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Abstract— We present a distributed algorithm for multi-
agent target tracking, posed as a maximum a-posteriori
(MAP) optimization problem. MAP estimation is, in general,
a non-convex optimization that depends on each agent’s
local observation of the target, necessitating a distributed
algorithm. In our algorithm, each agent solves a series of local
optimization problems to estimate the target’s trajectory, while
communicating with its one-hop neighbors over a communication
network. The agents do not communicate their raw observations,
which may be high dimensional (e.g., images), and they do not
rely on a central coordinating node or leader, minimizing the
communication bandwidth requirements of our approach. We
utilize the sequential quadratic programming (SQP) paradigm,
with distributed computation of the ensuing sub-problems
achieved via the consensus alternating direction method of
multipliers (C-ADMM). We empirically demonstrate faster
convergence of our algorithm to a locally optimal solution
compared to other distributed methods. In addition, our
algorithm achieves about the same communication overhead as
the best competing distributed algorithm.

I. INTRODUCTION

Multi-agent target tracking problems arise in many robotics
applications, including, but not limited to, environmental
monitoring, persistent surveillance, industrial manufacturing,
and autonomous driving. In many of these problems, es-
timating the trajectory of the target is critical to the safe
operation of autonomous agents. Although filtering methods
have been applied to target tracking problems, optimization-
based approaches have emerged as particularly effective
methods, due to their generality and flexibility in incorporating
constraints. These methods formulate the target tracking
problem as an optimization problem, which depends on the
local set of observations collected by all participating agents.
The resulting optimization problem can be solved centrally by
collating all the local information at a fusion node; however,
this approach poses notable communication and computation
challenges, especially in problems with limited access to
high-performance computation and communication resources.
Distributed approaches address this challenge by allowing
each agent to solve the optimization problem locally without
collating the local observations.

In this paper, we present Sequential Quadratic Alternating
direction method of multipliers for Target Tracking (SQuATT),
a distributed algorithm for non-convex optimization-based
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target tracking problems, where each agent solves a series of
optimization problems locally to estimate the trajectory of a
target. Each agent communicates with its one-hop neighbors
over a point-to-point communication network, without relying
on a central station, making our algorithm useful in problems
involving agents operating in areas with limited access
to existing communication infrastructure. Our method can
be seen as a generalization to the non-linear, non-convex
case of the prior work [1] for affine target dynamics and
measurements.

Our algorithm is based on the Sequential Quadratic
Programming (SQP) paradigm [2] and utilizes the Consensus
Alternating Direction Method of Multipliers (C-ADMM) [3]
to achieve distributed computations. At each iteration of our
algorithm, each agent formulates a quadratic approximation of
the underlying non-convex target tracking problem which is
solved via C-ADMM. Our algorithm is amenable to problems
with local constraints, allowing the incorporation of prior
knowledge as constraints in target tracking problems, which
can generally improve tracking performance. Our algorithm
converges about three times faster to a locally optimal solution
of the non-convex target tracking problem than the best
competing distributed algorithm in simulation, using about
the same communication budget as the best communication-
efficient algorithm.

II. RELATED WORK

Several approaches have been developed for collaborative
target tracking by a group of agents, many of which were
derived from well-known state estimation filters, such as
Kalman, Information, and particle filters [4], [5], [6]. In
filtering-based methods, each agent maintains a decentralized
filter to estimate the trajectory of a target and shares informa-
tion from its filters with other agents to improve its estimate.
These approaches typically suffer from correlations between
measurements during the data fusion process, which must be
accounted for to improve the estimation accuracy [7]. Some
methods have addressed this challenge by formulating the
target tracking problem as a maximum likelihood estimation
(MLE) or maximum a-posteriori (MAP) problem over the
entire set of observations of the target collected by all
agents [8], [9], [10]. Moreover, optimization-based approaches
provide greater flexibility, allowing for the consideration
of prior knowledge during the estimation process and the
incorporation of constraints. However, the resulting MLE
or MAP optimization problems are non-convex, in general.
In addition, solving the resulting optimization problem
requires collation of the local observations from all agents,
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if a centralized approach is utilized, which poses notable
computation and communication challenges, especially in the
presence of a bandwidth-constrained communication networks.
Further, the central node in centralized approaches represents
a single point of failure. As a result, distributed methods for
solving the non-convex optimization problem are desirable
for improved communication efficiency and robustness.

