
1

Distributed Optimization Methods for Multi-Robot
Systems: Part I — A Tutorial

Ola Shorinwa,1 Trevor Halsted,1 Javier Yu,2 Mac Schwager2

Abstract—Distributed optimization provides a framework for
deriving distributed algorithms for a variety of multi-robot
problems. This tutorial constitutes the first part of a two-part
series on distributed optimization applied to multi-robot problems,
which seeks to advance the application of distributed optimization
in robotics. In this tutorial, we demonstrate that many canonical
multi-robot problems can be cast within the distributed optimiza-
tion framework, such as multi-robot simultaneous localization and
mapping (SLAM), multi-robot target tracking, and multi-robot
task assignment problems. We identify three broad categories
of distributed optimization algorithms: distributed first-order
methods, distributed sequential convex programming, and the
alternating direction method of multipliers (ADMM). We describe
the basic algorithmic structure of each category and provide
representative algorithms within each category. We then work
through a simulation case study of multiple drones collaboratively
tracking a ground vehicle. We compare solutions to this problem
using a number of different distributed optimization algorithms.
In addition, we implement a distributed optimization algorithm
in hardware on a network of Raspberry Pis communicating
with XBee modules to illustrate robustness to the challenges of
real-world communication networks.

Index Terms—distributed optimization, multi-robot systems,
distributed robot systems, robotic sensor networks

I. INTRODUCTION

Distributed optimization is the problem of minimizing a joint
objective function subject to constraints using an algorithm
implemented on a network of communicating computation
nodes. In this tutorial, we specifically consider the computation
nodes as robots and the network as a multi-robot mesh network.
While distributed optimization has been a longstanding topic
of research in the optimization community (e.g., [1], [2]),
its usage in multi-robot systems is limited to only a handful
of examples. However, we contend that many problems in
multi-robot coordination and collaboration can be formulated
and solved within the framework of distributed optimization,
yielding a powerful new tool for multi-robot systems. We
show in this tutorial that cooperative estimation [3], distributed
SLAM, multi-agent learning [4], and collaborative motion
planning [5] are all amenable to approaches based on distributed
optimization.

This tutorial constitutes the first part of a two-part series on
distributed optimization methods for multi-robot systems. In
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the first part (the tutorial), we focus on introducing the concepts
of distributed optimization in application to a broad class of
multi-robot problems, the second part (the survey) provides
a survey of existing distributed optimization methods, and
highlights open research problems in distributed optimization
for multi-robot systems. This series is directed towards robotics
researchers and practitioners interested in learning about
distributed optimization techniques, and their potential to yield
novel solutions to problems in multi-robot coordination.

We consider problems that are separable, meaning the
joint objective function can be expressed as a sum over each
robot’s local objective functions, and the joint constraints
can be expressed as the intersection over the robots’ local
constraints. Each robot only requires knowledge of its own
local objective and constraints, and only communicates with
one-hop neighbors in a mesh network. The algorithms we
discuss are homogeneous, in that each robot executes the same
algorithmic steps. There is no specialized leader robot, no
hierarchy or differentiated role assignments, and no robot has
knowledge of the joint objective or constraints. In general, these
algorithms are iterative, with each robot sharing its intermediate
decision variables and/or problem gradients with its one-hop
neighbors at each iteration. As the iterations proceed, the
decision variables of all the robots converge to a common
solution of the optimization problem. In convex problems,
each robot obtains a globally optimal solution to the joint
problem. In non-convex problems, the robots typically reach
consensus on a locally optimal solution.1

We describe three broad classes of optimization algorithms:
Distributed First-Order Methods (in which the update procedure
for the iterates require each robot to compute a gradient of
its local objective function), Distributed Sequential Convex
Methods (in which the update procedure for the iterates
require robots to compute higher-order derivatives, such as
Hessians, in addition to gradients), and Alternating Direction
Method of Multiplier (ADMM) Methods (in which each robot
optimizes a full sub-problem at each iteration). We give key
examples from each class, and discuss their implementation
details. We also implement these algorithms in an example
scenario in which multiple aerial robots collaborate to estimate
the trajectory of a moving target. Finally, we demonstrate a
hardware implementation of an ADMM algorithm on a network
of Raspberry Pis communicating with XBee radios.

In some cases, it may not be obvious that a multi-robot
problem is of the appropriate form for a distributed optimization

1This is the behavior we often observe in practice, although analytical
convergence and consensus guarantees for the non-convex case remain an
open area of research.
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algorithm. One may have to manipulate the problem formula-
tion to express it as a separable optimization. We demonstrate in
this tutorial that many core multi-robot problems, namely multi-
robot simultaneous localization and mapping (SLAM), multi-
robot target tracking, multi-robot task assignment, collaborative
trajectory planning, and multi-robot learning, can be cast
in this form. Optimization-based approaches often provide
new flexibility, new insights, and new performance guarantees
in solving multi-robot problems. For example, multi-robot
target tracking problems are typically solved via filtering or
smoothing approaches, leading to challenges in managing the
cross-correlation of local measurements [6]. Formulating multi-
robot target tracking problems as optimization problems avoids
these drawbacks.

A. Centralized vs Distributed Optimization
In principle, multi-robot problems can be solved through

centralized optimization. This could be done by passing all
information to a leader robot or a base station to perform the
computation centrally. However, such centralized techniques
are not scalable to large groups of robots, require large amounts
of communication to aggregate the data at one location, and
introduce a single point of vulnerability (the leader or base
station) to faults and attacks. Instead, distributed optimization
algorithms enable each robot to obtain an optimal solution
of the joint problem locally, through communications with
one-hop neighbors, without a leader or single point of failure.

Distributed optimization algorithms also have an inherent
data-privacy property. The robots co-optimize a joint objective
without sharing their local “problem data” with one another.
Specifically, while robots communicate the value of their local
decision variables and/or gradients, they do not expose the
functional form of their objective and constraint functions, or
directly communication raw sensor data with one another. This
may facilitate cooperation across competing manufacturers or
competing service providers without exposing proprietary data,
or without violating data privacy laws.

Despite their many advantages, distributed optimization
algorithms do come with some drawbacks compared to cen-
tralized methods. Since each robot progressively obtains more
information via communication with its neighbors, we observe
that distributed optimization algorithms require a greater
number of iterations for convergence than their centralized
counterparts, and often require a longer computation time
to converge compared to centralized methods, particularly
in small-scale problems. However, there seems to be little
research comparing the empirical or theoretical performance
of distributed vs centralized optimization algorithms, which
presents an interesting direction for future research. Some
distributed algorithms can also be sensitive to hyper-parameter
tuning, can have a strong reliance on synchronous algorithmic
updates, and can be intolerant of dynamically changing
networks. In this tutorial we highlight which algorithm classes
suffer from these challenges, and discuss practical ways to
accommodate these requirements in robotics problems.

B. Contributions
This tutorial paper has three primary objectives:

1) Describe three main classes of distributed optimization
algorithms.

2) Highlight the practical implications of typical assump-
tions made by distributed optimization algorithms and
provide potential strategies for addressing the associated
challenges.

3) Demonstrate the formulation of many canonical multi-
robot problems as distributed optimization problems.

4) Provide a case study comparing multiple different dis-
tributed optimization algorithms in multi-drone target
tracking scenario, both in simulation and on networking
hardware.

C. Organization

We present notation and mathematical preliminaries in Sec. II
and formulate the general separable distributed optimization
problem in Sec. III. Section IV describes the three main
categories of distributed optimization algorithms and provides
representative algorithms for each category. In Sec. V, we
demonstrate that many multi-robot problems can be cast within
the framework of distributed optimization. In Sec. VI we
offer implementation tips, practical performance observations,
and discuss limitations of these methods. Section VII gives a
demonstration of distributed optimization algorithms applied
to a multi-drone vehicle tracking problem in simulation and
hardware, and we give concluding remarks in Sec. VIII.

II. NOTATION AND PRELIMINARIES

In this section, we introduce the notation used in this paper
and provide the definitions of mathematical concepts relevant
to the discussion of the distribution optimization algorithms.
We denote the gradient of a function f : Rn ! R as rf and
its Hessian as r2

f . We denote the vector containing all ones as
1n, where n represents the number of elements in the vector.

We discuss some relevant notions of the connectivity of a
graph.

Definition 1 (Connectivity of an Undirected Graph). An
undirected graph G is connected if a path exists between every
pair of vertices (i, j) where i, j 2 V . Note that such a path
might traverse other vertices in G.

Definition 2 (Connectivity of a Directed Graph). A directed
graph G is strongly connected if a directed path exists between
every pair of vertices (i, j) where i, j 2 V . In addition, a
directed graph G is weakly connected if the underlying
undirected graph is connected. The underlying undirected graph
Gu of a directed graph G refers to a graph with the same set of
vertices as G and a set of edges obtained by considering each
edge in G as a bi-directional edge. Consequently, every strongly
connected directed graph is weakly connected; however, the
converse is not true.

