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Distributed Optimization Methods for Multi-Robot
Systems: Part II — A Survey

Ola Shorinwa1, Trevor Halsted1, Javier Yu2, Mac Schwager2

Abstract—Although the field of distributed optimization is
well-developed, relevant literature focused on the application
of distributed optimization to multi-robot problems is limited.
This survey constitutes the second part of a two-part series on
distributed optimization applied to multi-robot problems. In this
paper, we survey three main classes of distributed optimization
algorithms—distributed first-order methods, distributed sequen-
tial convex programming methods, and alternating direction
method of multipliers (ADMM) methods—focusing on fully-
distributed methods that do not require coordination or computa-
tion by a central computer. We describe the fundamental structure
of each category and note important variations around this
structure, designed to address its associated drawbacks. Further,
we provide practical implications of noteworthy assumptions
made by distributed optimization algorithms, noting the classes
of robotics problems suitable for these algorithms. Moreover,
we identify important open research challenges in distributed
optimization, specifically for robotics problem.

Index Terms—distributed optimization, multi-robot systems,
distributed robot systems, robotic sensor networks

I. INTRODUCTION

In this paper we survey the literature in distributed optimiza-
tion, specifically with an eye toward problems in multi-robot
coordination. As we demonstrated in the first paper in this two-
part series [1], many multi-robot problems can be written as a
sum of local objective functions, subject to an intersection of
local constraints. Such problems can be solved with a powerful
and growing arsenal of distributed optimization algorithms.
Distributed optimization consists of multiple computation
nodes working together to minimize a common objective
function through local computation iterations and network-
constrained communication steps, providing both computational
and communication benefits by eliminating the need for data
aggregation. Distributed optimization is also robust against
the failure of individual nodes, as it does not rely on a
central computation station, and many distributed optimization
algorithms have inherent privacy-preserving properties, keeping
the local data, objective function, and constraint function private
to each robot, while still allowing for all robots to benefit from
one another. Distributed optimization has not yet been widely
employed in robotics, and there exist many open opportunities
for research in this space, which we highlight in this survey.
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Although the field of distributed optimization is well-
established in many areas such as computer networking
and power systems, problems in robotics have a number of
distinguishing features which are not often considered in the
major application areas of distributed optimization. Notably,
robots move, unlike their analogous counterparts in these other
disciplines, which makes their networks time-varying and prone
to bandwidth limitations, packet drops, and delays. Robots
often use optimization within a receding horizon or model
predictive control loop, so fast convergence to an optimal
solution is essential in robotics. In addition, optimization
problems in robotics are often constrained (e.g., with safety
constraints, input constraints, or kino-dynamics constraints in
planning problems), and non-convex (for example, simultaneous
localization and mapping (SLAM) is a non-convex optimization,
as is trajectory planning and state estimation for any nonlinear
robot model). Many existing surveys on distributed optimization
do not address these unique characteristics of robotics problems.

This survey constitutes the second part of a two-part series on
distributed optimization for multi-robot systems. The first part
consists of a tutorial focused on the applicability of distributed
optimization to multi-robot problems. In it, we demonstrate
how a broad range of multi-robot problems can be cast in
a form that is appropriate for distributed optimization, and
we provide practical guidelines for implementing distributed
optimization algorithms. In this survey, we highlight relevant
distributed optimization algorithms and note the classes of
robotics problems to which these algorithms can be applied.
Noting the large body of work in distributed optimization,
we categorize distributed optimization algorithms into three
broad classes and identify the practical implications of these
algorithms for robotics problems, including the challenges
arising in the implementation of these algorithms on robotics
platforms.

