each quadrotor can observe
the vehicle, given the limited measurement range of the sen-
sors onboard the quadrotor.

Multi-robot target tracking problems can be posed as max-
imum a posteriori (MAP) optimization problems where the
robots seek to compute an estimate that maximizes the pos-
terior distribution of the target’s trajectory given the set of all
observations of the target made by the robots. When a model
of the dynamics of target is available, denoted by : ,g R Rn n"
the resulting optimization problem takes the form

 () ()x g x y h xminimize ,
x

t t
t

T

i t i t
t

T

i

N

1
2

0

1
2

0

1

1
,t i t

- + -X K+

=

-

=

-

=

/ // (25)

where x Rt
n! denotes the pose of the target at time t and

y R,i t
m! denotes robot i’s observation of the target at time t

over a duration of T 1+ time steps. We represent the trajecto-
ry of the target with , , , .x x x xT0 1 f= < < < <6 @ While the first
term in the objective function corresponds to the error
between the estimated state of the target at a subsequent time

FIGURE 2. A multi-robot target tracking scenario with four
quadrotors (the robots) making noisy observations of a flagged
ground vehicle (the target). The colored cones represent
the regions where each quadrotor can observe the vehicle,
given the limited measurement range of the sensors onboard
each quadrotor.

Authorized licensed use limited to: Stanford University. Downloaded on September 13,2024 at 19:00:50 UTC from IEEE Xplore. Restrictions apply.

IEEE ROBOTICS & AUTOMATION MAGAZINE SEPTEMBER 2024130

step and its expected state based on a model of its dynamics,
the second term corresponds to the error between the obser-
vations collected by each robot and the expected measure-
ment computed from the estimated state of the target, where
the function :h RRi

n m" denotes the measurement model of
robot i. Further, the information matrices Rt

n n!X # and
R,i t

m m!K # for the dynamics and measurement models,
respectively, weight the contribution of each term in the
objective function appropriately, reflecting prior confidence
in the dynamics and measurement models. The MAP optimi-
zation problem in (25) is not separable and, hence, not ame-
nable to distributed optimization in its current form, due to
coupling in the objective function arising from x. Nonethe-
less, we can arrive at a separable optimization problem
through a fairly straightforward reformulation [3]. We can
assign a local copy of x to each robot, with xit denoting robot
i’s local copy of x. The reformulated problem becomes

()

()

(,)

N
x g x

y h x

x x i j

1minimize

subject to E

, ,

, ,

x t

T

i

N

i t i t

i t i i t
t

T

i

N

i j

0

1

1
1

2

2

0

1

1
,

t

i t

6 !

-

+ -

=

X

K

=

-

=

+

=

-

=

t t

t

t t

t
//

//

(26)

where , , , .x x x xN1 2 f= < < < <t t t t6 @ Following this reformulation,
distributed optimization algorithms can be applied to com-
pute an estimate of the trajectory of the target from (26).

MULTI-ROBOT TASK ASSIGNMENT
In the multi-robot task assignment problem, we seek an opti-
mal assignment of N robots to M tasks such that the total cost
incurred in completing the specified tasks is minimized.
However, we note that many task assignment problems con-
sist of an equal number of tasks and robots. The standard task
assignment problem has been studied extensively and is typi-
cally solved using the Hungarian method [38]. However, opti-
mization-based methods have emerged as a competitive

approach due to their amenability to task assignment prob-
lems with a diverse set of additional constraints, encoding
individual preferences or other relevant problem information,
making them a general-purpose approach.

The task assignment problem can be represented as a
weighted bipartite graph: a graph whose vertices can be divide
into two sets where no two nodes within a given set share an
edge. Further, each edge in the graph has an associated weight.
In task assignment problems, the edge weight c ,i j represents
the cost of assigning robot i to task j. Figure 3 depicts a task
assignment problem represented by a weighted bipartite graph,
with three robots and three tasks. Each robot knows its task
preferences only and does not know the task preferences of
other robots. Equivalently, the task assignment problem can be
formulated as an integer optimization problem. Many optimi-
zation-based methods solve a relaxation of the integer optimi-
zation problem. Generally, in problems with linear objective
functions and affine constraints, these optimization-based
methods are guaranteed to yield an optimal task assignment.
The associated relaxed optimization problem takes the form

c x

x

x
x

1

1 1
0 1

minimize

subject to

x i
i

N

i

i
i

N

M

M i

1

1

#

=

=

<

<

=

=

/

/

(27)

where x Ri
M! denotes the optimization variable of robot i,

representing its task assignment, and , , , .x x x xN1 2 f= 6 @
Although the objective function of (27) is separable, the opti-
mization problem is not separable, due to coupling of the opti-
mization variables arising in the first constraint. We can
obtain a separable problem, amenable to distributed optimiza-
tion, by assigning a local copy of x to each robot, resulting in
the problem

V

(,)

c x

x

x
x i

x x i j

1

1 1
0 1

minimize

subject to

E

,

,

,

x
i

i

N

i i

i i
i

N

M

M i i

i

i j

1

1

6

6

!

!

=

=

=

<

<

=

=

t

t

t

t

t t

t
/

/

(28)

where x Ri
M N! #t denotes robot i’s local copy of x and

, , , .x x x xN0 1 f=t t t t6 @ Although the reformulation in (28) is
simple, it does not scale efficiently with the number of robots
and tasks. A more efficient reformulation can be obtained by
considering the dual formulation of the task assignment prob-
lem. For brevity, we omit a discussion of this approach in this
article and refer readers to [39], [40], and [41], where this
reformulation scheme is discussed in detail.

COLLABORATIVE PLANNING, CONTROL,
AND MANIPULATION
Generally, in collaborative planning problems, we seek to
compute state and control input trajectories that enable a

(b)

Task j

(a)

Robot it iii
ci,j

FIGURE 3. A multi-robot task assignment problem represented as
a bipartite graph, with (a) three (Fetch) robots and (b) three tasks.
An edge with weight c ,i j between robot i and task j signifies the
cost incurred by robot i if it performs task j. In many problems,
each robot’s task preferences (edge weights) are neither known by
other robots nor accessible to these robots.

Authorized licensed use limited to: Stanford University. Downloaded on September 13,2024 at 19:00:50 UTC from IEEE Xplore. Restrictions apply.

131SEPTEMBER 2024 IEEE ROBOTICS & AUTOMATION MAGAZINE

group of robots to reach a desired state configuration from a
specified initial state while minimizing a trajectory cost and
without colliding with other agents. The related multi-robot
control problem involves computing a sequence of control
inputs that enable a group of robots to track a desired refer-
ence trajectory or achieve some specified task, such as
manipulating an object collaboratively. Figure 4 presents a
collaborative manipulation problem where three quadrotors
move an object collaboratively. The dashed line represents
the reference trajectory for manipulating the load.

Collaborative multi-robot planning, control, and manipula-
tion problems have been well studied, with a broad variety of
methods devised for these problems. Among these methods,
receding horizon control, or model predictive control (MPC),
approaches have received notable attention due to their flexi-
bility in encoding complex problem constraints and objectives.
In MPC approaches, these multi-robot problems are formu-
lated as optimization problems over a finite time duration at
each time step. The resulting optimization problem is solved
to obtain a sequence of control inputs over the specified time
duration; however, only the initial control input is applied by
each robot at the current time step. At the next time step, a
new optimization problem is formulated, from which a new
sequence of control inputs is computed to obtain a new control
input for that time step. This process is repeated until comple-
tion of the task. At time t, the associated MPC optimization
problem has the form

V

(,)

(,)
(,)

f x u

g x u
h x u
x x i

0
0

minimize

subject to

,

,

x u
i

i

N

i i

1

0 6

#

!