Definition 3 (Stochastic Matrix). A non-negative matrix
W 2 Rn⇥n is referred to as a row-stochastic matrix if

W1n = 1n, (1)
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in other words, the sum of all elements in each row of the
matrix equals one. We refer to W as a column-stochastic matrix
if

1>
nW = 1>

n . (2)

Likewise, for a doubly-stochastic matrix W ,

W1n = 1n and 1>
nW = 1>

n . (3)

In distributed optimization in multi-robot systems, robots
perform communication and computation steps to minimize
some joint objective function. We focus on problems in
which the robots’ exchange of information must respect the
topology of an underlying distributed communication graph,
which could possibly change over time. This communication
graph, denoted as G(t) = (V(t), E(t)), consists of vertices
V(t) = {1, . . . , N} and edges E(t) ✓ V(t)⇥ V(t) over which
pairwise communication can occur. For undirected graphs, we
denote the set of neighbors of robot i as Ni(t). For directed
graphs, we refer to the set of robots which can send information
to robot i as the set of in-neighbors of robot i, denoted by
N+

i (t). Likewise, for directed graphs, we refer to the set of
robots which can receive information from robot i as the out-
neighbors of robot i, denoted by N�

i (t).

III. PROBLEM FORMULATION

We consider a general separable distributed optimization
problem of the form

min
x

X

i2V
fi(x)

subject to gi(x) = 0 8i 2 V
hi(x)  0 8i 2 V

(4)

where x 2 Rn denotes the joint optimization variable, fi :
Rn ! R is the local objective function for robot i, gi : Rn ! R
is the equality constraint function of robot i, and hi : Rn ! R
denotes its inequality constraint function. Each robot i 2 V
has access to its local objective constraint functions, but has
no knowledge of the local objective and constraint functions of
other robots. Such problems arise in many robotics applications
where the local objective functions depend on data collected
locally by each robot, often in the form of measurements taken
by sensors attached to the robot. The robots seek to collectively
solve this joint optimization problem without a leader or central
coordinator. We note that not all robots need to have a local
constraint function. In these cases, the corresponding constraint
functions are omitted in (4).

We consider distributed algorithms in which each robot main-
tains a local copy of the optimization variable, with xi denoting
robot i’s local vector of optimization variables. Distributed
optimization algorithms solve an equivalent reformulation of
the optimization problem (4), given by

min
{xi, 8i2V}

X

i2V
fi(xi)

subject to xi = xj 8(i, j) 2 E
gi(xi) = 0 8i 2 V
hi(xi)  0 8i 2 V.

(5)

We call the xi = xj 8(i, j) 2 E the consensus con-
straints. Under the assumption that the communication graph
is connected for undirected graphs and weakly connected
for directed graphs, the optimal cost in (5) is equivalent
to that in (4), and the minimizing arguments x

⇤
i in (5) are

equal to the minimizing argument x
⇤ of (4) for all robots

i = 1, . . . , n. To simplify notation, we introduce the set
Xi = {xi | gi(xi) = 0, hi(xi)  0}, representing the feasible
set given the constraint functions gi and hi. Consequently, we
can express the problem in (5) succinctly as follows:

min
{xi2Xi, 8i2V}

X

i2V
fi(xi)

subject to xi = xj 8(i, j) 2 E .
(6)

IV. CLASSES OF DISTRIBUTED OPTIMIZATION
ALGORITHMS

In this section, we categorize distributed optimization al-
gorithms into three broad classes — Distributed First-Order
Methods, Distributed Sequential Convex Programming, and
ADMM Methods — based on shared mechanisms for achieving
convergence (and not necessarily based on their applicability
to multi-robot problems). We provide a brief overview of each
category, by considering a representative distributed algorithm
within each category. In the subsequent discussion, we consider
the separable optimization problem in (6).

Before describing the specific algorithms that solve dis-
tributed optimization problems, we first consider the general
framework that all of these approaches share. Each algorithm
progresses over discrete iterations k = 0, 1, . . . until conver-
gence. In general, each iteration consists of a communication
step and a computation step. Besides assuming that each
robot has the sole capability of evaluating its local objective
function fi, we also distinguish between the “internal” variables
P(k)
i that the robot computes at each iteration k and the

“communicated” variables Q(k)
i that the robot communicates to

its neighbors. Each algorithm also involves parameters R(k)
i ,

which generally require coordination among all of the robots,
but can typically be assigned before deployment of the system.

In distributed optimization, all the robots seek to collectively
minimize the joint objective function in (6) while achieving
consensus on a common set of minimizing optimization
variables. Each of the three class we describe treats the
consensus constraints in (6) differently. In distributed first
order methods, from the perspective of a single robot, the
update iterations represent a trade-off between optimality of a
robot’s individual solution based on its local objective function
versus reaching agreement with its neighbors, either on the
decision variable directly, or on the gradient of the global
objective. Asymptotically the robots’ decision variables or
gradient converge to a consensus leading to global optimality
for convex problems. In distributed sequential convex methods,
individual robots use communication to build approximate
global Hessians and gradients to execute approximate second
order update steps, asymptotically leading each agent to obtain a
global minimum in the convex case. Finally, for the alternating
direction method of multipliers these consensus constraints
are enforced explicitly through an augmented Lagrangian
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constrained optimization approach. The key insight underlying
this approach is that minimizing the local objective functions
subject to these additional agreement constraints is equivalent
to minimizing the joint objective function over a collective
decision variable.

A. Distributed First-Order Methods
Gradient decent methods have been widely applied to

solve broad classes of optimization problems, particularly
unconstrained problems. To simplify the discussion of these
methods, we consider the unconstrained variant of (6), where
we only retain the consensus constraints, and disregard the
constraint functions gi(xi) and hi(xi). We note that extensions
of gradient descent to constrained optimization typically involve
a projection of the iterates to the feasible set, a method
known as projected gradient descent. In the second part of
our series [7], we discuss extensions of gradient descent
methods to constrained optimization in greater detail. In general,
gradient descent methods only require the computation of
the gradient (i.e., the first derivative of the objective and
constraint functions); hence, these methods are also referred
to as first-order methods. When applied to the unconstrained
joint optimization problem, the updates to the optimization
variable take the form

x
(k+1) = x

(k) � ↵
(k)rf(x(k)) (7)

where ↵
(k) denotes a diminishing step-size and rf(x(k))

denotes the gradient of the objective function, given by

rf(x) =
X

i2V
rfi(x). (8)

From (8), computation of rf(x) requires knowledge of the
objective function of all robots, which is unavailable to
any individual robot, and thus requires aggregation of this
information at a central node.

Distributed First-Order (DFO) algorithms circumvent this
underlying challenge by enabling each robot to utilize only
its local gradients, while communicating with its neighbors
to reach consensus on a common solution. In many DFO
methods, a robot aggregates the information of its neighbors
by taking the weighted combination of the local variables or
gradients as specified by a stochastic weighting matrix W . The
stochastic matrix W must be compatible with the underlying
communication network (i.e., wij is only non-zero if robot j
can send information to robot i).

We begin with a basic distributed gradient descent method,
described by the update procedure:

x
(k+1)
i =

X

j2Ni[{i}

wijx
(k)
j � ↵

(k)rfi
⇣
x
(k)
i

⌘
, (9)

where each robot mixes its local estimates with those of its
neighbors by taking a weighted combination of these local
estimates before taking a step in the direction of its local
gradient. More generally, a subgradient @fi(x

(k)
i ) (where @fi

denotes the subgradient of fi) can be utilized in place of the
gradient of the local objective function, yielding the canonical
distributed subgradient method [8]. This paradigm, consisting

of taking a weighted combination of local estimates prior
to a descent step, is referred to as the Combine-Then-Adapt
(CTA) Paradigm. In contrast, in Adapt-Then-Combine (ATC)
methods, each robot updates its local optimization variable
using its gradient prior to combining its local variable with
that of its neighbors, with the update procedure given by

x
(k+1)
i =

X

j2Ni[{i}

wij

⇣
x
(k)
j � ↵

(k)rfi
⇣
x
(k)
i

⌘⌘
, (10)

where x
(k)
j 2 Rn denotes the local variable of neighboring

robot j, and each robot updates its local variable x
(k+1)
i using

the local gradient before communicating its local variable
with its neighbors and aggregating their respective updates.
Consequently, we can further categorize DFO methods into
two broad subclasses: Adapt-Then-Combine (ATC) methods
and Combine-Then-Adapt (CTA) methods, based on the relative
order of the communication and computation procedures.