Gradient descent methods and other accelerated variants
have been applied to the minimization of non-convex func-
tions [11], [12], although mostly in a centralized manner.
However, many distributed gradient descent methods exist for
unconstrained convex optimization [13], [14], which utilize a
linear consensus or push-sum technique to achieve agreement
among the agents. A few extensions of distributed gradient
descent to non-convex optimization exist. For example,
the push-sum technique has been applied to non-convex
problems by using the gradient direction obtained from a
stochastic approximation of the objective function [15]. In
other consensus methods, each agent performs sequential local
convex approximation of the non-convex problem, followed
by linear consensus procedures on the local optimization
variables and gradients [16], [17].

In contrast to gradient descent methods, sequential convex
programming (SCP) methods replace the non-convex objective
and constraint functions with convex approximations (often
quadratic in form) iteratively, and solve the resulting convex
problems until some convergence criterion is satisfied [2], [18].
In separable problems where the objective and/or constraint
functions consist of a sum of individual components, existing
research effort has focused on deriving distributed procedures
for solving the ensuing convex sub-problems arising in sequen-
tial convex programming. Some of these works distribute the
resulting convex sub-problems using dual decomposition [19].
Other methods solve the convex sub-problems using proximal
decomposition [20], which improves the convergence rate of
the dual decomposition method, and the alternating direction
method of multipliers [21] .

Augmented Lagrangian methods, another class of methods,
solve non-convex optimization problems by finding mini-
mizers of the augmented Lagrangian, which consists of a
reformulation of the problem constraints with a quadratic
penalty term on the satisfaction of the constraint functions
[22]. Formation of the augmented Lagrangian renders the
problem non-separable even when the original problem
is separable, hindering distributed solutions of the non-
convex problem. To overcome non-separability of the primal
updates in augmented Lagrangian methods, some distributed
approaches solve the primal update problem using block-
coordinate decent [23], while others combine augmented
Lagrangian methods with sequential quadratic programming
to achieve more fully-distributed computations [24]. Although
these methods provide a greater level of distributed compu-
tations, some resulting operations in the procedure remain
coupled, requiring a central fusion node for their computation.
The alternating direction method of multipliers (ADMM)
resolves many of the challenges of augmented Lagrangian
methods by solving the primal update problem in series

which retains the separability of the original problem. In
non-convex problems, some distributed ADMM methods
employ sequential convex programming [25], [26] to compute
a minimizer of the non-convex primal update sub-problem. In
contrast to all these methods, our algorithm is fully-distributed,
enabling each agent to compute a stationary point of the non-
convex problem locally.

This paper is organized as follows: In Section III, we
present the non-convex target tracking optimization problem.
We derive our method in Section IV and analyze its conver-
gence properties in Section V. In Section VI, we examine the
performance of our algorithm in a non-convex target tracking
problem, showing its faster convergence rates compared to
existing methods. We conclude the paper in Section VII. In
the subsequent discussion, we denote the identity matrix as
In ∈ Rn×n and the matrix-weighted squared-norm xTMx
as ∥x∥2M , given a positive definite matrix M . Further, we
denote the gradient of a function f as ∇f , and its Hessian
with respect to x by ∇xxf . We denote the set of strictly
positive real numbers as R++.

III. PROBLEM FORMULATION

We consider the target tracking problem with a group of
N agents estimating the trajectory of a dynamic target from
observations of the target collected by onboard sensors. In this
work, we consider maximum a-posteriori (MAP) optimization
problems, solved by the group of agents collectively to
compute a trajectory that maximizes the posterior distribution
of the trajectory of the target, given the set of observations
of all agents. We consider the dynamics model of the target
described by

xt+1 = g(xt, ut) + vt, (1)

where xt ∈ Rn̄ denotes the state of the target at time t,
gi : Rn̄ × Rn̂ → Rn̄ denotes the nonlinear dynamics function
of agent i, ut ∈ Rn̂ denotes the control input of the target
at time t, which may not be available to any agent, and
vt ∈ Rn̄ denotes the process noise. Since ut is not accessible
to each agent generally, we set the value of ut in g at its
nominal value in the subsequent discussion. We account for
the effects of the discrepancy between the nominal and actual
value of ut in the process noise vt. In addition, we describe
the measurement model of agent i by

yi,t = hi(xt) + ωi,t, (2)

where yi,t ∈ Rp̄i denotes the measurement obtained by agent
i at time t, hi : Rn̄ → Rp̄i denotes the nonlinear measurement
function of agent i, and ωi,t ∈ Rp̄i denotes the measurement
noise.