This survey is aimed at robotics researchers, who are inter-
ested in research at the intersection of distributed optimization
and multi-robot systems, as well as robotics practitioners who
want to harness the benefits of distributed optimization algo-
rithms in solving practical robotics problems. In this survey, we
limit our discussion to optimization problems over real-valued
decision variables. Although discrete optimization problems
(i.e., integer programs or mixed integer programs) arise in some
robotics applications, these problems are beyond the scope of
this survey. However, we note that distributed algorithms for
integer and mixed integer problems have been discussed in a
number of different works [2], [3], [4]. Further, we limit our
discussion to derivative-based methods, in contrast to derivative-
free (zeroth-order) distributed optimization algorithms. We note
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(a) Optimization by one robot yields the solution given only
that robot’s observations.

(b) Using distributed optimization, each robot obtains the
optimal solution resulting from all robots’ observations.

Fig. 1. A motivation for distributed optimization: consider an estimation
scenario in which a robot seeks to localize a target given sensor measurements.
The robot can compute an optimal solution given only its observations, as
represented in (a). By using distributed optimization techniques, each robot
in a networked system of robots can compute the optimal solution given all
robots’ observations without actually sharing individual sensor models or
measurements with one another, as represented in (b).

that derivative-free optimization methods have been discussed
extensively in [5], [6], [7], [8], [9], [10].

In many robotics applications, such as field robotics, com-
munication with a central computer (or the cloud) might be in-
feasible, even though each robot can communicate locally with
other neighboring robots. Consequently, we focus particularly
on distributed optimization algorithms that permit robots to
use local robot-to-robot communication to compute an optimal
solution, rather than algorithms that require coordination by
a central computer. These methods yield a globally optimal
solution for convex problems and, in general, a locally optimal
solution for non-convex problems, producing the same quality
solution that would be obtained if a centralized method were
applied. Although many distributed optimization algorithms are
not inherently “online” (in the sense that these algorithms were
not originally designed to be executed while the robot is actively
gathering data or completing a task, providing information
that changes its objective and constraint functions), we note
that many of these algorithms can be applied in these online
problems within the model predictive control (MPC) framework,
where a new optimization problem is solved periodically from
streaming data.

In this survey, we provide a taxonomy of the different algo-
rithms for performing distributed optimization based on their
defining mathematical characteristics. We identify three classes:
distributed first-order algorithms, distributed sequential convex
programming, and distributed extensions to the alternating
direction method of multipliers (ADMM).

Distributed First-Order Algorithms: The most common
class of distributed optimization methods is based on the idea
of averaging local gradients computed by each computational

node to perform an approximate gradient descent update [11],
and in this work, we refer to them as Distributed First-
Order (DFO) algorithms. DFO algorithms can be further
sub-divided into distributed (sub)-gradient descent, distributed
gradient tracking, distributed stochastic gradient descent, and
distributed dual averaging algorithms, with each sub-category
differing from the others based on the order of the update
steps and the nature of the gradients used. In general, DFO
algorithms use consensus methods to achieve a shared solution
for the optimization problem. Many DFO algorithms allow for
dynamic communication networks (including uni-directional
and bi-directional networks) [12], [13] and limited computation
resources [14], but they are often not well-suited to constrained
problems.

Distributed Sequential Convex Programming: Sequential
Convex Optimization is a common technique in centralized
optimization that involves minimizing a sequence of convex
approximations to the original (usually non-convex) problem.
Under certain conditions, the sequence of sub-problems con-
verges to a local optimum of the original problem. Newton’s
method and the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
method are common examples. The same concepts are used
by a number of distributed optimization algorithms, and we
refer to these algorithms as Distributed Sequential Convex
Programming methods. Generally, these methods use consensus
techniques to construct the convex approximations of the
joint objective function. One example is the Network Newton
method [15], which uses consensus to approximate the inverse
Hessian of the objective to construct a quadratic approximation
of the joint problem. The NEXT family of algorithms [16]
provides a flexible framework, which can utilize a variety of
convex surrogate functions to approximate the joint problem,
and is specifically designed to optimize non-convex objective
functions. Although many distributed sequential convex pro-
gramming methods are not suitable for problems with dynamic
communication networks, a few distributed sequential convex
programming algorithms are amenable to these problems [16].