The algorithms given by (10) and (9) do not converge to the
optimal solution of the joint optimization problem, in general.
To see this, consider the case where xi = x

?, 8i 2 V , where x
?

denotes the optimal solution of the joint optimization problem.
In the ATC approach, we can express the update procedure
as the difference between two terms:

P
j2Ni[{i} wijx

(k)
j and

P
j2Ni[{i} ↵

(k)rfi
⇣
x
(k)
i

⌘
. Given that W is row-stochastic,

the first term in ATC and CTA approaches simplifies to
x
?. However, in ATC approaches, the second term repre-

sents a weighted combination of the local gradients of each
robot, which is not necessarily zero. In fact, we only haveP

i2V rfi(x?) = 0, in the general case. Likewise, in CTA
methods, the second term represents the local gradient of each
agent, which is not necessarily zero. As a result, the iterate
x
(k+1)
i moves away from the optimal solution x

?.
If ↵

(k) did not asymptotically converge to zero, then the
iterates would only converge to a neighborhood of the globally
optimal value (observe that substituting the optimal value into
(10) or (9) yields a nonzero innovation). Therefore, methods
of this form require a diminishing step-size, which is often
given by ↵

(k+1) = ↵(0)
p
k

.
In extensions of these basic approaches, we replace the

gradient rfi
⇣
x
(k)
i

⌘
with a new variable y

(k)
i that uses

consensus to aggregate gradient information from the other
robots and track the average gradient of the joint objective
function. Gradient tracking methods, for example DIGing [9],
employ an estimate of the average gradient computed through
dynamic average consensus with

y
(k+1)
i =

X

j2Ni[{i}

wijy
(k)
j +

h
rfi

⇣
x
(k+1)
i

⌘
�rfi

⇣
x
(k)
i

⌘i
.

(11)
Since the difference between the gradients at successive
updates decays to zero as convergence is reached, DIGing
does not require a diminishing step-size. At initialization
of the algorithm, all the robots select a common step-size.
Further, robot i initializes its local variables with x

(0)
i 2 Rn

and y
(0)
i = @fi(x

(0)
i ). Algorithm 1 summarizes the update pro-

cedures in the distributed gradient tracking method DIGing [9].
We note that ATC methods are compatible with uncoordinated
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Algorithm 1: DIGing

Initialization: k  0, x(0)
i 2 Rn, y(0)i = rfi(x(0)

i )

Internal variables: P(k)
i = ;

Communicated variables: Q(k)
i =

⇣
x
(k)
i , y

k
i

⌘

Parameters: R(k)
i = (↵, wi)

do in parallel 8i 2 V
Communicate Q(k)

i to all j 2 Ni

Receive Q(k)
j from all j 2 Ni

x
(k+1)
i =

X

j2Ni[{i}

wijx
(k)
j � ↵y

(k)
i

y
(k+1)
i =

X

j2Ni[{i}

wijy
(k)
j +rfi(x(k+1)

i )�rfi(x(k)
i )

k  k + 1
while stopping criterion is not satisfied

step-sizes, i.e., each robot does not have to use the same step-
size. Unlike ATC methods, CTA methods require a common
step-size among the robots for convergence to an optimal
solution.

B. Distributed Sequential Convex Programming

Sequential convex programming entails solving an op-
timization problem by computing a sequence of iterates,
representing the solution of a series of approximations of the
original problem. Newton’s method is a prime example of a
sequential convex programming method. In Newton’s method,
and more generally, quasi-Newton methods, we take a quadratic
approximation of the objective function at an operating point
x
(k), resulting in

f̃(x) = f(x(k)) +rf(x(k))>(x� x
(k))

+
1

2
(x� x

(k))>H(x(k))(x� x
(k)),

(12)

where H(·) denotes the Hessian of the objective function, r2
f ,

or its approximation. Subsequently, we compute a solution to
the quadratic program, given by

x
(k+1) = x

(k) �H
�
x
(k)

��1rf̃(x(k)), (13)

which requires centralized evaluation of the gradient and
Hessian of the objective function. Distributed Sequential
Programming enable each robot to compute a local estimate
of the gradient and Hessian of the objective function, and thus
allows for the local execution of the update procedures. We
consider the NEXT algorithm [10] to illustrate this class of
distributed optimization algorithms. We assume that each robot
uses a quadratic approximation of the optimization problem
as its convex surrogate model U(·). In NEXT, each robot
maintains an estimate of the average gradient of the objective
function, as well as an estimate of the gradient of the objective
function excluding its local component (e.g.,

P
j 6=i fj(xi) for

robot i, which we denote by ⇡̃
(k)
i ). At a current iterate x

(k)
i ,

robot i creates a quadratic approximation of the optimization
problem, given by

minimize
x̃i2Xi

⇣
rfi(x(k)

i ) + ⇡̃
(k)
i

⌘> �
x̃i � x

(k)
i

�

+
1

2

�
x̃i � x

(k)
i

�>
Hi

�
x
(k)
i

��
x̃i � x

(k)
i

�
,

(14)

which takes into account the robot’s local Hessian Hi or its
estimate (e.g., computed using a quasi-Newton update scheme
[11], [12], [13]) and can be solved locally. Each robot computes
a weighted combination of its current iterate and the solution
of (14), given by the procedure

z
(k)
i = x

(k)
i + ↵

(k)
⇣
x̃
(k)
i � x

(k)
i

⌘
, (15)

where ↵
(k) 2 (0, 1) denotes a diminishing step-size. Subse-

quently, robot i computes its next iterate by taking a weighted
combination of its local estimate z

(k)
i with that of its neighbors

via the procedure

x
(k+1)
i =

X

j2Ni[{i}

wijz
(k)
j , (16)

for consensus on a common solution of the original optimiza-
tion problem, where the weight wi,j must be compatible with
the underlying communication network. In addition, robot i
updates its estimates of the average gradient of the objective
function, denoted by yi, using dynamic average consensus in
the same form as (11). Updating ⇡̃

(k)
i takes a similar form.

In the limit that the iterates approach a common value x
⇤, yi

approaches the average gradient of the joint objective function
at x⇤ and so does ⇡̃

(k)
i + rfi

⇣
x
(k)
i

⌘
. Thus, NEXT reasons

that an appropriate update for ⇡̃i takes the following form:

⇡̃
(k+1)
i = N · y(k+1)

i �rfi(x(k+1)
i ). (17)

Each agent initializes its local variables with x
(0)
i 2 Rn,

y
(0)
i = rfi(x(0)

i ), and ⇡̃
(k+1)
i = Ny

(0)
i �rfi(x

(0)
i ), prior to

executing the above update procedures. We note that NEXT is
guaranteed to converge to a stationary point of the optimization
problem [10]. Algorithm 2 summarizes the update procedures
in NEXT [10].

C. Alternating Direction Method of Multipliers

The alternating direction method of multipliers (ADMM)
belongs to the class of optimization algorithms referred
to as the method of multipliers (or augmented Lagrangian
methods), which compute a primal-dual solution pair of a given
optimization problem. The method of multipliers proceeds
in an alternating fashion: the primal iterates are updated as
minimizers of the augmented Lagrangian, and subsequently,
the dual iterates are updated via dual (gradient) ascent on the
augmented Lagrangian. The procedure continues iteratively
until convergence or termination. The augmented Lagrangian
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Algorithm 2: NEXT

Initialization: k  0, x(0)
i 2 Rn, y(0)i = rfi(x(0)

i ),
⇡̃
(0)
i = Ny

(0)
i �rfi(x

(0)
i )

Internal variables: Pi =
⇣
x
(k)
i , x̃

(k)
i , ⇡̃

(k)
i

⌘

Communicated variables: Q(k)
i =

⇣
z
(k)
i , y

(k)
i

⌘

Parameters: R(k)
i =

�
↵
(k)

, wi, U(·),Xi

�

do in parallel 8i 2 V
x̃
(k)
i = argmin

x2Xi

U

⇣
x;x(k)

i , ⇡̃
(k)
i

⌘

z
(k)
i = x

(k)
i + ↵

(k)
⇣
x̃
(k)
i � x

(k)
i

⌘

Communicate Q(k)
i to all j 2 Ni

Receive Q(k)
j from all j 2 Ni

x
(k+1)
i =

X

j2Ni[{i}

wijz
(k)
j

y
(k+1)
i =

X

j2Ni[{i}

wijy
(k)
j

+
h
rfi(x(k+1)

i )�rfi(x(k)
i )

i

⇡̃
(k+1)
i = N · y(k+1)

i �rfi(x(k+1)
i )

k  k + 1
while stopping criterion is not satisfied

of the problem in (6) (with only the consensus constraints) is
given by

La(x, q) =
NX

i=1

fi(xi)

+
NX

i=1

X

j2Ni

⇣
q
>
i,j(xi � xj) +

⇢

2
kxi � xjk22

⌘
,

(18)

where qi,j represents a dual variable for the consensus con-
straints between robots i and j, q =

⇥
q
>
i,j , 8(i, j) 2 E

⇤>, and
x =

⇥
x
>
1 , x

>
2 , · · · , x>

N

⇤>. The parameter ⇢ > 0 represents a
penalty term on the violations of the consensus constraints.
Generally, the method of multipliers computes the minimizer
of the augmented Lagrangian with respect to the joint set of op-
timization variables, which hinders distributed computation. In
contrast, in the alternating direction method of multipliers, the
minimization procedure is performed block-component-wise,
enabling parallel, distributed computation of the minimization
subproblem in the consensus problem. However, many ADMM
algorithms still require some centralized computation, rendering
them not fully-distributed in multi-robot mesh network sense
that we consider in this paper.