The form of the objective function of the MAP optimization
problem depends on the modeling assumptions made on the
probability distributions of the measurement noise and process
noise. To simplify the exposition in this work, we model the
measurement noise and process noise as zero-mean Gaussian
white noise processes and assume that the initial distribution
of the target’s trajectory is normally distributed. However, we
do admit nonlinear dynamic and measurement models, and
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we do not assume the posterior over the state is Gaussian.
With these assumptions, the objective function of the MAP
optimization problem takes the form

fi(x) =

T−1∑
t=0

∥xt+1 − g(xt)∥2P−1 +

T∑
t=0

∥yi,t − hi(xt)∥2Q−1
i

+ ∥x0 − µ∥2L−1 ,
(3)

which we obtain by taking the logarithm of the posterior
distribution, where µ denotes the mean of the prior prob-
ability distribution of the initial state of the target and
x =

[
xT
0 , · · · , xT

T

]T ∈ Rn. In (3), we denote the covariance
of the measurement noise of agent i and the prior probability
distribution as Qi ∈ Rp̄i×p̄i and L ∈ Rn̄×n̄, respectively, and
P = NP̄ , where P̄ ∈ Rn̄×n̄ denotes the covariance of the
target’s process noise. Note that the objective function in
(3) consists of terms relating to the dynamics of the target,
the sets of measurement collected by each agent, and the
probability distribution of the target’s initial state. We note
that only agent i has access to its set of observations yi,t
and its measurement model hi(·) and measurement noise
covariance Qi.

The resulting centralized MAP optimization problem
incorporating information from all agents is given by

minimize
x

N∑
i=1

fi(x)

subject to ϕi(x) ≤ 0 i = 1, · · · , N
(4)

where x ∈ Rn denotes the trajectory of the target over a
duration of length T , fi : Rn → R denotes the objective
function of agent i, and ϕi : Rn → Rmi denotes the constraint
function of agent i. Many MAP target tracking problems
do not include constraints; however, for generality, we
incorporate constraints into the MAP optimization problem in
(4). To simplify the discussion, we do not explicitly include
equality constraints; however, equality constraints can be
handled directly, or encoded with two inequality constraints.
We focus on MAP optimization problems with non-convex
objective and constraint functions, fi and ϕi, respectively,
and note that fi and ϕi are accessible to agent i only.

Aggregating the local information accessible to each agent
at a central computing station (or even at each individual
agent) could be challenging in general, with significant
computational and communication overhead, highlighting the
need for distributed approaches for solving the optimization
problem (4), which we discuss in the following section.

Communication Graph

We represent the agents as nodes in an undirected graph
G described by a set of vertices V = {1, · · · , N} and a set
of edges E with edge (i, j) ∈ E if agents i and j share a
communication link. In addition, we define the neighbor set of
agent i as Ni, containing all agents which can communicate
with agent i. We assume the communication graph G is
connected, i.e., a path exists in G for every pair of agents in
V .

IV. DISTRIBUTED OPTIMIZATION

In this section, we derive a distributed optimization
algorithm for non-convex optimization-based target tracking
problems by multiple sensor-equipped agents, where each
agent solves a series of local quadratic programs to obtain an
estimate of the target’s trajectory. Our algorithm is derived
using a sequential quadratic programming (SQP) approach,
which involves solving for an estimate of the solution of
the non-convex MAP optimization problem (4) from its
quadratic approximation and iterating over this process using
the updated estimate of the solution. Considering that no
single agent has access to all the problem data, the ensuing
joint quadratic program (QP) cannot be solved by each
agent independently. Consequently, we derive a distributed
algorithm by utilizing the consensus alternating direction
method of multipliers (C-ADMM) to solve the ensuing
quadratic programs. Before proceeding with its derivation,
we introduce the Karush-Kuhn-Tucker (KKT) conditions for
the optimization problem and state some assumptions on the
objective and constraint functions. The Lagrangian of the
optimization problem (4) is given by

L(x, ν) =
N∑
i=1

fi(x) +

N∑
i=1

νTi ϕi(x) (5)

where νi ∈ Rmi denotes the Lagrange multiplier for the
inequality constraint in (4). The KKT conditions for the
optimization problem (4) are
C.1 Stationarity Condition

0 ∈ ∂

(
N∑
i=1

fi(x) +

N∑
i=1

νTi ϕi(x)

)
, (6)

C.2 Complementary Slackness

νTi ϕi(x) = 0 ∀i ∈ V, (7)

C.3 Primal Feasibility

ϕi(x) ≤ 0 ∀i ∈ V, (8)

C.4 Dual Feasibility

νi ≥ 0 ∀i ∈ V. (9)

The KKT conditions are necessary conditions for optimality
when strong duality holds, i.e., when the Lagrangian in (5)
has a saddle-point.