Alternating Direction Method of Multipliers: The last
class of algorithms covered in this survey is based on the
alternating direction method of multipliers (ADMM) [17].
ADMM works by minimizing the augmented Lagrangian
of the optimization problem using alternating updates to
the primal and dual variables [18]. This method naturally
accommodates constrained problems (with the assumption that
we can convert inequality constraints to equality constraints
using slack variables). The original method is distributed, but
not in the sense we consider in this survey. Specifically, the
original ADMM requires a central computation hub to collect
all local primal computations from the nodes to perform a
centralized dual update step. ADMM was first modified to
remove this requirement for a central node in [19], where
it was used for distributed signal processing. The algorithm
from [19] has since become known as Consensus ADMM
(C-ADMM), although the original paper [19] did not use
this terminology. A number of other distributed variants
have been developed to address many unique characteristics,
including uni-directional communication networks and limited
communication bandwidth [20], [21], which are often present
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in robotics problems.

A. Existing Surveys

A number of other recent surveys on distributed optimization
exist, and provide useful background when working with the
algorithms covered in this survey. Some of these surveys
cover applications of distributed optimization in distributed
power systems [22], big-data problems [23], and game theory
[24], while others focus primarily on first-order methods for
problems in multi-agent control [25]. Other articles broadly
address distributed first-order optimization methods, including
a discussion on the communication-computation trade-offs
[26], [27]. Another survey [28] covers exclusively non-convex
optimization in both batch and data-streaming contexts, but
again only analyzes first-order methods. Finally, [29] covers
a wide breadth of distributed optimization algorithms with
a variety of assumptions, focusing exclusively on convex
optimization problems. Our survey differs from all of these
in that it specifically targets applications of distributed op-
timization to multi-robot problems: formulating multi-robot
problems within the framework of distributed optimization (as
discussed in the first paper in the series [1]), identifying suitable
distributed optimization algorithms that address the practical
issues arising in multi-robot problems, and providing references
demonstrating the application of distributed optimization to
multi-robot problems. As a result, this survey highlights the
practical implications of the assumptions made by many
distributed optimization algorithms and provides a condensed
taxonomic overview of useful methods for these applications.
Other useful background material can be found for distributed
computation [30] [31], and on multi-robot systems in [32] [33].

B. Contributions

This survey paper has three primary objectives:
1) Survey the literature across three different classes of

distributed optimization algorithms, noting the defining
mathematical characteristics of each category.

2) Highlight noteworthy assumptions made by distributed
optimization algorithms, and provide existing applications
of distributed optimization algorithms to multi-robot
problems.

3) Propose open research problems in distributed optimiza-
tion for robotics.

C. Organization

In Section II we introduce mathematical notation and
preliminaries, and in Section III we present the general formu-
lation for the distributed optimization problem and describe
the general framework shared by distributed optimization
algorithms. Sections IV–VI survey the literature in each of
the three categories, and provide details for representative
algorithms in each category. Section VII provides existing
applications of distributed optimization in the robotics literature.
In Section VII-C, we discuss open research problems in
applying distributed optimization to multi-robot systems and
robotics in general, and we offer concluding remarks in
Section IX.

II. NOTATION AND PRELIMINARIES

In this section, we introduce the notation used in this paper
and provide the definitions of mathematical concepts relevant
to the discussion of the distribution optimization algorithms.
We denote the gradient of a function f : Rn → R as ∇f and
its Hessian as ∇2f . We denote the vector containing all ones
as 1n, where n represents the number of elements in the vector.
Next, we begin with the definition of stochastic matrices which
arise in distributed first-order optimization algorithms.

Definition 1 (Non-negative Matrix). A matrix W ∈ Rn×n

is referred to as a non-negative matrix if wij ≥ 0 for all
i, j ∈ {1, · · · , n}.

Definition 2 (Stochastic Matrix). A non-negative matrix
W ∈ Rn×n is referred to as a row-stochastic matrix if

W1n = 1n, (1)

in other words, the sum of all elements in each row of the
matrix equals one. We refer to W as a column-stochastic matrix
if

1⊤
nW = 1⊤

n . (2)

Likewise, for a doubly-stochastic matrix W ,

W1n = 1n and 1⊤
nW = 1⊤

n . (3)

Now, we provide the definition of some relevant properties
of a sequence.