We focus here on ADMM algorithms that are distributed over
robots in a mesh network, with each robot executing the same
set of distributed steps. We specifically consider the consensus
alternating direction method of multipliers (C-ADMM) [14]
as a representative algorithm within this category. C-ADMM
introduces auxiliary optimization variables into the consensus

Algorithm 3: C-ADMM

Initialization: k  0, x(0)
i 2 Rn, y(0)i = 0

Internal variables: P(k)
i = y

(k)
i

Communicated variables: Q(k)
i = x

(k)
i

Parameters: R(k)
i = ⇢

do in parallel 8i 2 V

x
(k+1)
i = argmin

xi2Xi

(
fi(xi) + x

>
i y

(k)
i · · ·

+ ⇢

X

j2Ni

����xi �
1

2

⇣
x
(k)
i + x

(k)
j

⌘����
2

2

)

Communicate Q(k)
i to all j 2 Ni

Receive Q(k)
j from all j 2 Ni

y
(k+1)
i = y

(k)
i + ⇢

X

j2Ni

⇣
x
(k+1)
i � x

(k+1)
j

⌘

k  k + 1
while stopping criterion is not satisfied

constraints in (6) to enable fully-distributed update procedures.
The primal update procedure of robot i takes the form

x
(k+1)
i = argmin

xi2Xi

(
fi(xi) + x

>
i y

(k)
i

+ ⇢

X

j2Ni

����xi �
1

2

⇣
x
(k)
i + x

(k)
j

⌘����
2

2

)
,

(19)
which only requires information locally available to robot
i, including information received from its neighbors (i.e.,
x
k
j , 8j 2 Ni). As a result, this procedure can be executed

locally by each agent, in parallel. After communicating with
its neighbors, each robot updates its local dual variable using
the procedure

y
(k+1)
i = y

(k)
i + ⇢

X

j2Ni

⇣
x
(k+1)
i � x

(k+1)
j

⌘
, (20)

where yi denotes the composite dual variable of robot i,
corresponding to the consensus constraints between robot i

and its neighbors, which is initialized to zero. Algorithm 3
summarizes the update procedures in C-ADMM [14].

V. MULTI-ROBOT PROBLEMS POSED AS DISTRIBUTED
OPTIMIZATIONS

Many robotics problems have a distributed structure, al-
though this structure might not be immediately apparent. In
many cases, applying distributed optimization methods requires
reformulating the original problem into a separable form that
allows for distributed computation of the problem variables
locally by each robot. In this section, we consider five general
problem categories that can be solved using distributed opti-
mization tools: multi-robot SLAM, multi-robot target tracking,
multi-robot task assignment, collaborative planning, and multi-
robot learning. We note that an optimization-based approach
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Fig. 1. A factor graph representation of a multi-robot SLAM problem, where
two robots, robot i (blue circles) and j (green circles), seek to jointly estimate
a set of map features {m1,m2, · · · } (orange triangles) in addition to their
own pose trajectory {xi,t, xj,t, 8t}, from the set of odometry measurements
{ẑi,t, ẑj,t} and observations of each map feature k {z̆ki , z̆kj }.

to solving some of these problems might not be immediately
obvious. However, we show that many of these problems can
be quite easily formulated as distributed optimization problems
through the introduction of auxiliary optimization variables, in
addition to an appropriate set of consensus constraints.

A. Multi-Robot Simultaneous Localization and Mapping
(SLAM)

In multi-robot simultaneous localization and mapping
(SLAM) problems, a group of robots seek to estimate their
position and orientation (pose) within a consistent represen-
tation of their environment. In a full landmark-based SLAM
approach, we consider optimizing over both M map features
m1, . . . ,mM as well as N robot poses x1, . . . , xN over a
duration of T + 1 timesteps:

minimize
x,m

NX

i=1

T�1X

t=0

kz̄i,t(xi,t, xi,t+1)� ẑi,t+1k2⌦i,t

+
NX

i=1

MX

k=1

kz̃ki (xi,mk)� z̆
k
i k2⇤i,t

.

(21)

The z terms denote measurements (ẑ, z̆) and measurement
functions (z̄, z̃): the expected relative poses z̄i,t are functions
of two adjacent poses of robot i derived from robot odometry
measurements, and the expected relative pose z̃

k
i is a function

of the pose of robot i and the position of map feature
k. We have concatenated the problem variables in (21),
with xi =

⇥
x
>
i,0, x

>
i,1, · · · , x>

i,T

⇤>, x =
⇥
x
>
1 , x

>
2 , · · · , x>

N

⇤>,
and m =

⇥
m

>
1 ,m

>
2 , · · · ,m>

M

⇤>. The error terms in the ob-
jective function are weighted by the information matrices ⌦i,t

and ⇤i,t associated with the measurements collected by robot
i.

Although the first set of terms in the objective function
of the optimization problem (21) is separable among the
robots, the second set of terms is not. Consequently, the
optimization problem must be reformulated. Non-separability
of the objective function arises from the coupling between the
map features and the robot poses. To achieve separability of

the objective function, we can introduce local copies of the
variables corresponding to each feature, with an associated set
of consensus (equality) constraints to ensure that the resulting
problem remains equivalent to the original problem (21). The
resulting problem takes the form

minimize
x,m̂1,m̂2,··· ,m̂N

NX

i=1

T�1X

t=0

kz̄i,t(xi,t, xi,t+1)� ẑi,t+1k2⌦i,t

+
NX

i=1

MX

k=1

kz̃ki (xi, m̂i,k)� z̆
k
i k2⇤i,t

subject to m̂i = m̂j 8(i, j) 2 E ,

(22)

where robot i maintains m̂i, its local copy of the map m. We
note that xi is the trajectory of robot i and is only estimated
by robot i. The problem (22) is separable among the robots,
who enforce consensus between their representations of the
map; in other words, its objective function can be expressed
in the form

f(x, m̂1, m̂2, · · · , m̂N ) =
NX

i=1

fi(xi, m̂i), (23)

where

fi(xi, m̂i) =
T�1X

t=0

kz̄i,t(xi,t, xi,t+1)� ẑi,t+1k2⌦i,t

+
MX

k=1

kz̃ki (xi, m̂i,k)� z̆
k
i k2⇤i,t

. (24)

Note that the consensus constraints only involve a subset of
the local variables of each robot. Distributed optimization
algorithms are amenable to problems of this form, without any
significant modifications. In methods requiring a weighting
matrix, considering robot i, only variables involved in the
consensus constraints are combined (mixed) with those of
its neighbors. Likewise, variants of ADMM, such as SOVA
[15], can be applied to this problem. We can interpret the
bundle adjustment problem similarly—in this case, the map
features represent the scene geometry and the robot poses
include the optical characteristics of the respective cameras.
However, a challenge in applying this approach in unstructured
environments is ensuring that multiple robots agree on the
labels of the map landmarks.

An alternative approach is pose graph optimization, which
avoids explicitly estimating the map by representing the robots’
trajectories as a graph in which the edges represent the
estimated transformation between poses. A pose i consists
of a position (which we represent by the vector ⌧i) and
orientation (which we represent by the rotation matrix Ri).
In this perspective, the task of determining robot trajectories
consists of two stages, performed sequentially. In the “front-
end,” the robots process raw sensor measurements to estimate
relative poses consisting of a relative rotation (R̃ij ⇡ R

�1
i Rj)

and relative translation (⌧̃ij ⇡ ⌧j � ⌧i). The second stage
is the “back-end,” in which robots find optimal robot poses
given those relative pose measurements. Under the assumption
that the robots can perform the front-end optimization locally
(finding (R̃ij , ⌧̃ij) for each edge (i, j) in their trajectories),
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Fig. 2. A multi-robot target tracking scenario, with four quadrotors (the robots)
making noisy observations of the flagged ground vehicle (the target). The
colored cones represent the regions where each quadrotor can observe the
vehicle, given the limited measurement range of the sensors onboard each
quadrotor.