We denote the index set of active constraints of agent i at
x by Ai(x), i.e., Ai(x) = {r ∈ {1, · · · ,mi} | ϕi,r(x) = 0},
and the Jacobian of the active constraints of agent i by
C(x), where C(x) = [∇ϕi,r(x),∀r ∈ Ai(x),∀i ∈ V]T. Now,
we make the following assumptions on the objective and
constraint functions.

Assumption 1: The objective function fi and constraint
function ϕi are twice continuously differentiable.

Assumption 2: The Linear Independence Constraint Qual-
ification (LICQ) condition is satisfied at a local min-
imum x⋆, i.e., the set of active constraint gradients
{∇ϕi,r(x), r ∈ Ai(x)} is linearly independent.
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Assumption 3: The Hessian of the Lagrangian with respect
to x, ∇xxL, is non-singular at a local minimum x⋆ with an
associated optimal multiplier ν⋆, and further,∇xxL is positive
definite for all d ∈ Rn in the null space of C(x⋆), i.e.,

dT∇xxL(x⋆, ν⋆)d > 0, (10)

for all d ̸= 0 such that C(x⋆)d = 0.
Assumption 4: Strict complementary slackness is satisfied

at a local minimum x⋆ ∈ Rn, i.e.,

ϕi,r(x
⋆)ν⋆i,r = 0, 1 ≤ r ≤ mi,

ν⋆i,r > 0, r ∈ Ai(x
⋆).

(11)

We require these standard assumptions to simplify the
convergence analysis of our distributed algorithm. Given that
x⋆ satisfies the KKT conditions, Assumption 3 indicates that
x⋆ is an isolated local minimum. Moreover, satisfaction of
the LICQ at x⋆ implies that the KKT conditions are satisfied
for some vector of Lagrange multipliers ν⋆. If the strict
complementarity slackness condition and the LICQ condition
hold at x⋆, the Lagrange multiplier that satisfies the KKT
conditions is unique.

In the following subsections, we describe the SQP proce-
dure and the subsequent distributed procedure for solving the
resulting quadratic program, which constitute the two phases
of our algorithm.

A. Sequential Quadratic Programming

In the first phase of our distributed algorithm, we formulate
a quadratic model of the MAP optimization problem (4),
noting the existence of many efficient solvers for quadratic
programs, which enable us to solve the resulting quadratic
programs. Moreover, since our algorithm involves solving a
series of closely-related QPs, we can leverage information
from previously-solved QPs to speed up the solution of
subsequent QPs, through a process referred to as a warm-
start or hot-start, a functionality provided by many existing
QP solvers. We replace the non-convex objective function in
(4) with a quadratic function and linearize the non-convex
constraint functions, yielding the quadratic program

minimize
d

N∑
i=1

∇fi(xk)Td+
1

2
dT∇xxLi(x

k, νki )d

subject to ∇ϕi(x
k)Td+ ϕi(x

k) ≤ 0 i = 1, · · · , N

(12)

where d = x− xk and the objective function is related to
the second-order Taylor series expansion of the Lagrangian,
with Li(x, νi) = fi(x) + νTi ϕi(x). We assume that the QP in
(12) has a non-empty feasible set, which occurs with a good
initialization of x0. In addition, we note that ∇xxLi(x

k, νki )
has to be positive definite on the null space of C(xk) to
guarantee the existence of a solution for the QP in (12).
In many cases, ∇xxLi(x

k, νki ) may not be positive definite.
Consequently, we do not utilize the exact Hessian of the
Lagrangian; rather, we use a positive definite approximation,
denoted by Hi,k, which can be obtained through finite differ-
ences using the rank-two Powell-Symmetric-Broyden (PSB),
Broyden-Fletcher-Goldfarb-Shanno (BFGS), or SALSA-SQP

update schemes [27], [28]. Specifically, in this work, we use
the BFGS update scheme to approximate ∇xxLi, which is
given by

Hi,k+1 = Hi,k −
Hi,kss

THi,k

sTHi,ks
+

yyT

yTs
(13)

where

s = xk+1 − xk, y = ∇Li(x
k+1, uk+1)−∇Li(x

k, uk+1).