=

=

=

r

/

(29)

where x Ri
ni! denotes robot i’s state trajectory, u Ri

mi!
denotes its control input trajectory, and , , , ,x x x xN1 2 f= < < < <6 @
with , , , .u u u uN1 2 f= < < < <6 @ The objective function of robot

: ,, fi R RRi
n m "#r r is often quadratic, given by

 (,) () () () ()f x u x x Q x x u u R u ui i i i i i i i i i i= - - + - -<<u u u u (30)

where xiu and uiu denote the reference state and control input
trajectory, respectively; Q Ri

n ni i! # and R Ri
m mi i! # denote

the associated weight matrices for the terms in the objective
function; ;n ni

N
i1R= =r and .mm i

N
i1R= =r The dynamics func-

tion of the robots is encoded in : .g R R Rn nm "#r r r Further,
other equality constraints can be encoded in g. Inequality
constraints, such as collision avoidance constraints and other
state or control input feasibility constraints, are encoded in

: .h R R Rn m l"#r r In addition, the first state variable of each
agent is constrained to be equal to its initial state, denoted by
.xir In each instance of the MPC optimization problem, the

initial state xir of robot i is specified as its current state at that
time step. Note that the MPC optimization problem in (29) is
not generally separable, depending on the equality and
inequality constraints. However, a separable form of the

problem can always be obtained by introducing local copies
of the optimization variables that are coupled in (29). The
functions g and h can also encode complementarity con-
straints for manipulation and locomotion problems that
involve making and breaking rigid body contact [42]. In the
extreme case, where the optimization variables are coupled in
the objective function and equality and inequality constraints
in (29), a suitable reformulation takes the form

V
V
V

(,)

(,)
(,)
()

(,)

f x u

g x u i
h x u i

x x i
x x i j

0
0

minimize

subject to

E

,x u
i

i

N

i i

i i

i i

i i i

i j

1

6

6

6

6

!

!

!

!

z

=

=

=

=

t t

t t

t t

t r
t t

t t
/

(31)

where the function iz outputs the first state variable corre-
sponding to robot i, given the input ,xit which denotes robot i’s
local copy of x. Similarly, uit denotes robot i’s local copy of u,
with , , ,x x x xN1 2 f= < < < <t t t t6 @ and , , , .u u u uN1 2 f= < < < <t t t t6 @ Distrib-
uted optimization algorithms [5], [43], [44] can be employed
to solve the resulting MPC optimization problem in (31).

MULTI-ROBOT LEARNING
Multi-robot learning entails the application of deep learning
methods to approximate functions from data to solve multi-
robot tasks, such as object detection, visual place recognition,
monocular depth estimation, 3D mapping, and multi-robot
reinforcement learning. Consider a general multi-robot super-
vised learning problem where we aim to minimize a loss
function over labeled data collected by all the robots. We can
write this as

(, (;))min l y f x
(,)x y Di

N

i i
1 ij ij i

i
!

i
=

//

where (·, ·)l is the loss function, (,)x yij ij is data point j col-
lected by robot i with feature vector xij and label ,yij Di is
the set of data collected by robot i, i are the neural network
weights, and (;)f x i is the neural network parameterized
function we desire to learn. By creating local copies of the

FIGURE 4. A multi-robot manipulation problem with three
quadrotors collaboratively manipulating a load rigidly attached
to each. The dashed line represents the reference trajectory for
manipulating the load.

Authorized licensed use limited to: Stanford University. Downloaded on September 13,2024 at 19:00:50 UTC from IEEE Xplore. Restrictions apply.

IEEE ROBOTICS & AUTOMATION MAGAZINE SEPTEMBER 2024132

neural network weights ii and adding consensus constraints
,i ji i= we can put the problem in the form of (6), so it is

amenable to distributed optimization. We stress that this
problem encompasses a large majority of problems in super-
vised learning. See [45] for an ADMM-based distributed
optimization approach to solving this problem.

Beyond supervised learning, many multi-robot learning
problems are formulated within the framework of reinforce-
ment learning. In these problems, the robots learn a control
policy by interacting with their environments by making
sequential decisions. The underlying control policy, which
drives these sequential decisions, is iteratively updated to opti-
mize the performance of all the agents on a specified objec-
tive using the information gathered by each robot during its
interaction with its environment. Figure 5 describes the rein-
forcement learning paradigm, where a group of robots learn
from experience. Each robot takes an action and receives an
observation (and a reward), which provides information on
the performance of its current control policy in achieving its
specified objective.

Reinforcement learning approaches can be broadly cat-
egorized into value-based methods and policy-based meth-
ods. Value-based methods seek to compute an estimate of the
optimal action value function—the Q function—which rep-
resents the expected discounted reward when starting from
a given state and taking a given action. An optimal policy
can be extracted from the estimated Q function by select-
ing the action that maximizes the value of the Q function at
a specified state. In deep value-based methods, deep neural
networks are utilized in approximating the Q function. In
contrast, policy-based methods seek to find an optimal policy
by directly searching over the space of policies. In deep pol-
icy-based methods, the control policy is parameterized using
deep neural networks. In general, the agents seek to maximize

the expected infinite-horizon discounted cumulative reward,
which is posed as the optimization problem

 (,)R s a s smaximize E , , ,
t

t
i

i

N

i t i t i i
0 1

0;c =
$

i
r

=
i r= G/ / (32)

where ri denotes the control policy parameterized by ,i
R!c denotes the discount factor [(,)],0 1!c s ,i t denotes

the state of robot i at time t, a ,i t denotes its action at time t, sir
denotes its initial state, A:R RSi i i "# denotes the reward
function of robot i, and N denotes the number of robots. The
optimization problem in (32) is not separable in its current
form. However, due to the linearity of the expectation opera-
tor, the optimization problem in (32) can be equivalently
expressed as

(,)

(,)

R s a s s

i j

maximize

subject to

E

E
, ,

, , ,
i

N
t

t
i i t i t i i

i j

1 0
0

N1
i

6

;

!

c

i i

=

=

f $i i
r

=
i r

t t

t t
t ; E/ /

(33)

which is separable among the N robots. Hence, the resulting
problem can be readily solved using distributed optimization
algorithms for reinforcement learning problems, such as dis-
tributed Q learning and distributed actor–critic methods [46],
[47], [48].

NOTES ON IMPLEMENTATION, PRACTICAL
PERFORMANCE, AND LIMITATIONS
Here, we highlight some relevant issues that arise in the
application of distributed optimization algorithms in robotics
problems. In Table 1, we highlight a few characteristics of the
algorithms in each class of distributed optimization problems.
We note that the properties of each algorithm class displayed
in Table 1 are based on the representative algorithm consid-
ered in the algorithm class. We emphasize that subsequent
research efforts have been devoted to the derivation of algo-
rithms that address the practical issues faced by many of the
existing algorithms. In this section, we describe alternative
distributed algorithms that address these issues, often at the
expense of convergence speed.