PGO addresses the back-end stage of SLAM. The objective
function of PGO, in which the robots determine the set of
poses (consisting of a rotation Ri and translation ⌧i for each
pose i) that best explain the relative pose estimates (R̃ij , ⌧̃ij),
is separable and therefore amenable to distributed optimization
techniques:

min
{(Ri,⌧i)}n

i=1

X

(i,j)2E

!ij

2
kRj�RiR̃ijk2F +

wij

2
k⌧j�⌧i�Ri⌧̃ijk22

While PGO specifically addresses solving the back-end of
SLAM, some existing distributed techniques that do not rely on
distributed optimization have also been proposed for the front-
end, e.g., [16]. We refer to [17], [18], [19], [20] for additional
details on SLAM and multi-robot SLAM.

Distributed optimization algorithms can be readily applied
to the graph-based SLAM problem in (22). Moreover, we note
that a number of related robotics problems — including rotation
averaging/synchronization and shape registration/alignment
— can be similarly reformulated into a separable form and
subsequently solved using distributed optimization algorithms
[21], [22], [23], [24], [25], [26].

B. Multi-Robot Target Tracking

In the multi-robot target tracking problem, a group of robots
collect measurements of an agent of interest (referred to as
a target) and seek to collectively estimate the trajectory of
the target. Multi-robot target tracking problems arise in many
robotics applications ranging from environmental monitoring
and surveillance to autonomous robotics applications such as
autonomous driving, where the estimated trajectory of the
target can be leveraged for scene prediction to enable safe
operation. Figure 2 provides an illustration of the multi-robot
target tracking problem where a group of four quadrotors make
noisy observations of the flagged ground vehicle (the target).
Each colored cone represents the region where each quadrotor
can observe the vehicle, given the limited measurement range
of the sensors onboard the quadrotor.

Multi-robot target tracking problems can be posed as
maximum a posterior (MAP) optimization problems where
the robots seek to compute an estimate that maximizes the
posterior distribution of the target’s trajectory given the set
of all observations of the target made by the robots. When

a model of the dynamics of target is available, denoted by
g : Rn ! Rn, the resulting optimization problem takes the
form

minimize
x

T�1X

t=0

kxt+1 � g(xt)k2⌦t

+
NX

i=1

T�1X

t=0

kyi,t � hi(xt)k2⇤i,t
,

(25)

where xt 2 Rn denotes the pose of the target at time t and
yi,t 2 Rm denotes robot i’s observation of the target at time t,
over a duration of T + 1 timesteps. We represent the trajectory
of the target with x =

⇥
x
>
0 , x

>
1 , · · · , x>

T

⇤>. While the first term
in the objective function corresponds to the error between the
estimated state of the target at a subsequent timestep and its
expected state based on a model of its dynamics, the second
term corresponds to the error between the observations collected
by each robot and the expected measurement computed from the
estimated state of the target, where the function hi : Rn ! Rm

denotes the measurement model of robot i. Further, the
information matrices ⌦t 2 Rn⇥n and ⇤i,t 2 Rm⇥m for the
dynamics and measurement models, respectively, weight the
contribution of each term in the objective function appropriately,
reflecting prior confidence in the dynamics and measurement
models. The MAP optimization problem in (25) is not separable,
hence, not amenable to distributed optimization, in its current
form, due to coupling in the objective function arising from x.
Nonetheless, we can arrive at a separable optimization problem
through a fairly straightforward reformulation [3]. We can
assign a local copy of x to each robot, with x̂i denoting robot
i’s local copy of x. The reformulated problem becomes

minimize
x̂

NX

i=1

T�1X

t=0

1

N
kx̂i,t+1 � g(x̂i,t)k2⌦t

+
NX

i=1

T�1X

t=0

kyi,t � hi(x̂i,t)k2⇤i,t

subject to x̂i = x̂j 8(i, j) 2 E ,

(26)

where x̂ =
⇥
x̂
>
1 , x̂

>
2 , · · · , x̂>

N

⇤>. Following this reformulation,
distributed optimization algorithms can be applied to compute
an estimate of the trajectory of the target from (26).

C. Multi-Robot Task Assignment
In the multi-robot task assignment problem, we seek an

optimal assignment of N robots to M tasks such that the total
cost incurred in completing the specified tasks is minimized.
However, we note that many task assignment problems consist
of an equal number of tasks and robots. The standard task
assignment problem has been studied extensively and is
typically solved using the Hungarian method [27]. However,
optimization-based methods have emerged as a competitive
approach due to their amenability to task assignment problems
with a diverse set of additional constraints, encoding individual
preferences or other relevant problem information, making
them a general-purpose approach.

The task assignment problem can be represented as a
weighted bipartite graph: a graph whose vertices can be
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divide into two sets where no two nodes within a given
set share an edge. Further, each edge in the graph has an
associated weight. In task assignment problems, the edge
weight ci,j represents the cost of assigning robot i to task
j. Figure 3 depicts a task assignment problem represented
by a weighted bipartite graph, with three robots and three
tasks. Each robot knows its task preferences only and does
not know the task preferences of other robots. Equivalently,
the task assignment problem can be formulated as an integer
optimization problem. Many optimization-based methods solve
a relaxation of the integer optimization problem. Generally, in
problems with linear objective functions and affine constraints,
these optimization-based methods are guaranteed to yield an
optimal task assignment. The associated relaxed optimization
problem takes the form

minimize
x

NX

i=1

c
>
i xi

subject to
NX

i=1

xi = 1M

1>Mxi = 1

0  x  1,

(27)

where xi 2 RM denotes the optimization variable of robot
i, representing its task assignment and x = [x1, x2, · · · , xN ].
Although the objective function of (27) is separable, the
optimization problem is not separable due to coupling of
the optimization variables arising in the first constraint. We
can obtain a separable problem, amenable to distributed
optimization, by assigning a local copy of x to each robot,
resulting in the problem

minimize
x̂

NX

i=1

c
>
i x̂i,i

subject to
NX

i=1

x̂i,i = 1M

1>M x̂i,i = 1

0  x̂i  1 8i 2 V
x̂i = x̂j 8(i, j) 2 E

(28)

where x̂i 2 RM⇥N denotes robot i’s local copy of x and
x̂ = [x̂0, x̂1, · · · , x̂N ]. Although the reformulation in (28) is
simple, it does not scale efficiently with the number of robots
and tasks. A more efficient reformulation can be obtained
by considering the dual formulation of the task assignment
problem. For brevity, we omit a discussion of this approach
in this paper and refer readers to [28], [29], [30] where this
reformulation scheme is discussed in detail.

D. Collaborative Planning, Control, and Manipulation
Generally, in collaborative planning problems, we seek to

compute state and control input trajectories that enable a
group of robots to reach a desired state configuration from a
specified initial state, while minimizing a trajectory cost and
without colliding with other agents. The related multi-robot

Tasks

Task !

Robots

Robot "
#!,#

Fig. 3. A multi-robot task assignment problem represented as a bipartite
graph, with three (Fetch) robots and three tasks. An edge with weight ci,j
between robot i and task j signifies the cost incurred by robot i if it performs
task j. In many problems, each robot’s task preferences (edge weights) is
neither known by other robots nor accessible to these robots.

Fig. 4. A multi-robot manipulation problem, with three quadrotors collabora-
tively manipulating a load rigidly attached to each quadrotor. The dashed-line
represents the reference trajectory for manipulating the load.

control problem involves computing a sequence of control
inputs that enables a group of robots to track a desired
reference trajectory or achieve some specified task such as
manipulating an object collaboratively. Figure 4 shows a
collaborative manipulation problem where three quadrotors
move an object collaboratively. The dashed-line represents the
reference trajectory for manipulating the load.

Collaborative multi-robot planning, control, and manipulation
problems have been well-studied, with a broad variety of
methods devised for these problems. Among these methods,
receding horizon or model predictive control (MPC) approaches
have received notable attention due to their flexibility in
encoding complex problem constraint and objectives. In MPC
approaches, these multi-robot problems are formulated as
optimization problems over a finite time duration at each
timestep. The resulting optimization problem is solved to obtain
a sequence of control inputs over the specified time duration;
however, only the initial control input is applied by each robot
at the current timestep. At the next timestep, a new optimization
problem is formulated, from which a new sequence of control
inputs is computed to obtain a new control input for that
timestep. This process is repeated until completion of the task.
At time t, the associated MPC optimization problem has the
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form

minimize
x,u

NX

i=1

fi(x, u)

subject to g(x, u) = 0

h(x, u)  0

xi,0 = x̄i 8i 2 V

(29)

where xi 2 Rni denotes robot i’s state trajectory, ui 2 Rmi de-
notes its control input trajectory, and x =

⇥
x
>
1 , x

>
2 , · · · , x>

N

⇤>

with u =
⇥
u
>
1 , u

>
2 , · · · , u>

N

⇤>. The objective function of robot
i, fi : Rn̄ ⇥ Rm̄ ! R, is often quadratic, given by

fi(x, u) = (xi � x̃i)
>
Qi(xi � x̃i)