We note that the BFGS update scheme guarantees positive
definiteness of {Hi,k} provided that Hi,0 > 0 and yTs > 0;
hence, a well-defined solution exists for the QP in (12). In
practice, we compute an approximation of the inverse of the
Lagrangian, i.e., H−1

i,k , and utilize a limited-memory BFGS (L-
BFGS) in target tracking problems where T is large. L-BFGS
avoids direct computation of Hi,k by storing the last γ pairs
of updates (y, s), defined in (13), which are used to compute
matrix-vector products involving Hi,k, leading to a lower
memory overhead.

B. Distributed Quadratic Programming

The second phase of our algorithm involves solving the
quadratic program in (12) in a distributed fashion, where each
agent communicates only with its one-hop neighbors. We
derive a distributed procedure for solving (12) from [3]. We
assign a local copy of x to each agent and enforce agreement
between these local copies to arrive at a globally consistent
estimate, yielding the quadratic program

minimize
{xi, ∀i∈V}

N∑
i=1

(
∇fi(xk

i )
T(xi − xk

i )

+
1

2
(xi − xk

i )
THi,k(xi − xk

i )
)

subject to ∇ϕi(x
k
i )

T(xi − xk
i ) + ϕi(x

k
i ) ≤ 0 ∀i ∈ V

xi = xj ∀j ∈ Ni,∀i ∈ V,
(14)

where xi denotes the local copy assigned to agent i. In the
subsequent discussion, we denote the concatenation of all the
copies of x by x = {xi, ∀i ∈ V}. We note the equivalence
between (12) and (14) provided the communication graph
is connected and xk = xk

i , ∀i ∈ V . In ADMM, each agent
updates its primal variables as the minimizer of the augmented
Lagrangian of (14) at each iteration, using its dual variables
at the previous iteration, and subsequently updates its dual
variables through dual ascent on the augmented Lagrangian.
We introduce the auxiliary variable c in the consensus, equality
constraints in (14), resulting in the set of constraints xi = cij
and xj = cij , and derive the augmented Lagrangian La given
by

La(x, c, u, w) =

N∑
i=1

gi,k(xi)

+
∑
j∈Ni

(
uT
ij(xi − cij) + wT

ij(xj − cij)

+
ρ

2

(
∥xi − cij∥22 + ∥xj − cij∥22

))
,

(15)
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where uij ∈ Rn and wij ∈ Rn denote dual variables
for the consensus constraints between agents i and j,
with u = [uT

ij , ∀(i, j) ∈ E ]T, w = [wT
ij , ∀(i, j) ∈ E ]T, and

c = [cTij , ∀(i, j) ∈ E ]T. The augmented Lagrangian includes
quadratic penalty terms on the violation of the consensus
constraints, with the parameter ρ weighting the contribution
of these terms to La. We denote the extended-value objective
function of (14) by

gi,k(xi) =

{
ḡi,k(xi) if ∇ϕi(x

k
i )

T(xi − xk
i ) + ϕi(x

k
i ) ≤ 0,

∞ otherwise,
(16)

where

ḡi,k(xi) = ∇fi(xk
i )

T(xi − xk
i )

+
1

2
(xi − xk

i )
THi,k(xi − xk

i ).

Note that La is quadratic and strongly convex in c (for
ρ > 0). As a result, the update procedure for c can be solved
in closed-form, yielding

ĉr+1
ij =

1

2

∑
j∈Ni

(
x̂r+1
i + x̂r+1

j

)
(17)

at iteration r, by initializing u and w to zero, using the updated
values of x computed by agents i and j, denoted by x̂i and x̂j ,
respectively. We note that each agent updates its local copy
of x, prior to updating c (refer to [3] for more details on the
derivation of the update procedures). Similarly, simplifying
the dual ascent steps for updating the dual variables results
in

q̂r+1
i = q̂ri + ρ

∑
j∈Ni

(
x̂r+1
i − x̂r+1

j

)
(18)

at iteration r, where q̂i is defined in terms of u and v, with
q̂i =

∑
j∈Ni

(uij − uji).
Each agent updates its local x variable as the minimizer

of the quadratic program

minimize
xi

∇fi(xk
i )

T(xi − xk
i ) +

1

2
(xi − xk

i )
THi,k(xi − xk

i )

+ q̂rTi xi + ρ
∑
j∈Ni

∥xi − 0.5
(
x̂r
i + x̂r

j

)
∥2
2

subject to ∇ϕi(x
k
i )

T(xi − xk
i ) + ϕi(x

k
i ) ≤ 0,

(19)
using its neighbor’s previous iterates. We further simplify the
objective function of the QP in (19) to obtain

minimize
xi

xT
i

∇fi(xk
i ) + q̂ri − ρ

∑
j∈Ni

(x̂r
i + x̂r

j)