SELECTION OF A STOCHASTIC MATRIX
DFO algorithms and distributed sequential convex program-
ming algorithms require the specification of a stochastic
matrix, which must be compatible with the underlying com-
munication network. In general, generating compatible row-
stochastic and column-stochastic matrices for directed
communication networks does not pose a significant chal-
lenge. To obtain a row-stochastic matrix, each robot assigns
a weight to all its in neighbors such that the sum of all its
weights equals one. Similarly, to obtain a column-stochastic
matrix, each robot assigns a weight to all its out neighbors
such that the sum of all its weights equals one. In contrast,
generating doubly stochastic matrices for directed commu-
nication networks is nontrivial if each robot does not know
the global network topology. Consequently, in general,

O
bs

er
va

tio
n

o
i

Action ai

aj

ak

oj

ok

Robot i

Robot j

Robot k

FIGURE 5. In multi-robot reinforcement learning problems, a group
of robots compute a control policy from experience by making
sequential decisions while interacting with the environment. Each
robot takes an action and receives an observation (and a reward),
which provides information on its performance in accomplishing a
specified task.

Authorized licensed use limited to: Stanford University. Downloaded on September 13,2024 at 19:00:50 UTC from IEEE Xplore. Restrictions apply.

133SEPTEMBER 2024 IEEE ROBOTICS & AUTOMATION MAGAZINE

 algorithms that require doubly stochastic matrices are unsuit-
able for problems with directed communication networks.

A number of DFO algorithms allow for the specification
of row-stochastic or column-stochastic matrices, making this
class of algorithms appropriate for problems with directed
communication networks, unlike distributed sequential con-
vex programming algorithms, which generally require the
specification of a doubly stochastic weighting matrix. Fur-
thermore, a number of distributed sequential convex program-
ming algorithms require symmetry of the doubly stochastic
weighting matrix [20], [49], [50], [51], posing an even greater
challenge in problems with directed networks.

The specific choice of a doubly stochastic weighing matrix
may vary depending on the assumptions made on what glob-
al knowledge is available to the robots in the network. The
problem of choosing an optimal weight matrix is discussed
thoroughly in [52], in which the authors show that achieving
the fastest possible consensus can be posed as a semidefinite
program, which a computer with global knowledge of the net-
work can solve efficiently. However, we cannot always assume
that global knowledge of the network is available, especially in
the case of a time-varying topology. In most cases, Metropolis
weights facilitate fast mixing without requiring global knowl-
edge, with the assumption that the communication network
is undirected with bidirectional communication links. Each
robot can generate its own weight vector after a single commu-
nication round with its neighbors. In fact, Metropolis weights
perform only slightly suboptimally compared to centralized
optimization-based methods [53]:

{

.
, }max

w w

j1

0 else

N N
N

ij

i j

ij
j

i

Ni

; ; ; ;
!

=
!

i j1- =l

l

Z

[

\

]
]

]]
/ (34)

Distributed algorithms based on the ADMM do not require
the specification of a stochastic weighting matrix. However, the
C-ADMM [23] and other distributed variants assume that the
communication network among all robots is bidirectional, which
makes these algorithms unsuitable for problems with directed
communication networks. A number of distributed ADMM
algorithms for problems with directed communication networks
have been developed [54], [55], [56]. Owing to the absence of
bidirectional communication links among the robots, these algo-
rithms utilize a dynamic average consensus scheme to update
the slack variables at each iteration, which merges information
from a robot and its neighbors using a stochastic weighting
matrix. However, some of these distributed algorithms require
the specification of a doubly stochastic weighting matrix [56],
which introduces notable challenges in problems with directed
communication networks, while others allow for the specifica-
tion of a column-stochastic weighting matrix [55].

INITIALIZATION
In general, in convex problems, distributed optimization
algorithms allow for an arbitrary initialization of the initial

solution of each robot. However, these algorithms often place
stringent requirements on the initialization of the algorithms’
parameters. DFO methods require initialization of the step-
size and often place conditions on the value of the step-size
to guarantee convergence. Some distributed gradient tracking
algorithms [14], [57] assume all robots use a common step-
size, requiring coordination among all robots. Selecting a
common step-size might involve the execution of a consensus
procedure by all robots, with additional computation and
communication overhead. In algorithms that utilize a fixed
step-size, this procedure needs to be executed only once, at
the beginning of the optimization algorithm. The ADMM
and its distributed variants require the selection of a common
penalty parameter .t Consequently, all robots must coordi-
nate among themselves in selecting a value for ,t introducing
some challenges, particularly in problems where the conver-
gence rate depends strongly on the value of .t Initialization
of these algorithm-specific parameters has a significant
impact on the performance of each algorithm.

In general, the performance of each distributed algorithm
that we consider is sensitive to the choice of parameters, espe-
cially when local objective functions are poorly conditioned.
For instance, in DFO methods, choosing a too large leads
to divergence of the individual variables, while too small a
value of a causes slow convergence. Similarly, the C-ADMM
(Algorithm 3) has a convergence rate that is highly sensitive
to the choice of ,t though convergence is guaranteed for all

.02t We study the sensitivity of the convergence rate to the
parameter choice in each simulation in the “Distributed Mul-
tidrone Vehicle Tracking: A Case Study” section. However,
the optimal parameter choice for a particular example is not
prescriptive for the tuning of other implementations. The opti-
mal step-size for a particular algorithm depends on many fac-
tors, including the network size, the network connectivity, and
the underlying problem. For instance, the size of the network
affects the value of the step-size that achieves optimal con-
vergence as well as the maximum rate of convergence itself.
Furthermore, while analytical results for optimal parameter
selection are available for many of these algorithms, a practi-
cal parameter tuning procedure is useful if an implementation
does not exactly adhere to the assumptions in the literature.

In the case that parameter tuning is essential to perfor-
mance, it can be reasonable to select suitable parameters for
an implementation before deploying a system, either using
analytical results or simulation. The most general (central-
ized) procedure for parameter tuning involves comparing the
convergence performance of the system on a known problem
for different parameter values. While a uniform sweep of
the parameter space may be effective for small problems or
parameter-insensitive methods, it is not computationally effi-
cient. Given the convergence rate of a distributed method at
particular choices of parameter, bracketing methods provide
parameter selections to more efficiently find the convergence
rate-minimizing parameter. For instance, golden section
search (GSS) provides a versatile approach for tuning a scalar
parameter [58]. Finding the optimal step-size in one instance

Authorized licensed use limited to: Stanford University. Downloaded on September 13,2024 at 19:00:50 UTC from IEEE Xplore. Restrictions apply.

IEEE ROBOTICS & AUTOMATION MAGAZINE SEPTEMBER 2024134

of a problem often provides reasonable parameter choices for a
problem of similar size, connectivity, and structure.

DYNAMIC OR LOSSY COMMUNICATION
In practical situations, the communication network among
robots changes over time as the robots move, giving rise to a
time-varying communication graph. Networked robots in the
real world can also suffer from dropped message packets as
well as failed hardware or software components. Lossy com-
munication can be a result of networks where there are many
robots and communication signal interfere and in situations
where robots have unstable communication links (e.g., wire-
less connections close to range limits). Generally, DFO opti-
mization algorithms are amenable to problems with dynamic
communication networks and are guaranteed to converge to
the optimal solution provided that the communication graph
is B connected for undirected communication graphs or B
strongly connected for directed communication graphs [14],
which implies that the union of the communication graphs
over B consecutive time steps is connected or strongly con-
nected, respectively. This property is also referred to as
bounded connectivity. This assumption ensures the diffusion
of information among all robots. Unlike DFO algorithms,
many distributed sequential convex programming algorithms
assume that the communication network remains static. Nev-
ertheless, a few DSQP algorithms are amenable to problems
with dynamic communication networks [16], [59] and con-
verge to the optimal solution of the problem under the
assumption that the sequence of communication graphs is B
strongly connected. Some distributed ADMM algorithms are
not amenable to problems with dynamic communication net-
works. This is an interesting avenue for future research.