+ (ui � ũi)
>
Ri(ui � ũi),

(30)

where x̃i and ũi denote the reference state and control input
trajectory, respectively, Qi 2 Rni⇥ni and Ri 2 Rmi⇥mi denote
the associated weight matrices for the terms in the objective
function, n̄ =

PN
i=1 ni, and m̄ =

PN
i=1 mi. The dynamics

function of the robots is encoded in g : Rn̄ ⇥ Rm̄ ! Rn̄. Fur-
ther, other equality constraints can be encoded in g. Inequality
constraints, such as collision-avoidance constraints and other
state or control input feasibility constraints, are encoded in
h : Rn̄ ⇥ Rm̄ ! Rl. In addition, the first state variable of each
agent is constrained to be equal to its initial state, denoted
by x̄i. In each instance of the MPC optimization problem,
the initial state x̄i of robot i is specified as its current state
at that timestep. Note that the MPC optimization problem
in (29) is not generally separable, depending on the equality
and inequality constraints. However, a separable form of the
problem can always be obtained by introducing local copies
of the optimization variables that are coupled in (29). The
functions g and h can also encode complementarity constraints
for manipulation and locomotion problems that involve making
and breaking rigid body contact [31]. In the extreme case,
where the optimization variables are coupled in the objective
function and equality and inequality constraints in (29), a
suitable reformulation takes the form

minimize
x̂,û

NX

i=1

fi(x̂i, ûi)

subject to g(x̂i, ûi) = 0 8i 2 V
h(x̂i, ûi)  0 8i 2 V
�i(x̂i) = x̄i 8i 2 V
x̂i = x̂j 8(i, j) 2 E ,

(31)

where the function �i outputs the first state variable corre-
sponding to robot i, given the input x̂i, which denotes robot i’s
local copy of x. Similarly, ûi denotes robot i’s local copy of
u, with x̂ =

⇥
x̂
>
1 , x̂

>
2 , · · · , x̂>

N

⇤> and û =
⇥
û
>
1 , û

>
2 , · · · , û>

N

⇤>.
Distributed optimization algorithms [5], [32], [33] can be
employed to solve the resulting MPC optimization problem in
(31).

E. Multi-Robot Learning
Multi-robot learning entails the application of deep learning

methods to approximate functions from data to solve multi-
robot tasks, such as object detection, visual place recognition,

!! "!

Observation "" "#

!#Action !"

Robot #

Robot $

Robot %

Fig. 5. In multi-robot reinforcement learning problems, a group of robots
compute a control policy from experience by making sequential decisions while
interacting with their environment. Each robot takes an action and receives an
observation (and a reward), which provides information on its performance in
accomplishing a specified task.

monocular depth estimation, 3D mapping, and multi-robot rein-
forcement learning. Consider a general multi-robot supervised
learning problem where we aim to minimize a loss function
over labeled data collected by all the robots. We can write this
as

min
✓

NX

i=1

X

(xij ,yij)2Di

l(yi, f(xi; ✓)),

where l(·, ·) is the loss function, (xij , yij) is data point
j collected by robot i with feature vector xij and label
yij , Di is the set of data collected by robot i, ✓ are the
neural network weights, and f(x; ✓) is the neural network
parameterized function we desire to learn. By creating local
copies of the neural network weights ✓i and adding consensus
constraints ✓i = ✓j , we can put problem in the form (6),
so it is amenable to distributed optimization. We stress that
this problem encompasses a large majority of problems in
supervised learning. See [34] for an ADMM-based distributed
optimization approach to solving this problem.

Beyond supervised learning, many multi-robot learning
problems are formulated within the framework of reinforcement
learning. In these problems, the robots learn a control policy
by interacting with their environments by making sequential
decisions. The underlying control policy, which drives these
sequential decisions, is iteratively updated to optimize the
performance of all agents on a specified objective using the
information gathered by each robot during its interaction with
its environment. Figure 5 illustrates the reinforcement learning
paradigm, where a group of robots learn from experience.
Each robot takes an action and receives an observation (and a
reward), which provides information on the performance of its
current control policy in achieving its specified objective.

Reinforcement learning approaches can be broadly cate-
gorized into value-based methods and policy-based methods.
Value-based methods seek to compute an estimate of the
optimal action-value function — the Q-function — which
represents the expected discounted reward starting from a
given state and taking a given action. An optimal policy can be
extracted from the estimated Q-function by selecting the action
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that maximizes the value of the Q-function at a specified state.
In deep value-based methods, deep neural networks are utilized
in approximating the Q-function. In contrast, policy-based
methods seek to find an optimal policy by directly searching
over the space of policies. In deep policy-based methods, the
control policy is parameterized using deep neural networks.
In general, the agents seek to maximize the expected infinite-
horizon discounted cumulative reward, which is posed as the
optimization problem

maximize
✓

E⇡✓

2

4
X

t�0

�
t

NX

i=1

Ri(si,t, ai,t) | si,0 = s̄i

3

5 ,

(32)
where ⇡✓ denotes the control policy parameterized by ✓, � 2 R
denotes the discount factor (� 2 (0, 1)), si,t denotes the state of
robot i at time t, ai,t denotes its action at time t, s̄i denotes its
initial state, Ri : Si ⇥Ai ! R denotes the reward function of
robot i, and N denotes the number of robots. The optimization
problem in (32) is not separable in its current form. However,
due to the linearity of the expectation operator, the optimization
problem in (32) can be equivalently expressed as

maximize
✓̂1,··· ,✓̂N

NX

i=1

E⇡✓̂i

2

4
X

t�0

�
t
Ri(si,t, ai,t) | si,0 = s̄i

3

5

subject to ✓̂i = ✓̂j 8(i, j) 2 E ,

(33)

which is separable among the N robots. Hence, the resulting
problem can be readily solved using distributed optimization
algorithms for reinforcement learning problems, such as
distributed Q-learning and distributed actor-critic methods [35],
[36], [37].

VI. NOTES ON IMPLEMENTATION, PRACTICAL
PERFORMANCE, AND LIMITATIONS

Here, we highlight some relevant issues that arise in the
application of distributed optimization algorithms in robotics
problems. In Table I, we list a set of complicating factors that
are often present in multi-robot problems, and indicate whether
each algorithm class can accommodate these factors. We note
that the properties of each algorithm class displayed in Table
I are based on the representative algorithm considered in the
algorithm class. We emphasize that subsequent research efforts
have been devoted to the derivation of algorithms that address
the practical issues faced by many of the existing algorithms.
In this section, we describe alternative distributed algorithms
that address these issues, often at the expense of convergence
speed.

A. Selection of a Stochastic Matrix
Distributed first-order algorithms and distributed sequential

convex programming algorithms require the specification of a
stochastic matrix, which must be compatible with the underly-
ing communication network. In general, generating compatible
row-stochastic and column-stochastic matrices for directed
communication networks does not pose a significant challenge.
To obtain a row-stochastic matrix, each robot assigns a weight

to all its in-neighbors such that the sum of all its weights equals
one. Similarly, to obtain a column-stochastic matrix, each robot
assigns a weight to all its out-neighbors such that the sum
of all its weights equals one. In contrast, generating doubly-
stochastic matrices for directed communication networks is
nontrivial if each robot does not know the global network
topology. Consequently, in general, algorithms which require
doubly-stochastic matrices are unsuitable for problems with
directed communication networks.

A number of distributed first-order algorithms allow for the
specification of row-stochastic or column-stochastic matrices,
making this class of algorithms appropriate for problems
with directed communication networks, unlike distributed
sequential convex programming algorithms, which generally
require the specification of a doubly-stochastic weighting
matrix. Furthermore, a number of distributed sequential convex
programming algorithms require symmetry of the doubly-
stochastic weighting matrix [38], [39], [40], [41], posing an
even greater challenge in problems with directed networks.

The specific choice of a doubly-stochastic weighing matrix
may vary depending on the assumptions made on what global
knowledge is available to the robots on the network. The
problem of choosing an optimal weight matrix is discussed
thoroughly in [42], in which the authors show that achieving
the fastest possible consensus can be posed as a semidefinite
program, which a computer with global knowledge of the
network can solve efficiently. However, we cannot always
assume that global knowledge of the network is available,
especially in the case of a time-varying topology. In most cases,
Metropolis weights facilitate fast mixing without requiring
global knowledge, with the assumption that the communication
network is undirected with bi-directional communication links.
Each robot can generate its own weight vector after a single
communication round with its neighbors. In fact, Metropolis
weights perform only slightly sub-optimally compared to
centralized optimization-based methods [43]:

wij =

8
><

>:

1
max{|Ni|,|Nj |} j 2 Ni,

1�
P

j02Ni
wij0 i = j,

0 else.
(34)

Distributed algorithms based on ADMM do not require
the specification of a stochastic weighting matrix. However,
C-ADMM and other distributed variants assume that the
communication network between all robots is bi-directional,
which makes these algorithms unsuitable for problems with
directed communication networks. A number of distributed
ADMM algorithms for problems with directed communication
networks have been developed [44], [45], [46]. Owing to the
absence of bi-directional communication links between the
robots, these algorithms utilize a dynamic average consensus
scheme to update the slack variables at each iteration, which
merges information from a robot and its neighbors using a
stochastic weighting matrix. However, some of these distributed
algorithms require the specification of a doubly-stochastic
weighting matrix [46], which introduces notable challenges in
problems with directed communication networks, while others
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allow for the specification of a column-stochastic weighting
matrix [45].