+

1

2
xT
i (Hi,k + 2ρ|Ni|In)xi

subject to ∇ϕi(x
k
i )

T(xi − xk
i ) + ϕi(x

k
i ) ≤ 0,

(20)

which is solved by agent i.
Algorithm 1 summarizes our distributed algorithm for non-

convex target tracking problems. In the ConvexApproximation
method, each agent computes the gradient of its local objective
and constraint functions, along with an approximation of the

Hessian∇xxLi, to create a quadratic model of (4). We assume
that a good initialization of x is chosen by each agent, which
is utilized in creating the quadratic model of (4). To solve
the QP in (14), agent i initializes x̂i as the minimizer of gi,k,
with q̂0i given by the value of q̂i at the previous execution of
the Smoother method. Our algorithm requires each agent to
share only its local x-iterate with its neighbors after solving
the quadratic program in (20). Each agent does not share its
local set of observations of the target and the data associated
with its objective and constraint functions. Our algorithm
requires synchronization of the update procedures within the
Smoother method across all agents. We note, however, that
our algorithm can be extended to the asynchronous setting,
by utilizing asynchronous variants of C-ADMM.

Algorithm 1: Sequential Quadratic Alternating di-
rection method of multipliers for Target Tracking
(SQuATT)
Initialization: ∀i ∈ V
k ← 0
q0i ← 0, x0

i ∈ Rn.
do in parallel ∀i ∈ V

gi,k(xi)← ConvexApproximation(xk
i )

(xk+1
i , qk+1

i )← Smoother(gi,k, xk
i , q

k
i )

k ← k + 1
while stopping criterion not met;

Function Smoother(gi,k, xk
i , q

k
i )

Initialization:
r ← 0
q̂0i ← qki

x̂0
i ← argminimize

xi

gi,k(xi)

do in parallel ∀i ∈ V
x̂r+1
i ← Procedure (20)

Agent i communicates x̂r+1
i to its neighbors.

q̂r+1
i ← Procedure (18)

r ← r + 1
while not converged or stopping criterion is not met;
return (x̂r

i , q̂
r
i )

Remark 1: We note that the solution computed by each
agent represents the mode of the posterior probability distri-
bution of the target’s trajectory. Moreover, an approximate
covariance Σ of this estimate can be computed from the
inverse of the Hessian of the Lagrangian of (4) or its
approximation, given by

Σ−1
k =

N∑
i=1

Hi,k, (21)

at iteration k, where Σ−1
i,k = Hi,k represents the local in-

formation matrix available to each agent. As the algorithm
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proceeds, the agents obtain better approximations of the mode
and covariance of the posterior probability distribution of the
target’s trajectory. Further, computing the information matrix
Σ−1

k in (21) can be useful for the agents to quantify their
certainty in their trajectory estimates. However, this requires a
distributed consensus procedure on the approximate Hessian
computed locally by each agent to aggregate information
from all agents, such as the linear consensus protocol or
the push sum technique [29], [30]. In addition, agent i
computes Hi,k during the execution of our algorithm. As
a result, computing the summands in (21) does not incur
any additional computational cost. Notably, the ℓ2-norm of
the local information matrix of each agent is not greater
than the composite information matrix Σ−1

k . Consequently,
each agent does not become overconfident in its estimate
of the target’s trajectory if it utilizes its local information
matrix to approximate the covariance. Hence, if necessary,
the consensus procedure required to compute (21) can be
omitted, to avoid additional computational overhead.

V. CONVERGENCE

In this section, we analyze the convergence properties of our
algorithm, beginning with the second phase of our algorithm,
which involves computing a solution for the quadratic program
in (14).

Theorem 1: The iterate x̂r
i converges to the optimal so-

lution of the QP in (14), ∀i ∈ V . Moreover, all the agents
reach consensus, with xi = x, ∀i ∈ V .

Proof: Generally, convergence of ADMM requires that
the sub-problems arising in the update procedures are solvable
and that the Lagrangian of the associated optimization
problem has a saddle-point. We note that the quadratic
program in (14) satisfies Slater’s condition [31], provided
that the QP does not have non-empty feasible set. As a
result, strong duality holds, and the Lagrangian of (14)
has a saddle-point. In addition, positive definiteness of the
sequence {Hi,k} guarantees that the QP (14) and the resulting
update procedures have well-defined solutions. For a complete
proof, refer to [32]. Further, the dual residual decays to zero,
indicating that the iterates of all agents converge to the same
solution.