Similarly, dropped messages or packets can be modeled as
changes to edges in the communication graph where an edge
temporarily becomes directed. In modern mesh networking
protocols, dropped packets can be detected through packet
acknowledgment, and the data can be resent or the robots can
choose to ignore that communication link during the given
iteration of distributed optimization. We explore the effect of
dropping edges from the communication network in Figure 6.

SYNCHRONIZATION
Synchronization, in the context of distributed optimization, is
the assumption that robots compute their local updates and
communicate at the same time, and it ensures that each robot
has up-to-date communicated variables from its neighbors.
Many distributed optimization algorithms require synchro-
nous execution for guaranteed convergence to an optimal
solution [14], [16], [20], [23], [24], [26]. In practice, when
networks have many agents or heterogeneous computation
capability, it is unlikely that all robots will finish their local
computation/communication at exactly the same time, and
therefore, some practical synchronization scheme is required.
Fortunately, one simple solution is to have each robot wait to
receive updates from each of its neighbors before proceeding
with its next iteration of distributed optimization. This is the
decentralized version of a barrier algorithm [60] in parallel
computing. When all robots require roughly the same
amount of time to perform each iteration, this simple barrier
approach has a negligible impact on the time to convergence
of a distributed optimization algorithm. However, if some
subset of the robots is much slower than the others, then this
barrier approach can result in long idle times for some robots
and a longer time to convergence.

Alternatively, DFO algorithms (DIGing, EXTRA, and so
on) are generally fairly amenable to asynchronous execution,
and some other methods are explicitly designed for asynchro-
nous execution [61].

DISTRIBUTED MULTIDRONE VEHICLE
TRACKING: A CASE STUDY
We illustrate the implementation of distributed optimiza-
tion methods using a simulation of a multidrone vehicle
target tracking problem as a case study. We emphasize that
the same principles apply to a broad class of robotics prob-
lems that we have outlined in the “Multi-robot Problems
Posed as Distributed Optimizations” section. In addition,
we implement the C-ADMM distributed optimization algo-
rithm on a network of Raspberry Pis communicating with
XBee modules to demonstrate a distributed optimization
algorithm on hardware.

SIMULATION STUDY
In this simulation, we consider a distributed multidrone vehi-
cle target tracking problem in which robots connected by a
communication graph, V(,),G E= each record range-limit-
ed linear measurements of a moving target and seek to col-
lectively estimate the target’s entire trajectory. We assume

0

10–3

10–2

10–1

0.1 0.2 0.3 0.4 0.5
Probability of Dropped Edges per Iteration

C
om

pu
ta

tio
n

T
im

e
to

 C
on

ve
rg

en
ce

 p
er

 N
od

e
(s

)

0.6 0.7 0.8 0.9 1

C-ADMM
EXTRA
DIGing
NEXT-Q

FIGURE 6. The computation time to convergence as a function of
the probability of dropped edges in a mesh network, averaged
over 50 trials using a geometric random graph with N = 20.
The stopping condition for each trial is a normalized mean
square error of .10 6- Each undirected edge is dropped with the
given probability at every iteration. DIGing is the only method
considered that can handle directional lost edges (the dashed
line). The implementations use optimal hyperparameters, which
vary according to the probability of dropped edges.

Authorized licensed use limited to: Stanford University. Downloaded on September 13,2024 at 19:00:50 UTC from IEEE Xplore. Restrictions apply.

135SEPTEMBER 2024 IEEE ROBOTICS & AUTOMATION MAGAZINE

that each drone can communicate locally with nearby drones
over the undirected communication graph .G The drones all
share a linear model of the target’s dynamics as

 x A x wt t t t1 = ++ (35)

where x Rt
4! represents the position and velocity of the

target in some global frame at time t, At is the dynamics
matrix associated with a linear model of the target’s
dynamics, and ~ (,)w Q0Nt t represents process noise
(including the unknown control inputs to the target).
Restricting our case study to a linear target model in this
tutorial ensures that the underlying optimization problem is
convex, leading to strong convergence guarantees and
robust numerical properties for our algorithm. A more
expressive nonlinear model can also be used, but this
requires a more sophisticated distributed optimization algo-
rithm with more challenging numerical properties. At every
time step when the target is sufficiently close to a drone i
(which we denote by),t Ti! that robot collects an observa-
tion according to the linear measurement model

 y C x v, , ,i t i t t i t= + (36)

where y R,i t
2! is a positional measurement, C ,i t is the mea-

surement matrix of drone i, and ~ (,)v R0N, ,i t i t is measure-
ment noise. We again assume a linear measurement model to
keep this case study as simple as possible. A nonlinear model
can also be used.

All the drones have the same model for the prior distribu-
tion of the initial state of the target (,),x PN 0 0r r where x R0

4!r
denotes the mean and P R0

4 4! #r denotes the covariance. The
global cost function is of the form

()f x x x x A x

y C x
V

, ,

P t t t Q
t

T

i t i t t R
ti

0 0
2

1
2

1

1

2

T

t

i

0
1 1

1

= - + -

+ -
!!

+

=

-

- -

-

r r /
//

(37)

while the local cost function for drone i is

()

.

f x
N

x x
N

x A x

y C x

1 1

, ,

i P
t

T

t t t Q

i t i t t R
t

0 0
2

1

1

1
2

2

T

t

i

0
1 1

1

= - + -

+ -
!

=

-

+- -

-

r r /
/

(38)

In our results, we consider only a batch solution to the
problem (finding the full trajectory of the target given each
robot’s full set of measurements). Methods for performing
the estimate in real time through filtering and smoothing
steps have been well studied, both in the centralized and dis-
tributed case [62]. An extended version of this multi-robot
tracking problem is solved with distributed optimization in
[3]. A rendering of a representative instance of this multi-
robot tracking problem is shown in Figure 2.

In Figures 7 and 8, several distributed optimization algo-
rithms are compared in an instance of the distributed multi-
drone vehicle tracking problem. For this problem instance,
10 simulated drones seek to estimate the target’s trajectory
over 16 time steps, resulting in a decision variable dimension
of .n 64= We compare four distributed optimization meth-
ods that we consider representative of the taxonomic classes
outlined in the preceding sections: C-ADMM [23], EXTRA
[24], DIGing [14], and NEXT-Q [16]. Figure 7 shows that the
C-ADMM and EXTRA have similar fast convergence rates
per iteration, while DIGing and NEXT-Q are four and 15
times slower, respectively, to converge below a mean square
error of .10 6- The step-size hyperparameters for each method
are computed by GSS (for NEXT-Q, which uses a two-param-
eter decreasing step-size, we fix one according to the values
recommended in [16]).

We note that tuning is essential for achieving robust and
efficient convergence with most distributed optimization

0
10–6

10–5

10–4

10–3

10–2

10–1

100

101

500
Iterations

M
S

E

1,000 1,500

C-ADMM
EXTRA
DIGing
NEXT-Q

FIGURE 7. The mean square error (MSE) per iteration in a
distributed multidrone vehicle target tracking problem with N = 10
and n = 64.

10–4

10–6

10–5

10–4

10–3

10–2

10–1

100

10–3

Hyperparameter Value

M
S

E
 A

fte
r

15
0

Ite
ra

tio
ns

10–2 10–1

C-ADMM
EXTRA
DIGing
NEXT-Q

FIGURE 8. A hyperparameter sensitivity sweep for a distributed
multidrone vehicle target tracking problem with N = 20 and n = 64.
EXTRA, DIGing, and NEXT-Q diverge when their respective step-
sizes are too large, while the C-ADMM converges over all choices
of t. (C-ADMM values are reported with respect to /100t in order
to fit on the same axes as the other methods.)