B. Initialization

In general, distributed optimization algorithms allow for
an arbitrary initialization of the initial solution of each robot,
in convex problems. However, these algorithms often place
stringent requirements on the initialization of the algorithms’
parameters. DFO methods require initialization of the step-
size and often place conditions on the value of the step-size
to guarantee convergence. Some distributed gradient tracking
algorithms [9], [47] assume all robots use a common step-
size, requiring coordination among all robots. Selecting a
common step-size might involve the execution of a consensus
procedure by all robots, with additional computation and
communication overhead. In algorithms which utilize a fixed
step-size, this procedure only needs to be executed once, at
the beginning of the optimization algorithm. ADMM and
its distributed variants require the selection of a common
penalty parameter ⇢. Consequently, all robots must coordinate
among themselves in selecting a value for ⇢, introducing some
challenges, particularly in problems where the convergence
rate depends strongly on the value of ⇢. Initialization of these
algorithm-specific parameters have a significant impact on the
performance of each algorithm.

In general, the performance of each distributed algorithm
that we consider is sensitive to the choice of parameters. For
instance, in DFO methods, choosing ↵ too large leads to
divergence of the individual variables, while too small a value
of ↵ causes slow convergence. Similarly, C-ADMM (Algorithm
3) has a convergence rate that is highly sensitive to the choice
of ⇢, though convergence is guaranteed for all ⇢ > 0. We study
the sensitivity of the convergence rate to parameter choice in
each simulation in Section VII. However, the optimal parameter
choice for a particular example is not prescriptive for the tuning
of other implementations. Furthermore, while analytical results
for optimal parameter selection are available for many of these
algorithms, a practical parameter-tuning procedure is useful if
an implementation does not exactly adhere to the assumptions
in the literature.

In the case that parameter tuning is essential to perfor-
mance, it can be reasonable to select suitable parameters for
an implementation before deploying a system, either using
analytical results or simulation. The most general (central-
ized) procedure for parameter tuning involves comparing the
convergence performance of the system on a known problem
for different parameter values. While a uniform sweep of
the parameter space may be effective for small problems
or parameter-insensitive methods, it is not computationally
efficient. Given the convergence rate of a distributed method
at particular choices of parameter, bracketing methods provide
parameter selections to more efficiently find the convergence-
rate-minimizing parameter. For instance, Golden Section Search
(GSS) provides a versatile approach for tuning a scalar
parameter [48].

C. Dynamic or Lossy Communication
In practical situations, the communication network between

robots changes over time as the robots move, giving rise
to a time-varying communication graph. Networked robots
in the real world can also suffer from dropped message
packets as well as failed hardware or software components.
Generally, distributed first-order optimization algorithms are
amenable to problems with dynamic communication networks
and are guaranteed to converge to the optimal solution
provided that the communication graph is B-connected for
undirected communication graphs or B-strongly connected for
directed communication graphs [9], which implies that the
union of the communication graphs over B consecutive time-
steps is connected or strongly-connected respectively. This
property is also referred to as bounded connectivity. This
assumption ensures the diffusion of information among all
robots. Unlike DFO algorithms, many distributed sequential
convex programming algorithms assume the communication
network remains static. Nevertheless, a few distributed sequen-
tial programming algorithms are amenable to problems with
dynamic communication networks [10], [49] and converge to
the optimal solution of the problem under the assumption that
the sequence of communication graphs is B-strongly connected.
Some distributed ADMM algorithms are not amenable to
problems with dynamic communication networks. This is an
interesting avenue for future research.

Similarly, dropped messages or packets can be modeled as
changes to edges in the communication graph where an edge
temporarily becomes directed. In modern mesh networking
protocols, dropped packets can be detected through packet
acknowledgement and the data can either be resent, or the
robots can choose to ignore that communication link during
the given iteration of distributed optimization. We explore the
effect of dropping edges from the communication network in
Sec. VII, Fig. 8.

D. Synchronization
Synchronization, in the context of distributed optimization,

is the assumption that robots compute their local updates and
communicate at the same time, and ensures that each robot
has up-to-date communicated variables from its neighbors. In
practice, it is unlikely that all robots will finish their local
computation/communication at exactly the same time, and
therefore some practical synchronization scheme is required.
Fortunately, one simple solution is to have each robot wait to
receive updates from each of its neighbors before proceeding
with its next iteration of distributed optimization. This is the
decentralized version of a barrier algorithm [50] in parallel
computing. When all robots require roughly the same amount of
time to perform each iteration, this simple barrier approach has
a negligible impact on the time to convergence of a distributed
optimization algorithm. However, if some subset of the robots
are much slower than the others then this barrier approach can
result in long idle times for some of the robots, and longer
time to convergence.

Alternatively, DFO algorithms (DIGing, EXTRA, etc) are
generally fairly amenable to asynchronous execution, and
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some other methods are explicitly designed for asynchronous
execution [51].

VII. DISTRIBUTED MULTI-DRONE VEHICLE TRACKING: A
CASE STUDY

We illustrate the implementation of distributed optimization
methods using a simulation of a multi-drone vehicle target
tracking problem as a case study. We emphasize that the same
principles apply to a broad class of robotics problems that
we have outlined in Sec. V. In addition, we implement the
distributed optimization algorithm C-ADMM on a network
of Raspberry Pis communicating with XBee modules to
demonstrate a distributed optimization algorithm on hardware.

A. Simulation Study

In this simulation, we consider a distributed multi-drone
vehicle target tracking problem in which robots connected
by a communication graph, G = (V, E), each record range-
limited linear measurements of a moving target, and seek to
collectively estimate the target’s entire trajectory. We assume
that each drone can communicate locally with nearby drones
over the undirected communication graph G. The drones all
share a linear model of the target’s dynamics as

xt+1 = Atxt + wt, (35)

where xt 2 R4 represents the position and velocity of the
target in some global frame at time t, At is the dynamics
matrix associated with a linear model of the target’s dynamics,
and wt ⇠ N (0, Qt) represents process noise (including the
unknown control inputs to the target). Restricting our case
study to a linear target model in this tutorial ensures that the
underlying optimization problem is convex, leading to strong
convergence guarantees and robust numerical properties for our
algorithm. A more expressive nonlinear model can also be used,
but this requires a more sophisticated distributed optimization
algorithm with more challenging numerical properties. At every
time-step when the target is sufficiently close to a drone i

(which we denote by t 2 Ti), that robot collects an observation
according to the linear measurement model

yi,t = Ci,txt + vi,t , (36)

where yi,t 2 R2 is a positional measurement, Ci,t is the
measurement matrix of drone i, and vi,t ⇠ N (0, Ri,t) is
measurement noise. We again assume a linear measurement
model to keep this case study as simple as possible. A nonlinear
model can also be used.

All of the drones have the same model for the prior distribu-
tion of the initial state of the target N (x̄0, P̄0), where x̄0 2 R4

denotes the mean and P̄0 2 R4⇥4 denotes the covariance. The
global cost function is of the form

f(x) =kx0 � x̄0k2P̄�1
0

+
T�1X

t=1

kxt+1 �Atxtk2Q�1
t

+
X

i2V

X

t2Ti

kyi,t � Ci,txtk2R�1 ,

(37)

while the local cost function for drone i is

fi(x) =
1

N
kx0 � x̄0k2P̄�1

0
+

T�1X

t=1

1

N
kxt+1 �Atxtk2Q�1

t

+
X

t2Ti

kyi,t � Ci,txtk2R�1 .

(38)

In our results, we consider only a batch solution to the
problem (finding the full trajectory of the target given each
robot’s full set of measurements). Methods for performing the
estimate in real-time through filtering and smoothing steps have
been well studied, both in the centralized and distributed case
[52]. An extended version of this multi-robot tracking problem
is solved with distributed optimization in [3]. A rendering of
a representative instance of this multi-robot tracking problem
is shown in Figure 2.