Definition 3 (Summable Sequence). A sequence {α(k)}k≥0,
with k ∈ N, is a summable sequence if α(k) > 0 for all k and

∞∑
k=0

α(k) <∞. (4)

Definition 4 (Square-Summable Sequence). A sequence
{α(k)}k≥0, with k ∈ N, is a square-summable sequence if
α(k) > 0 for all k and

∞∑
k=0

(α(k))
2
<∞. (5)

We discuss some relevant notions of the connectivity of a
graph.

Definition 5 (Connectivity of an Undirected Graph). An
undirected graph G is connected if a path exists between every
pair of vertices (i, j) where i, j ∈ V . Note that such a path
might traverse other vertices in G.

Definition 6 (Connectivity of a Directed Graph). A directed
graph G is strongly connected if a directed path exists between
every pair of vertices (i, j) where i, j ∈ V . In addition, a
directed graph G is weakly connected if the underlying
undirected graph is connected. The underlying undirected graph
Gu of a directed graph G refers to a graph with the same set of
vertices as G and a set of edges obtained by considering each
edge in G as a bi-directional edge. Consequently, every strongly
connected directed graph is weakly connected; however, the
converse is not true.
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In distributed optimization in multi-robot systems, robots
perform communication and computation steps to minimize
some global objective function. We focus on problems in
which the robots’ exchange of information must respect the
topology of an underlying distributed communication graph,
which could possibly change over time. This communication
graph, denoted as G(t) = (V(t), E(t)), consists of vertices
V(t) = {1, . . . , N} and edges E(t) ⊆ V(t)×V(t) over which
pairwise communication can occur. For undirected graphs, we
denote the set of neighbors of robot i as Ni(t). For directed
graphs, we refer to the set of robots which can send information
to robot i as the set of in-neighbors of robot i, denoted by
N+

i (t). Likewise, for directed graphs, we refer to the set of
robots which can receive information from robot i as the out-
neighbors of robot i, denoted by N−

i (t).

Definition 7 (Convergence Rate). Provided that a sequence
{x(k)} converges to x⋆, if there exists a positive scalar r ∈ R,
with r ≥ 1, and a constant λ ∈ R, with λ > 0, such that

lim
k→∞

∥x(k+1) − x⋆∥
∥x(k) − x⋆∥r

= λ, (6)

then r defines the order of convergence of the sequence {x(k)}
to x⋆. Moreover, the asymptotic error constant is given by λ.

If r = 1 and λ = 1, then {x(k)} converges to x⋆ sub-linearly.
However, if r = 1 and λ < 1, then {x(k)} converges to x⋆

linearly. Likewise, {x(k)} converges to x⋆ quadratically if
r = 2 and cubically if r = 3.

Definition 8 (Synchronous Algorithm). An algorithm is
synchronous if each robot (computational node) has to wait at
a predetermined point for a specific message from other robots
(computational nodes) before proceeding. In general, the end of
an iteration of the algorithm represents the predetermined syn-
chronization point. Conversely, in an asynchronous algorithm,
each robot completes each iteration at its own pace, without
having to wait at a predetermined point. In other words, at
any given time, the number of iterations of an asynchronous
algorithm completed by each robot could differ from the number
of iterations completed by other robots.