Authorized licensed use limited to: Stanford University. Downloaded on September 13,2024 at 19:00:50 UTC from IEEE Xplore. Restrictions apply.

IEEE ROBOTICS & AUTOMATION MAGAZINE SEPTEMBER 2024136

algorithms. Figure 8 shows the sensitivity of these methods
to variation in step-size and highlights that three of the meth-
ods (all except the C-ADMM) diverge for
large step-sizes. In the case of EXTRA
in this example, the optimal step-size
is close in value to step-sizes that lead
to divergence, posing a practical chal-
lenge for parameter tuning. While the
C-ADMM seems to be the most effec-
tive algorithm in this problem instance,
we note that other algorithms have prop-
erties that are advantageous in other
instances of this problem or other prob-
lems. Furthermore, the optimal step-size
depends on the problem structure. For
instance, in this problem, as the number
of agents increases, the optimal step-size
decreases for the C-ADMM and increas-
es for the other methods.

As discussed in the “Dynamic or
Lossy Communication” section, the convergence of distrib-
uted optimization algorithms may degrade under dynamic
or lossy communication. In Figure 6, we demonstrate this
effect given a geometric random graph with .N 20= For
all four methods considered, a low probability of missing
edges does not significantly degrade convergence com-
pared to a static network. In particular, DIGing and NEXT-
Q are robust to dropped edges, while EXTRA diverges for
high rates of dropped edges, and the C-ADMM converges
for carefully chosen values of t but at orders-of-magni-
tude increased computation time. While the C-ADMM
converges in fewer iterations than the other methods in
the examples of Figures 7 and 8, the dynamic graph topol-
ogy in Figure 6 means that we cannot precompute matrix
inverses, resulting in slower computation per iteration (the
reported computation time is based on a MacBook Pro
with an M1 Pro chip and 16 GB of unified memory). Of

the methods considered, only DIGing handles directed
dropped edges. While NEXT also addresses directed net-

work communication, it requires a dou-
bly stochastic matrix at each iteration.
Fast distributed construction of dou-
bly stochastic matrices is still an open
question [63].

HARDWARE IMPLEMENTATION
In this section, we discuss our imple-
mentation of the C-ADMM algorithm on
hardware. Each robot is equipped with
local computational resources and com-
munication hardware necessary for peer-
to-peer communication with neighboring
robots. In the following discussion, we
provide details of the hardware platform,
the underlying communication network
among robots, and the optimization
problem considered in this section.

We consider the linear least-squares optimization problem

 () ()min G p z M G p z
p

i i
i

N

i i i
1

- -<

=

/ (39)

with the optimization variables ,p R32! ,G Ri
m 32i! # Mi !

,Rm mi i# ,z Ri
mi! and N 3= robots, where mi depends on the

number of measurements available to robot i. In this experi-
ment, we have , ,m 3 2681 = , ,m 5 4222 = and , .m 3 5283 =
We implement the C-ADMM to solve the problem, with a
state size consisting of 32 floating-point variables.

The core communication infrastructure that we use consists
of Digi XBee DigiMesh 2.4 radio-frequency mesh networking
modules, which allow for peer-to-peer communication among
robots. Local computation for each robot is performed using
Raspberry Pi 4B single-board computers. The lower-level
mesh network is managed by the DigiMesh software, and we
interact with it through XBee Python Library.

We utilize the neighbor discovery application program-
ming interface provided by Digi International to enable each
robot to identify neighboring robots. This approach results in
a fully connected communication network, considering the
XBee radios have an indoor range of up to 90 m and an out-
door range of up to 1,500 m. The XBee modules used in our
experiments have a maximum payload size of 92 B. However,
the local variable of each robot in our experiment consists of
32 floating-point variables, which exceeds the maximum pay-
load size that can be transmitted by the XBee radios at each
broadcast round, presenting a communication challenge. To
overcome this challenge, we break up the local variables into a
series of packets of size 92 B and perform multiple broadcast
rounds. The resulting implementation requires approximately
5.5 s per round of communication in the C-ADMM (i.e., for
all the robots to exchange their decision variable information).
In contrast, the Raspberry Pi computation for each iteration of
the C-ADMM is approximately ,15 sn so the communication
time is approximately five orders of magnitude slower than

0
10–6

10–5

10–4

10–3

10–2

10–1

100

101

102

50 100
Number of Iterations

||x
 –

 x
∗ |

| 22

150 200 250

FIGURE 9. The convergence of the iterates computed by each
robot, using the C-ADMM implemented on hardware, for the
optimization problem with three robots in (39). The convergence
errors of all the robots overlap in the figure.

“
BANDWIDTH

LIMITATIONS HIGHLIGHT
THE IMPORTANCE
OF CONSIDERING

LOW-DIMENSIONAL
REPRESENTATIONS OF THE

STATE OF THE PROBLEM
AND/OR QUANTIZATION

METHODS.

Authorized licensed use limited to: Stanford University. Downloaded on September 13,2024 at 19:00:50 UTC from IEEE Xplore. Restrictions apply.

137SEPTEMBER 2024 IEEE ROBOTICS & AUTOMATION MAGAZINE

the computation time in our implementation. This slow com-
munication speed is due to the severe bandwidth limitations
of the XBee radios. We expect that an optimized implementa-
tion over a state-of-the-art 5-Gb/s WiFi or 5G network would
reduce this communication time to about .0 2 sn per round.

As the C-ADMM is robust to wide range of penalty param-
eters (as in Figure 8), we set the penalty parameter in the
C-ADMM to a value of 5 and do not perform a comprehensive
search for the penalty parameter. In our experiments, this value
of the penalty parameter provides suitable performance. In Fig-
ure 9, we provide the convergence error between the iterates of
each robot and the global solution, which is obtained by aggre-
gating the local data of all the robots and then computing the
solution centrally. The convergence errors of all the robots’ iter-
ates overlap in the figure, with the error decreasing below 10 5-
within 250 iterations, showing convergence of the local iterates
of each robot to the optimal solution. Again, due the severe band-
width limitations of the XBee radios, these 250 iterations cor-
respond to approximately 23 min of wall clock time, of which
approximately 99.97% was due to communication overhead.
With a well-engineered 5-Gb/s Wi-Fi or 5G implementation, we
expect this wall clock time for executing the 250 iterations of the
C-ADMM in Figure 9 to take approximately 0.005 s.

This small-scale experiment reveals several of the impor-
tant considerations in implementing distributed optimization
algorithms using physical communication hardware. First,
while synchrony is crucial for certain methods, including the
C-ADMM, we can satisfy this requirement even on relatively
simple equipment by using a barrier strategy. Second, band-
width limitations highlight the importance of considering low-
dimensional representations of the state of the problem and/or
quantization methods. For instance, communicating the opti-
mization variable requires fewer broadcast rounds than com-
municating the measurements in the example problem that we
considered. Finally, tuning is an important consideration, and
the C-ADMM provides a suitable solution due to its robustness
to the choice of the t parameter.

CONCLUSION
In this tutorial, we have demonstrated that a number of canoni-
cal problems in multi-robot systems can be formulated and
solved through the framework of distributed optimization. We
have identified three broad classes of distributed optimization
algorithms: DFO methods, distributed sequential convex pro-
gramming methods, and the ADMM. Further, we have
described the optimization techniques employed by the algo-
rithms within each category, providing a representative algo-
rithm for each category. In addition, we have demonstrated the
application of distributed optimization in simulation on a dis-
tributed multidrone vehicle tracking problem and on hardware,
showing the practical effectiveness of distributed optimization
algorithms. However, important challenges remain in develop-
ing distributed algorithms for constrained nonconvex robotics
problems and algorithms tailored to the limited computation
and communication resources of robot platforms, which we
discuss in greater detail in the second article in this series [7].