In Figures 6 and 7, several distributed optimization algo-
rithms are compared on an instance of the distributed multi-
drone vehicle tracking problem. For this problem instance, 10
simulated drones seek to estimate the target’s trajectory over
16 time steps resulting in a decision variable dimension of
n = 64. We compare four distributed optimization methods
which we consider to be representative of the taxonomic
classes outlined in the sections above: C-ADMM [14], EXTRA
[53], DIGing [9], and NEXT-Q [10]. Figure 6 shows that
C-ADMM and EXTRA have similar fast convergence rates
per iteration while DIGing and NEXT-Q are 4 and 15 times
slower respectively to converge below an MSE of 10�6. The
step-size hyperparameters for each method are computed by
Golden Section Search (GSS) (for NEXT-Q, which uses a two
parameter decreasing step-size, we fix one according to the
values recommended in [10]).

We note that tuning is essential for achieving robust
and efficient convergence with most distributed optimization
algorithms. Figure 7 shows the sensitivity of these methods to
variation in step-size, and highlights that three of the methods
(all except C-ADMM) diverge for large step-sizes. In the case
of EXTRA in this example, the optimal step-size is close in
value to step-sizes that lead to divergence, posing a practical
challenge for parameter tuning. While C-ADMM seems to be
the most effective algorithm in this problem instance, we note
that other algorithms have properties that are advantageous in
other instances of this problem or other problems.

As discussed in Section VI-C, the convergence of distributed
optimization algorithms may degrade under dynamic or lossy
communication. In Figure 8, we demonstrate this effect given
a geometric random graph with N = 20. For all four methods
considered, a low probability of missing edges does not
significantly degrade convergence compared to a static network.
In particular, DIGing and NEXT-Q are robust to dropped edges,
while EXTRA diverges for high rates of dropped edges and
C-ADMM converges for carefully chosen values of ⇢ but at
orders of magnitude increased computation time. While C-
ADMM converges in fewer iterations than the other methods
in the examples of Figures 6 and 7, the dynamic graph
topology in Figure 8 means that we cannot precompute matrix
inverses, resulting in slower computation per iteration (reported
computation time is based on a MacBook Pro with M1 Pro chip
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TABLE I
SUITABLE DISTRIBUTED OPTIMIZATION ALGORITHMS FOR DIFFERENT COMPLICATING ATTRIBUTES COMMON IN MULTI-ROBOT PROBLEMS. THE

INFORMATION DISPLAYED IS BASED ON THE REPRESENTATIVE ALGORITHM (INDICATED BY THE CITATION) CONSIDERED IN EACH ALGORITHM CLASS.

Attribute DFO (e.g., [9]) DSQP (e.g., [10]) ADMM (e.g., [14])

Dynamic Communication Networks 3 3 7
Lossy Communication 3 3 7

Unidirectional Communication Networks 3 7 7
Bidirectional Communication Networks 3 3 3

Constrained Problems 7 7 3
Robustness to Step-Size/Penalty-Parameter 7 7 3

Fig. 6. Mean Square Error (MSE) per iteration on a distributed multi-drone
vehicle target tracking problem with N = 10 and n = 64.

and 16GB unified memory). Of the methods considered, only
DIGing handles directed dropped edges. While NEXT also
addresses directed network communication, it requires a doubly-
stochastic matrix at each iteration. Fast, distributed construction
of doubly-stochastic matrices is still an open question [54].

B. Hardware Implementation

In this section, we discuss our implementation of the
C-ADMM algorithm on hardware. Each robot is equipped with
local computational resources and communication hardware
necessary for peer-to-peer communication with other neighbor-
ing robots. In the following discussion, we provide details of
the hardware platform, the underlying communication network
between robots, and the optimization problem considered in
this section.

We consider the linear least-squares optimization problem

min
p

NX

i=1

(Gip� zi)
>
Mi(Gip� zi), (39)

with the optimization variable p 2 R32, Gi 2 Rmi⇥32,
Mi 2 Rmi⇥mi , zi 2 Rmi , and N = 3 robots, where mi de-
pends on the number of measurements available to robot
i. In this experiment, we have m1 = 3268, m2 = 5422, and
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Fig. 7. Hyperparameter sensitivity sweep for a distributed multi-drone vehicle
target tracking problem with N = 20 and n = 64. EXTRA, DIGing, and
NEXT-Q diverge when their respective step-sizes are too large, while C-ADMM
converges over all choices of ⇢. (C-ADMM values are reported with respect
to ⇢/100 in order to fit on the same axes as the other methods.)

m3 = 3528. We implement C-ADMM to solve the problem,
with a state size consisting of 32 floating-point variables.

The core communication infrastructure that we use are Digi
XBee DigiMesh 2.4 radio frequency mesh networking modules
which allow for peer-to-peer communication between robots.
Local computation for each robot is performed using Raspberry
Pi 4B single board computers. The lower level mesh network
is managed by the DigiMesh software, and we interact with it
through XBee Python Library.

We utilize the neighbor discovery Application Programming
Interface (API) provided by Digi International to enable each
robot to identify other neighboring robots. This approach
resulted in a fully-connected communication network, con-
sidering the XBee radios have an indoor range of up to 90m
and an outdoor range of up to 1500m. The XBee modules
used in our experiments have a maximum payload size of
92 bytes. However, the local variable of each robot in our
experiment consists of 32 floating-point variables, which
exceeds the maximum payload size that can be transmitted
by the XBee radios at each broadcast round, presenting a
communication challenge. To overcome this challenge, we
break up the local variables into a series of packets of size
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Fig. 8. Computation time to convergence as a function of the probability of
dropped edges in a mesh network, averaged over 50 trials using a geometric
random graph with N = 20. The stopping condition for each trial is a
normalized MSE of 10�6. Each undirected edge is dropped with the given
probability at every iteration. DIGing is the only method considered that
can handle directional lost edges (dashed line). Implementations use optimal
hyper-parameters, which vary according to the probability of dropped edges.

Fig. 9. Convergence of the iterates computed by each robot using C-ADMM,
implemented on hardware, on the optimization problem with three robots in
(39). The convergence errors of all the robots overlap in the figure.

92 bytes and perform multiple broadcast rounds. The resulting
implementation required approximately 5.5 sec per round of
communication in C-ADMM (i.e. for all the robots to exchange
their decision variable information). In contrast the Raspberry Pi
computation for each iteration of C-ADMM was approximately
15 microseconds, so communication time was approximately
5 orders of magnitude slower than computation time in our
implementation. This slow communication speed is due to the
severe bandwidth limitations of the XBee radios. We expect
an optimized implementation over a state-of-the art 5 Gbit/sec
WiFi or 5G network would reduce this communication time to
about 0.2 microseconds per round.

As C-ADMM is robust to wide range of penalty parameters

(as in Fig. 7), we set the penalty parameter in C-ADMM to
a value of 5 and do not perform a comprehensive search for
the penalty parameter. In our experiments, this value of the
penalty parameter provided suitable performance. In Figure 9,
we show the convergence error between the iterates of each
robot and the global solution, which is obtained by aggregating
the local data of all robots and then computing the solution
centrally. The convergence errors of all the robots’ iterates
overlap in the figure, with the error decreasing below 10�5

within 250 iterations, showing convergence of the local iterates
of each robot to the optimal solution. Again, due the severe
bandwidth limitations of the XBee radios, these 250 iterations
corresponded to approximately 23 mins of wall clock time,
of which approximately 99.97% was due to communication
overhead. With a well-engineered 5 Gbit/sec WiFi or 5G
implementation, we expect this wall clock time for executing
the 250 iterations of C-ADMM shown in Fig. 9 to take
approximately 0.005 sec.

This small-scale experiment reveals several of the impor-
tant considerations in implementing distributed optimization
algorithms using physical communication hardware. First,
while synchrony is crucial for certain methods including C-
ADMM, we can satisfy this requirement even on relatively
simple equipment by using a barrier strategy. Second, band-
width limitations highlight the importance of considering
low-dimensional representations of the state of the problem
and/or quantization methods. For instance, communicating the
optimization variable requires fewer broadcast rounds than
communicating the measurements in the example problem that
we considered. Finally, tuning is an important consideration,
and C-ADMM provides a suitable solution due to its robustness
to the choice of the ⇢ parameter.

VIII. CONCLUSION

In this tutorial, we have demonstrated that a number of
canonical problems in multi-robot systems can be formulated
and solved through the framework of distributed optimization.
We have identified three broad classes of distributed optimiza-
tion algorithms: distributed first-order methods, distributed
sequential convex programming methods, and the alternat-
ing direction method of multipliers (ADMM). Further, we
have described the optimization techniques employed by the
algorithms within each category, providing a representative
algorithm for each category. In addition, we have demonstrated
the application of distributed optimization in simulation, on
a distributed multi-drone vehicle tracking problem, and on
hardware, showing the practical effectiveness of distributed
optimization algorithms. However, important challenges remain
in developing distributed algorithms for constrained, non-
convex robotics problems, and algorithms tailored to the limited
computation and communication resources of robot platforms,
which we discuss in greater detail in the second paper in this
series [7].
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