In the subsequent discussion, we represent the common
solution computed by all agents at iteration k by xk, obtained
at the conclusion of the ADMM method. Before proceeding,
we introduce the projection operator onto the tangent space
of the active inequality constraints at x:

P(x) = I − C(x)
(
C(x)TC(x)

)−1
C(x)T, (22)

and denote the initial positive definite approximation of the
Hessian ∇xxLi by Hi,0.

Lemma 1: Let Assumption 3 hold. If the BFGS update
scheme (13) is utilized in generating the sequence {Hi,k}
of approximations of the Lagrangian of (4), ∀i ∈ V , then
{Hi,k} satisfies the bounded deterioration condition, i.e.,

∥Hi,k+1 −H⋆
i ∥2 ≤ (1 + α1αk)∥Hi,k −H⋆

i ∥2 + α2αk ,
(23)

where and H⋆
i = ∇xxLi(x

⋆, ν⋆i ), provided that ∥x0 − x⋆∥2
and ∥Hi,0 −H⋆

i ∥2 are sufficiently small. In addition, {Hi,k}
is uniformly bounded, i.e., there exists a positive constant α
such that

∥Hi,k∥2 ≤ α, (24)

for all k, and Hi,k has a uniformly bounded inverse, i.e.,
there exists a positive constant ξ such that

∥H−1
i,k ∥2 ≤ ξ, (25)

for all k.
Proof: The proof is readily available in many existing

papers. We refer readers to [33] for the proof.
Theorem 2: Provided that the conditions in Lemma 1 are

satisfied, the sequence of approximations of the Hessian of
the Lagrangian satisfy

lim
k→∞

∥P(xk)(Hk −H⋆)(xk+1 − xk)∥2
∥xk+1 − xk∥2

= 0. (26)

Consequently, the iterates (xk, νk) converge superlinearly
to a local primal-dual optimal solution (x⋆, u⋆). Moreover,
xk converges superlinearly to x⋆ and uk converges R-
superlinearly to u⋆.

Proof: We omit the proof here. Refer to [34], [35] for
details of the proof.

VI. SIMULATIONS

Now, we examine the performance of the distributed
algorithm SQuATT in multi-agent non-convex target tracking
problems. We consider a target with Dubins-car dynamics,
given by

˙̄xt =

 ṗx,t
ṗy,t
θ̇t

 =

 ut cos(θt)
ut sin(θt)
ut

L tan(βt)

 , (27)

where x̄t = [px,t, py,t, θt]
T ∈ R3 denotes the state of the

target at time t, pt ∈ R2 denotes the 2D position of the
center of the rear axle of the target, θt denotes the heading of
the vehicle, and L denotes the length of its wheelbase, i.e., the
distance between the front and rear axles. The control inputs
include the velocity ut ∈ R and the steering angle of the
front wheels βt ∈ R. Using the forward Euler discretization
scheme, we obtain the discrete-time dynamics model

x̄t+1 =

 px,t + δt · ut cos(θt)
py,t + δt · ut sin(θt)
θt + δt · ut

L tan(βt)

 , (28)

where δt denotes the time interval. We note that each agent
does not have access to the control inputs of the target.
Consequently, we approximate the dynamics model of the
target using the nominal speed and steering angle of the
target, ū and β̄, respectively, for ut and βt. We reiterate that
ū and β̄ do not represent the actual speed and steering angle
of the target, which are unknown. In fact, the values of ū
and β̄ may be quite far from the actual speed and steering
angle of the target at an arbitrary time instant t. As a result,
we capture the inherent approximation errors in the dynamics
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model of the target through the process noise term vt ∈ R3

as well as our confidence in the resulting dynamics model
through the covariance of the process noise P ∈ R3×3. The
non-convex dynamics model in (28) leads to a non-convex
MAP optimization problem. We assume each agent can obtain
noisy measurements of the range and heading of the target
using its onboard sensors, such as radars or cameras, with
the associated measurement model of agent i given by

yi,t = hi(xt) + ωi,t =

[
∥ηi,t − pt∥22
πi,t − θt

]
+ ωi,t, (29)

where ηi,t ∈ R2 denotes the 2D position of agent i, πi,t ∈ R2

denotes its heading angle, and ωi,t ∈ R2 denotes the measure-
ment noise. We assume the sensors have a limited sensing
range. As a result, each agent cannot observe the target over
the entire duration of the problem.