ACKNOWLEDGMENT
This project was funded in part by National Science Foun-
dation (NSF) National Robotics Initiative Awards 1830402
and 1925030. Trevor Halsted was supported by a National
Defense Science and Engineering Graduate Fellowship, and
Javier Yu was supported on an NSF Graduate Research Fel-
lowship. The authors would like to thank Siddharth Tanwar
for implementing the C-ADMM multi-drone target tracking
algorithm on XBee networking hardware.

AUTHORS
Ola Shorinwa, Department of Mechanical Engineering,
Stanford University, Stanford, CA 94305 USA. E-mail:
shorinwa@stanford.edu.

Trevor Halsted, Department of Mechanical Engineering,
Stanford University, Stanford, CA 94305 USA. E-mail: halsted@
stanford.edu.

Javier Yu, Department of Aeronautics and Astronautics,
Stanford University, Stanford, CA 94305 USA. E-mail:
javieryu@stanford.edu.

Mac Schwager, Department of Aeronautics and
Astronautics, Stanford University, Stanford, CA 94305 USA.
E-mail: schwager@stanford.edu.

REFERENCES
[1] R. T. Rockafellar, “Monotone operators and the proximal point algorithm,”
SIAM J. Control Optim., vol. 14, no. 5, pp. 877–898, 1976, doi: 10.1137/0314056.

[2] J. N. Tsitsiklis, “Problems in decentralized decision making and computation,”
Cambridge Lab for Information and Decision Systems, Massachusetts Inst. of
Technol., Cambridge, USA, Tech. Rep., 1984. [Online]. Available: https://www.
mit.edu/~jnt/Papers/PhD-84-jnt.pdf

[3] O. Shorinwa, J. Yu, T. Halsted, A. Koufos, and M. Schwager, “Distributed multi-
target tracking for autonomous vehicle fleets,” in Proc. IEEE Int. Conf. Robot.
Autom. (ICRA), 2020, pp. 3495–3501, doi: 10.1109/ICRA40945.2020.9197241.

[4] H.-T. Wai, Z. Yang, Z. Wang, and M. Hong, “Multi-agent reinforcement learn-
ing via double averaging primal-dual optimization,” in Proc. Adv. Neural Inf.
Process. Syst., 2018, pp. 9649–9660.

[5] J. Bento, N. Derbinsky, J. Alonso-Mora, and J. S. Yedidia, “A message-passing
algorithm for multi-agent trajectory planning,” in Proc. Adv. Neural Inf. Process.
Syst., 2013, pp. 521–529.

[6] L.-L. Ong, T. Bailey, H. Durrant-Whyte, and B. Upcroft, “Decentralised parti-
cle filtering for multiple target tracking in wireless sensor networks,” in Proc. 11th
Int. Conf. Inf. Fusion, 2008, pp. 1–8.

[7] O. Shorinwa, T. Halsted, J. Yu, and M. Schwager, “Distributed optimization
methods for multi-robot systems: Part II—A survey,” IEEE Trans. Robot., vol. 39,
no. 3, pp. 1781–1800, Jun. 2023. [Online]. Available: https://msl.stanford.edu/
papers/shorinwa_distributed_2023-1.pdf

[8] A. Nedic and A. Ozdaglar, “On the rate of convergence of distributed subgra-
dient methods for multi-agent optimization,” in Proc. IEEE Conf. Decis. Control,
2007, pp. 4711–4716, doi: 10.1109/CDC.2007.4434693.

[9] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-agent
optimization,” IEEE Trans. Autom. Control, vol. 54, no. 1, pp. 48–61, Jan. 2009,
doi: 10.1109/TAC.2008.2009515.

[10] A. Nedic, A. Olshevsky, A. Ozdaglar, and J. N. Tsitsiklis, “On distributed
averaging algorithms and quantization effects,” IEEE Trans. Autom. control,
vol. 54, no. 11, pp. 2506–2517, Nov. 2009, doi: 10.1109/TAC.2009.2031203.

[11] I. Lobel and A. Ozdaglar, “Distributed subgradient methods for convex opti-
mization over random networks,” IEEE Trans. Autom. Control, vol. 56, no. 6,
pp. 1291–1306, Jun. 2011, doi: 10.1109/TAC.2010.2091295.

[12] A. I.-A. Chen, “Fast distributed first-order methods,” Ph.D. dissertation,
Massachusetts Inst. of Technol., Cambridge, USA, 2012.

[13] A. Nedić and A. Olshevsky, “Distributed optimization over time-varying
directed graphs,” IEEE Trans. Autom. Control, vol. 60, no. 3, pp. 601–615, Mar.
2015, doi: 10.1109/TAC.2014.2364096.

[14] A. Nedic, A. Olshevsky, and W. Shi, “Achieving geometric convergence for
distributed optimization over time-varying graphs,” SIAM J. Optim., vol. 27,
no. 4, pp. 2597–2633, 2017, doi: 10.1137/16M1084316.

Authorized licensed use limited to: Stanford University. Downloaded on September 13,2024 at 19:00:50 UTC from IEEE Xplore. Restrictions apply.

mailto:shorinwa@stanford.edu
mailto:halsted@stanford.edu
mailto:halsted@stanford.edu
mailto:javieryu@stanford.edu
mailto:schwager@stanford.edu
http://dx.doi.org/10.1137/0314056
http://dx.doi.org/10.1109/ICRA40945.2020.9197241
http://dx.doi.org/10.1109/CDC.2007.4434693
http://dx.doi.org/10.1109/TAC.2008.2009515
http://dx.doi.org/10.1109/TAC.2009.2031203
http://dx.doi.org/10.1109/TAC.2010.2091295
http://dx.doi.org/10.1109/TAC.2014.2364096
http://dx.doi.org/10.1137/16M1084316

IEEE ROBOTICS & AUTOMATION MAGAZINE SEPTEMBER 2024138

[15] M. Zhu and S. Martínez, “Discrete-time dynamic average consensus,”
Automatica, vol. 46, no. 2, pp. 322–329, 2010, doi: 10.1016/j.automatica.2009.10.021.

[16] P. Di Lorenzo and G. Scutari, “NEXT: In-network nonconvex optimization,”
IEEE Trans. Signal Inf. Process. Netw., vol. 2, no. 2, pp. 120–136, Jun. 2016, doi:
10.1109/TSIPN.2016.2524588.

[17] J. E. Dennis Jr. and J. J. Moré, “Quasi-newton methods, motivation and theo-
ry,” SIAM Rev., vol. 19, no. 1, pp. 46–89, 1977, doi: 10.1137/1019005.

[18] R. H. Byrd, H. F. Khalfan, and R. B. Schnabel, “Analysis of a symmetric
rank-one trust region method,” SIAM J. Optim., vol. 6, no. 4, pp. 1025–1039,
1996, doi: 10.1137/S1052623493252985.

[19] R. Tapia, “On secant updates for use in general constrained optimization,”
Math. Comput., vol. 51, no. 183, pp. 181–202, 1988, doi: 10.1090/S0025-5718-
1988-0942149-3.