III. PROBLEM FORMULATION

We consider a general class of separable distributed optimiza-
tion problems, in which we express a joint objective function
as the sum over local objective functions. From a multi-robot
perspective, each robot only knows its own local function, but
the robots collectively seek to find the optimum to the global
function. In this general formulation, we also consider a set
of joint constraints consisting of an intersection over local
constraints. Each robot only knows its own local constraints
and its local objective function. The resulting optimization
problem is given by

min
x

∑
i∈V

fi(x)

subject to gi(x) = 0 ∀i ∈ V
hi(x) ≤ 0 ∀i ∈ V

(7)

where x ∈ Rn denotes the optimization variable and
fi : Rn → R, gi : Rn → R, and hi : Rn → R denote the local
objective function, equality constraint function, and inequality
constraint function of robot i, respectively. The joint opti-
mization problem (7) can be solved locally by each robot if
all the robots share their objective and constraint functions
with one another. Alternatively, the solution can be computed
centrally if all the local functions are collated at a central
station. However, robots typically possess limited computation
and communication resources, which precludes each robot from
sharing its local functions with other robots, particularly in
problems with high-dimensional problem data, such as images,
lidar and other perception measurements.

Distributed optimization algorithms enable each robot to
compute a solution of (7) locally without sharing its local
objective, constraints, or data. These algorithms assign a copy
of the optimization variable to each robot, enabling each robot
to update its own copy locally and in parallel with other
robots. Moreover, distributed optimization algorithms enforce
consensus among the robots for agreement on a common
solution of the optimization problem. Consequently, these
algorithms solve an equivalent reformulation of the optimization
problem in (7), given by

min
{xi, ∀i∈V}

∑
i∈V

fi(xi)

subject to xi = xj ∀(i, j) ∈ E
gi(xi) = 0 ∀i ∈ V
hi(xi) ≤ 0 ∀i ∈ V,

(8)

where xi ∈ Rn denotes robot i’s local copy of the optimization
variable. We note that the consensus constraints in (8) ensure
agreement among all the robots, with the assumption that the
communication graph is connected. Moreover, the consensus
constraints are enforced between neighboring robots only,
making it compatible with a point-to-point communication
network, where robots can only communicate with their one-
hop neighbors. To simplify notation, we introduce the set
Xi = {xi | gi(xi) = 0, hi(xi) ≤ 0}, representing the feasible
set given the constraint functions gi and hi. Consequently, we
can express the problem in (8) succinctly as follows:

min
{xi∈Xi, ∀i∈V}

∑
i∈V

fi(xi)

subject to xi = xj ∀(i, j) ∈ E .
(9)

In the following sections, we discuss three broad classes of
distributed optimization methods, namely, distributed first-order
methods, distributed sequential convex programming methods,
and the alternating direction method of multipliers. We note
that distributed first-order methods and distributed sequential
convex programming methods implicitly enforce the consensus
constraints in (9), while the alternating direction method of
multipliers enforces these constraints explicitly. While not all
of the methods that we survey explicitly address constraints
of the form gi(x) = 0, hi(x) ≤ 0, we note in each section
considerations to accommodate these additional terms. In some
cases, it is also appropriate to incorporate the constraints as
penalty terms in the cost function.
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Before proceeding, we highlight the general framework
that distributed optimization algorithms share. Distributed
optimization algorithms are iterative algorithms in which each
robot executes a number of operations over discrete iterations
k = 0, 1, . . . until convergence, where each iteration consists of
a communication and computation step. During each communi-
cation round, each robot shares a set of its local variables with
its neighbors, referred to as its “communicated” variables Q(k)

i ,
which we distinguish from its “internal” variables P(k)

i , which
are not shared with its neighbors. In general, each algorithm
requires initialization of the local variables of each robot, in
addition to algorithm-specific parameters, denoted by R(k)

i . We
note that some algorithms require all the robots to utilize a
common step-size at initialization; however, these parameters
can be initialized prior to deployment of the robots.

IV. DISTRIBUTED FIRST-ORDER ALGORITHMS

The optimization problem in (7) (in its unconstrained form)
can be solved through gradient descent where the optimization
variable is updated using

x(k+1) = x(k) − α(k)∇f(x(k)) (10)

with ∇f(x(k)) denoting the gradient of the objective function
at x(k), given by

∇f(x) =
∑
i∈V
∇fi(x), (11)

given some scheduled step-size α(k). Inherently, computation of
∇f(x(k)) requires knowledge of the local objective functions
or gradients by all robots in the network which is infeasible
in many problems.