The agents collectively estimate the trajectory of the target
by solving (4), with the objective function given in (3). In
addition, we incorporate prior knowledge that each agent
must maintain a specified distance di ∈ R++ from the target
vehicle at all time to avoid collisions through the constraint

ϕi(xt) = d2i − ∥ηi,t − pt∥22, (30)

in (4). We examine the convergence rates of SQuATT in com-
parison to the following distributed non-convex optimization
methods: ADMM [25], NEXT, [16] and dual decomposition
[20] to a centralized solution in this problem, with N = 25
robots. We set the maximum number of iterations of each
method at 2000 iterations, with the convergence threshold set
at 1e−5. We randomly generate the ground-truth trajectory of
the target along with each agent’s measurements, the process
noise and measurement noise covariance matrices, and the
prior distribution of the target’s initial state. We show the
estimated trajectory of the target in one instance of the target
tracking problem in Figure 1, with a few of the robots (in
orange-colored circles) displayed for easy visualization. The
estimated trajectory of the target begins at the square in
Figure 1 (see the attached video for additional information1).

Figure 2 shows the convergence rates of each algorithm on a
randomly-generated connected communication network, with
a connectivity ratio κ = 0.74, where κ represents a measure
of the connectedness of a communication network, given
by κ = 2|E|

N(N−1) . SQuATT requires the smallest number of
iterations for convergence compared to the other algorithms.
In Table I, we highlight the total computation time per
agent required for convergence in each algorithm, across
a range of randomly-generated communication graphs with
different connectivity ratios. SQuATT provides about three
times speedup in the computation time (with respect to the
best competing algorithm), across the range of communication
networks. In Table II, we provide the cumulative size of
messages exchanged per agent required for convergence in
each algorithm, across the same range of communication
graphs. We note that SQuATT incurs a communication
cost comparable to ADMM, which attains the smallest

1https://bit.ly/3fTGvdf

Fig. 1. The estimated trajectory of a Dubins car by a group of agents (in
orange-colored circles) measuring the range and bearing of the target when
the target is within sensing range.

communication cost. In general, each algorithm converges
faster on networks with greater connectivity ratios and
requires more communication rounds to circulate information
in networks with smaller connectivity ratios.

Fig. 2. On a randomly-generated communication network with κ = 0.74,
SQuATT requires a smaller number of iterations to converge compared to
ADMM, NEXT, and dual decomposition.

VII. CONCLUSION

We introduce a distributed algorithm for non-convex target
tracking problems, which enables a group of agents to
collaboratively estimate the trajectory of a target without
communicating local observations of the target, and without
requiring a central node to coordinate computation. Each
agent communicates with its one-hop neighbors over a
communication network to reach agreement on a common
estimate of the target’s trajectory. Our algorithm provides
faster empirical convergence to a locally optimal solution of
the non-convex target tracking problem compared to other
distributed algorithms, making it suitable for target tracking
problems with limited access to adequate computation and
communication resources. In future work, we aim to apply
trust-region optimization techniques to improve the conver-
gence properties of our algorithm and robust asynchronous
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TABLE I
THE MEAN AND STANDARD DEVIATION OF THE TOTAL COMPUTATION

TIME (COMP. TIME) PER AGENT, IN SECONDS, FOR EACH DISTRIBUTED

ALGORITHM, ACROSS A RANGE OF COMMUNICATION GRAPHS WITH

DIFFERENT CONNECTIVITY RATIOS, κ.

Algorithm κ = 0.40 κ = 0.72 κ = 0.95 κ = 1.00

SQuATT 3.363± 0.00404 3.128± 0.00322 2.856± 0.00294 1.996± 0.00214
ADMM 9.301± 0.475 8.319± 0.401 7.450± 0.361 4.042± 0.192
NEXT 25.425± 0.784 27.797± 0.891 25.698± 0.821 27.388± 0.839

Dual Decomposition 55.304± 0.0563 54.627± 0.0570 55.957± 0.0575 54.764± 0.0586

TABLE II
THE CUMULATIVE SIZE OF MESSAGES EXCHANGED PER AGENT, IN MB,

FOR EACH DISTRIBUTED ALGORITHM, ACROSS A RANGE OF

COMMUNICATION GRAPHS WITH DIFFERENT CONNECTIVITY RATIOS, κ.

Algorithm κ = 0.40 κ = 0.72 κ = 0.95 κ = 1.00

SQuATT 3.850 3.494 3.192 2.227
ADMM 3.456 3.101 2.746 1.483
NEXT 19.210 19.210 19.210 19.210

Dual Decomposition 28.805 28.805 28.805 28.805

methods that are robust to different agents completing the
update procedures at different rates.
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