[20] A. Mokhtari, Q. Ling, and A. Ribeiro, “Network newton,” in Proc. Conf. Rec. –
Asilomar Conf. Signals, Syst. Comput., Apr. 2015, pp. 1621–1625, doi: 10.1109/
ACSSC.2014.7094740.

[21] M. Eisen, A. Mokhtari, A. Ribeiro, and A. We, “Decentralized quasi-newton
methods,” IEEE Trans. Signal Process., vol. 65, no. 10, pp. 2613–2628, May 2017,
doi: 10.1109/TSP.2017.2666776.

[22] H. Liu, J. Zhang, A. M.-C. So, and Q. Ling, “A communication-efficient
decentralized newton’s method with provably faster convergence,” IEEE Trans.
Signal Inf. Process. Netw., vol. 9, pp. 427–441, Jul. 2023, doi: 10.1109/
TSIPN.2023.3290397.

[23] G. Mateos, J. A. Bazerque, and G. B. Giannakis, “Distributed sparse linear
regression,” IEEE Trans. Signal Process., vol. 58, no. 10, pp. 5262–5276, Oct.
2010, doi: 10.1109/TSP.2010.2055862.

[24] W. Shi, Q. Ling, G. Wu, and W. Yin, “EXTRA: An exact first-order algo-
rithm for decentralized consensus optimization,” SIAM J. Optim., vol. 25, no. 2,
pp. 944–966, 2015, doi: 10.1137/14096668X.

[25] Y. Tian, Y. Sun, B. Du, and G. Scutari, “ASY-SONATA: Achieving geometric
convergence for distributed asynchronous optimization,” 2018, arXiv:1803.10359.

[26] O. Shorinwa, T. Halsted, and M. Schwager, “Scalable distributed optimiza-
tion with separable variables in multi-agent networks,” in Proc. Amer. Control
Conf. (ACC), 2020, pp. 3619–3626, doi: 10.23919/ACC45564.2020.9147590.

[27] T. Cieslewski and D. Scaramuzza, “Efficient decentralized visual place rec-
ognition using a distributed inverted index,” IEEE Robot. Autom. Lett., vol. 2,
no. 2, pp. 640–647, Apr. 2017, doi: 10.1109/LRA.2017.2650153.

[28] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping:
Part I,” IEEE Robot. Autom. Mag., vol. 13, no. 2, pp. 99–110, Jun. 2006, doi:
10.1109/MRA.2006.1638022.

[29] T. Bailey and H. Durrant-Whyte, “Simultaneous localization and mapping
(SLAM): Part II,” IEEE Robot. Autom. Mag., vol. 13, no. 3, pp. 108–117, Sep.
2006, doi: 10.1109/MRA.2006.1678144.

[30] G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard, “A tutorial on
graph-based SLAM,” IEEE Intell. Transp. Syst. Mag., vol. 2, no. 4, pp. 31–43,
Winter 2010, doi: 10.1109/MITS.2010.939925.

[31] A. Ahmad, G. D. Tipaldi, P. Lima, and W. Burgard, “Cooperative robot local-
ization and target tracking based on least squares minimization,” in Proc. IEEE
Int. Conf. Robot. Autom., 2013, pp. 5696–5701, doi: 10.1109/ICRA.2013.6631396.

[32] V.-L. Dang, B.-S. Le, T.-T. Bui, H.-T. Huynh, and C.-K. Pham, “A decentral-
ized localization scheme for swarm robotics based on coordinate geometry and
distributed gradient descent,” in Proc. MATEC Web Conf., 2016, vol. 54,
p. 02002, doi: 10.1051/matecconf/20165402002.

[33] N. A. Alwan and A. S. Mahmood, “Distributed gradient descent localization
in wireless sensor networks,” Arabian J. Sci. Eng., vol. 40, no. 3, pp. 893–899,
2015, doi: 10.1007/s13369-014-1552-2.

[34] M. Todescato, A. Carron, R. Carli, and L. Schenato, “Distributed localization
from relative noisy measurements: A robust gradient based approach,” in Proc.
Eur. Control Conf. (ECC), 2015, pp. 1914–1919, doi: 10.1109/ECC.2015.7330818.

[35] R. Tron and R. Vidal, “Distributed 3-D localization of camera sensor net-
works from 2-D image measurements,” IEEE Trans. Autom. Control, vol. 59,
no. 12, pp. 3325–3340, Dec. 2014, doi: 10.1109/TAC.2014.2351912.

[36] A. Sarlette and R. Sepulchre, “Consensus optimization on manifolds,” SIAM
J. Control Optim., vol. 48, no. 1, pp. 56–76, 2009, doi: 10.1137/060673400.

[37] K.-K. Oh and H.-S. Ahn, “Distributed formation control based on orientation
alignment and position estimation,” Int. J. Control, Autom. Syst., vol. 16, no. 3,
pp. 1112–1119, 2018, doi: 10.1007/s12555-017-0280-2.

[38] H. W. Kuhn, “The Hungarian method for the assignment problem,” Naval
Res. Logistics Quart., vol. 2, nos. 1–2, pp. 83–97, 1955, doi: 10.1002/
nav.3800020109.

[39] R. N. Haksar, O. Shorinwa, P. Washington, and M. Schwager, “Consensus-
based ADMM for task assignment in multi-robot teams,” in Proc. Int. Symp.
Robot. Res., Cham, Switzerland: Springer-Verlag, 2019, pp. 35–51, doi: 10.1007/
978-3-030-95459-8_3.

[40] L. Liu and D. A. Shell, “Optimal market-based multi-robot task allocation via
strategic pricing,” Robot., Sci. Syst., vol. 9, no. 1, 2013, pp. 33–40.

[41] S. Giordani, M. Lujak, and F. Martinelli, “A distributed algorithm for the
multi-robot task allocation problem,” in Proc. Int. Conf. Ind., Eng. Appl. Appl.
Intell. Syst., Springer-Verlag, 2010, pp. 721–730, doi: 10.1007/978-3-642
-13022-9_72.

[42] O. Shorinwa and M. Schwager, “Distributed contact-implicit trajectory opti-
mization for collaborative manipulation,” in Proc. Int. Symp. Multi-Robot Multi-
Agent Syst. (MRS), 2021, pp. 56–65, doi: 10.1109/MRS50823.2021.9620665.

[43] L. Ferranti, R. R. Negenborn, T. Keviczky, and J. Alonso-Mora,
“Coordination of multiple vessels via distributed nonlinear model predictive con-
trol,” in Proc. Eur. Control Conf. (ECC), 2018, pp. 2523–2528, doi: 10.23919/
ECC.2018.8550178.

[44] O. Shorinwa and M. Schwager, “Scalable collaborative manipulation with
distributed trajectory planning,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.
(IROS), 2020, vol. 1, pp. 9108–9115, doi: 10.1109/IROS45743.2020.9340957.

[45] J. Yu, J. A. Vincent, and M. Schwager, “DiNNO: Distributed neural network
optimization for multi-robot collaborative learning,” IEEE Robot. Autom. Lett.,
vol. 7, no. 2, pp. 1896–1903, Apr. 2022, doi: 10.1109/LRA.2022.3142402.

[46] K. Zhang, Z. Yang, H. Liu, T. Zhang, and T. Basar, “Fully decentralized
multi-agent reinforcement learning with networked agents,” in Proc. Int. Conf.
Mach. Learn., PMLR, 2018, pp. 5872–5881.

[47] Y. Zhang and M. M. Zavlanos, “Distributed off-policy actor-critic reinforce-
ment learning with policy consensus,” in Proc. IEEE 58th Conf. Decis. Control
(CDC), Piscataway, NJ, USA: IEEE Press, 2019, pp. 4674–4679, doi: 10.1109/
CDC40024.2019.9029969.