Distributed First-Order (DFO) algorithms extend the central-
ized gradient scheme to the distributed setting where robots
communicate with one-hop neighbors without knowledge of
the local objective functions or gradients of all robots. In DFO
methods, each robot updates its local variable using a weighted
combination of the local variables or gradients of its neighbors
according to the weights specified by a stochastic weighting
matrix W , allowing for the dispersion of information on the
objective function or its gradient through the network. The
stochastic matrix W must be compatible with the underlying
communication network, with a non-zero element wij when
robot j can send information to robot i.

From the perspective of a single robot, the update equations
in DFO methods represent a trade-off between optimality of
its individual solution based on its local objective function and
agreement with its neighbors. Consensus enables the robot to
incorporate global information about the objective function’s
shape into its update, thereby allowing it to approximate a
gradient descent step on the global cost function rather than
on its local cost function.

Many DFO algorithms use a doubly-stochastic matrix, a
row-stochastic matrix [34], or a column-stochastic matrix,
depending on the model of the communication network
considered, while other methods use a push-sum approach.
In addition, many methods further require symmetry of the
doubly-stochastic weighting matrix with W = W⊤. The weight

Algorithm 1: Distributed Gradient Descent (DGD)

Initialization: k ← 0, x(0)
i ∈ Rn

Internal variables: P(k)
i = ∅

Communicated variables: Q(k)
i = x

(k)
i

Parameters: R(k)
i = (α(k), wi)

do in parallel ∀i ∈ V
Communicate Q(k)

i to all j ∈ Ni

Receive Q(k)
j from all j ∈ Ni

x
(k+1)
i =

∑
j∈Ni∪{i}

wijx
(k)
j − α(k)∇fi(x(k)

i )

α(k+1) =
α(0)

√
k

k ← k + 1
while stopping criterion is not satisfied

matrix exerts a significant influence on the convergence rates
of DFO algorithms, and thus, an appropriate choice of these
weights are required for convergence of DFO methods.

The order of the update procedures for the local variables of
each robot and the gradient used by each robot in performing its
local update procedures differ among DFO algorithms, giving
rise to four broad classes of DFO methods: Distributed (Sub)-
Gradient Descent and Diffusion Algorithms, Gradient Tracking
Algorithms, Distributed Stochastic Gradient Algorithms, and
Distributed Dual Averaging. While distributed (sub)-gradient
descent algorithms require a decreasing step-size for conver-
gence to an optimal solution, gradient tracking algorithms
converge to an optimal solution without this condition. We
discuss these distributed methods in the following subsections.

A. Distributed (Sub)-Gradient Descent and Diffusion Algo-
rithms

Tsitsiklis introduced a model for distributed gradient descent
in the 1980s in [35] and [11] (see also [30]). The works
of Nedić and Ozdaglar in [14] revisit the problem, marking
the beginning of interest in consensus-based frameworks for
distributed optimization over the recent decade. This basic
model of distributed gradient descent consists of an update
term that involves consensus on the optimization variable as
well as a step in the direction of the local gradient for each
node:

x
(k+1)
i =

∑
j∈Ni∪{i}

wijx
(k)
j − α

(k)
i ∇fi

(
x
(k)
i

)
(12)

where robot i updates its variable using a weighted combination
of its neighbors’ variables determined by the weights wij with
αi(k) denoting its local step-size at iteration k.

For convergence to the optimal joint solution, these methods
require the step-size to asymptotically decay to zero. As proven
in [36], if α(k) is chosen such that the sequence {α(k)} is
square-summable but not summable, then the optimization
variables of all robots converge to the optimal joint solution,
given the standard assumptions of a connected network,
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Algorithm 2: DIGing

Initialization: k ← 0, x(0)
i ∈ Rn, y(0)i = ∇fi(x(0)

i )

Internal variables: P(k)
i = ∅

Communicated variables: Q(k)
i =

(
x
(k)
i , yki

)
Parameters: R(k)

i = (α,wi)
do in parallel ∀i ∈ V

Communicate Q(k)
i to all j ∈ Ni

Receive Q(k)
j from all j ∈ Ni

x
(k+1)
i =

∑
j∈Ni∪{i}

wijx
(k)
j − αy

(k)
i

y
(k+1)
i =

∑
j∈Ni∪{i}

wijy
(k)
j +∇fi(x(k+1)

i )−∇fi(x(k)
i )

k ← k + 1
while stopping criterion is not satisfied

properly chosen weights, and bounded (sub)-gradients. In
contrast, the choice of a constant step-size for all time-steps
only guarantees convergence of each robot’s iterates to a neigh-
borhood of the optimal joint solution. In practice, this means
that a multi-robot system implementing distributed gradient
descent must coordinate on scheduling the decrease of the step
size. Nonetheless, distributed gradient descent can generally
tolerate some level of asynchrony or stochasticity. Algorithm 1
summarizes the update step for the distributed gradient descent
method in [14] with the step-size α(k+1) = α(0)

√
k

, with α(0) > 0.
We note that the update procedure given in (12) requires

a doubly-stochastic weighting matrix, which, in general, is
incompatible with directed communication networks. Other
distributed gradient descent algorithms [37], [38], [39], [40]
utilize the push-sum consensus protocol [41] in place of
the consensus terms in (12), extending the application of
distributed gradient descent schemes to problems with directed
communication networks.

In general, with a constant step-size, distributed (sub)-
gradient descent algorithms converge at a rate of O(1/k) to
a neighborhood of the optimal solution in convex problems
[42]. With a decreasing step-size, some distributed (sub)-
gradient descent algorithms converge to an optimal solution at
O(log k/k) using an accelerated gradient scheme such as the
Nesterov gradient method [43].

B. Distributed Gradient Tracking Algorithms

Although distributed (sub)-gradient descent algorithms con-
verge to an optimal joint solution, the requirement of a square-
summable sequence {α(k)} — which results in a decaying
step-size — reduces the convergence speed of these methods.
Gradient tracking methods address this limitation by allowing
each robot to utilize the changes in its local gradient between
successive iterations as well as a local estimate of the average
gradient across all robots in its update procedures, enabling
the use of a constant step-size while retaining convergence to
the optimal joint solution.

The EXTRA algorithm introduced by Shi et al. in [44]
uses a fixed step-size while still achieving exact convergence.
EXTRA replaces the gradient term with the difference in the
gradients of the previous two iterates. Because the contribution
of this gradient difference term decays as the iterates converge
to the optimal joint solution, EXTRA does not require the
step-size to decay in order to converge to the exact optimal
joint solution. EXTRA achieves linear convergence [42], and
a variety of gradient tracking algorithms have since offered
improvements on its linear rate [45], for convex problems with
strongly convex objective functions.

The DIGing algorithm [46], [47], whose update equations
are shown in Algorithm 2, is one such similar method that
extends the faster convergence properties of EXTRA to the
domain of directed and time-varying graphs. DIGing requires
communication of two variables, effectively doubling the
communication cost per iteration when compared to DGD, but
greatly increasing the diversity of communication infrastructure
that it can be deployed on.

Many other gradient tracking algorithms involve variations
on the variables updated using consensus and the order of
the update steps, such as NIDS [48], Exact Diffusion [49],
[50], [51], and [52]. These algorithms, which generally require
the use of doubly-stochastic weighting matrices, have been
extended to problems with row-stochastic or column-stochastic
matrices [12], [53], [13], [54] and push-sum consensus [55] for
distributed optimization in directed networks. To achieve faster
convergence rates, many of these algorithms require each robot
to communicate multiple local variables to its neighbors during
each communication round. In addition, we note that some of
these algorithms require all robots to use the same step-size,
which can prove challenging in some situations. Several works
offer a synthesis of various gradient tracking methods, noting
the similarities between these methods. Under the canonical
form proposed in [56], [57], these algorithms and others differ
only in the choice of several constant parameters. Jakovetić
also provides a unified form for various gradient tracking
algorithms in [58]. Some other works consider accelerated
variants using Nesterov gradient descent [59], [60], [59],
[61]. Gradient tracking algorithms can be considered to be
primal-dual methods with an appropriately defined augmented
Lagrangian function [46], [62].