[48] A. OroojlooyJadid and D. Hajinezhad, “A review of cooperative multi-agent
deep reinforcement learning,” 2019, arXiv:1908.03963.

[49] A. Mokhtari, W. Shi, Q. Ling, and A. Ribeiro, “A decentralized second-order
method with exact linear convergence rate for consensus optimization,” IEEE
Trans. Signal Inf. Process. Netw., vol. 2, no. 4, pp. 507–522, Dec. 2016, doi:
10.1109/TSIPN.2016.2613678.

[50] M. Eisen, A. Mokhtari, and A. Ribeiro, “A primal-dual quasi-newton method
for exact consensus optimization,” IEEE Trans. Signal Process., vol. 67, no. 23,
pp. 5983–5997, Dec. 2019, doi: 10.1109/TSP.2019.2951216.

[51] F. Mansoori and E. Wei, “A fast distributed asynchronous newton-based opti-
mization algorithm,” IEEE Trans. Autom. Control, vol. 65, no. 7, pp. 2769–2784,
Jul. 2020, doi: 10.1109/TAC.2019.2933607.

[52] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,” Syst.
Control Lett., vol. 53, no. 1, pp. 65–78, Sep. 2004, doi: 10.1016/j.syscon-
le.2004.02.022.

[53] S. Jafarizadeh and A. Jamalipour, “Weight optimization for distributed aver-
age consensus algorithm in symmetric, CCS & KCS star networks,” 2010,
arXiv:1001.4278.

[54] V. Khatana and M. V. Salapaka, “D-DistADMM: A O(1/k) distributed
ADMM for distributed optimization in directed graph topologies,” in Proc. 59th
IEEE Conf. Decis. Control (CDC), Piscataway, NJ, USA: IEEE Press, 2020,
pp. 2992–2997, doi: 10.1109/CDC42340.2020.9304086.

[55] V. Khatana and M. V. Salapaka, “DC-DistADMM: ADMM algorithm for
const ra ined dist r ibuted opt imizat ion over di rected graphs,” 2020,
arXiv:2003.13742.

[56] K. Rokade and R. K. Kalaimani, “Distributed ADMM with linear updates
over directed networks,” 2020, arXiv:2010.10421.

[57] G. Qu and N. Li, “Harnessing smoothness to accelerate distributed optimiza-
tion,” IEEE Trans. Control Netw. Syst., vol. 5, no. 3, pp. 1245–1260, Sep. 2018,
doi: 10.1109/TCNS.2017.2698261.

[58] W. H. Press et al., Numerical Recipes: The Art of Scientific Computing, 3rd
ed. Cambridge, U.K.: Cambridge Univ. Press, 1989.

[59] Y. Sun and G. Scutari, “Distributed nonconvex optimization for sparse repre-
sentation,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP),
Piscataway, NJ, USA: IEEE Press, 2017, pp. 4044–4048, doi: 10.1109/
ICASSP.2017.7952916.

[60] N. S. Arenstorf and H. F. Jordan, “Comparing barrier algorithms,” Parallel
Comput., vol. 12, no. 2, pp. 157–170, Nov. 1989, doi: 10.1016/0167-8191(89)90050-1.

[61] X. Lian, W. Zhang, C. Zhang, and J. Liu, “Asynchronous decentralized paral-
lel stochastic gradient descent,” in Proc. Int. Conf. Mach. Learn., PMLR, 2018,
pp. 3043–3052.

[62] R. Olfati-Saber, “Distributed Kalman filtering for sensor networks,” in Proc.
46th IEEE Conf. Decis. Control, Piscataway, NJ, USA: IEEE Press, 2007, pp.
5492–5498, doi: 10.1109/CDC.2007.4434303.

[63] C. Xi, Q. Wu, and U. A. Khan, “On the distributed optimization over directed
networks,” Neurocomputing, vol. 267, pp. 508–515, Dec. 2017, doi: 10.1016/j.neu-
com.2017.06.038.

Authorized licensed use limited to: Stanford University. Downloaded on September 13,2024 at 19:00:50 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1016/j.automatica.2009.10.021
http://dx.doi.org/10.1109/TSIPN.2016.2524588
http://dx.doi.org/10.1137/1019005
http://dx.doi.org/10.1137/S1052623493252985
http://dx.doi.org/10.1090/S0025-5718-1988-0942149-3
http://dx.doi.org/10.1090/S0025-5718-1988-0942149-3
http://dx.doi.org/10.1109/ACSSC.2014.7094740
http://dx.doi.org/10.1109/ACSSC.2014.7094740
http://dx.doi.org/10.1109/TSP.2017.2666776
http://dx.doi.org/10.1109/TSIPN.2023.3290397
http://dx.doi.org/10.1109/TSIPN.2023.3290397
http://dx.doi.org/10.1109/TSP.2010.2055862
http://dx.doi.org/10.1137/14096668X
http://dx.doi.org/10.23919/ACC45564.2020.9147590
http://dx.doi.org/10.1109/LRA.2017.2650153
http://dx.doi.org/10.1109/MRA.2006.1638022
http://dx.doi.org/10.1109/MRA.2006.1678144
http://dx.doi.org/10.1109/MITS.2010.939925
http://dx.doi.org/10.1109/ICRA.2013.6631396
http://dx.doi.org/10.1051/matecconf/20165402002
http://dx.doi.org/10.1007/s13369-014-1552-2
http://dx.doi.org/10.1109/ECC.2015.7330818
http://dx.doi.org/10.1109/TAC.2014.2351912
http://dx.doi.org/10.1137/060673400
http://dx.doi.org/10.1007/s12555-017-0280-2
http://dx.doi.org/10.1002/nav.3800020109
http://dx.doi.org/10.1002/nav.3800020109
http://dx.doi.org/10.1109/MRS50823.2021.9620665
http://dx.doi.org/10.23919/ECC.2018.8550178
http://dx.doi.org/10.23919/ECC.2018.8550178
http://dx.doi.org/10.1109/IROS45743.2020.9340957
http://dx.doi.org/10.1109/LRA.2022.3142402
http://dx.doi.org/10.1109/CDC40024.2019.9029969
http://dx.doi.org/10.1109/CDC40024.2019.9029969
http://dx.doi.org/10.1109/TSIPN.2016.2613678
http://dx.doi.org/10.1109/TSP.2019.2951216
http://dx.doi.org/10.1109/TAC.2019.2933607
http://dx.doi.org/10.1016/j.sysconle.2004.02.022
http://dx.doi.org/10.1016/j.sysconle.2004.02.022
http://dx.doi.org/10.1109/CDC42340.2020.9304086
http://dx.doi.org/10.1109/TCNS.2017.2698261
http://dx.doi.org/10.1109/ICASSP.2017.7952916
http://dx.doi.org/10.1109/ICASSP.2017.7952916
http://dx.doi.org/10.1016/0167-8191(89)90050-1
http://dx.doi.org/10.1109/CDC.2007.4434303
http://dx.doi.org/10.1016/j.neucom.2017.06.038
http://dx.doi.org/10.1016/j.neucom.2017.06.038
http://dx.doi.org/10.1007/978-3-030-95459-8_3
http://dx.doi.org/10.1007/978-3-030-95459-8_3
http://dx.doi.org/10.1007/978-3-642-13022-9_72
http://dx.doi.org/10.1007/978-3-642-13022-9_72

	121_31mra03-shorinwa-3358718