In general, gradient tracking algorithms address uncon-
strained distributed convex optimization problems, but these
methods have been extended to non-convex problems [63]
and constrained problems using projected gradient descent
[64], [65], [66]. Some other methods [67], [68], [69], [70]
perform dual-ascent on the dual problem of (7), where the
robots compute their local primal variables from the related
minimization problem using their dual variables. These methods
require doubly-stochastic weighting matrices but allow for
time-varying communication networks. Distributed first-order
methods have been extended to the constrained setting [71],
where each robot performs a subsequent proximal projection
step to obtain solutions which satisfy the problem constraints.

In deep learning problems, the associated objective function
often consists of a sum over a very large number of data
points. Computing exact gradients for such problems can
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Algorithm 3: Distributed Dual Averaging (DDA)

Initialization: k ← 0, x(0)
i ∈ Rn, z(0)i = x

(0)
i

Internal variables: Pi = z
(k)
i

Communicated variables: Q(k)
i = x

(k)
i

Parameters:R(k)
i =

(
α(k), wi, ϕ(·)

)
do in parallel ∀i ∈ V

Communicate Q(k)
i to all j ∈ Ni

Receive Q(k)
j from all j ∈ Ni

z
(k+1)
i =

∑
j∈Ni∪{i}

wijz
(k)
j +∇fi

(
x
(k)
i

)
x
(k+1)
i = argmin

x∈Xi

{
x⊤z

(k+1)
i +

1

α(k)
ϕ(x)

}
k ← k + 1

while stopping criterion is not satisfied

be prohibitively costly, so gradients are approximated by
randomly sampling a subset of the data at each iteration and
computing the gradient only over those data. Such methods,
called stochastic gradient descent, dominate in deep learning.
In [72], stochastic gradients are used in place of gradients in
the DGD algorithm, and the resulting algorithm is shown to
converge.

C. Distributed Dual Averaging
Dual averaging first posed in [73], and extended in [74],

takes a similar approach to distributed (sub)-gradient descent
methods in solving the optimization problem in (7), with
the added benefit of providing a mechanism for handling
problem constraints through a projection step, in like manner
as projected (sub)-gradient descent methods. However, the
original formulations of the dual averaging method requires
knowledge of all components of the objective function or its
gradient which is unavailable to all robots. The Distributed
Dual Averaging method (DDA) circumvents this limitation
by modifying the update equations using a doubly-stochastic
weighting matrix to allow for updates of each robot’s variable
using its local gradients and a weighted combination of the
variables of its neighbors [75].

Similar to distributed (sub)-gradient descent methods, dis-
tributed dual averaging requires a sequence of decreasing step-
sizes to converge to the optimal solution. Algorithm 3 provides
the update equations in the DDA algorithm, along with the
projection step which involves a proximal function ϕ(x), often
defined as 1

2∥x∥
2
2. After the projection step, the robot’s variable

satisfies the problem constraints described by the constraints
set X . Some of the same extensions made to distributed
(sub)-gradient descent algorithms have been studied for DDA,
including analysis of the algorithm under communication time
delays [76] and replacement of the doubly-stochastic weighting
matrix with push-sum consensus [77].

V. DISTRIBUTED SEQUENTIAL CONVEX PROGRAMMING

Sequential Convex Programming is a class of optimization
methods, typically for non-convex problems, that proceed

iteratively by approximating the nonconvex problem with a
convex surrogate computed from the current values of the
decision variables. This convex surrogate is optimized, and the
resulting decision variables are used to compute the convex
surrogate for the next iterate. Newton’s method is a classic
example of a Sequential Convex Method, in which the convex
surrogate is a quadratic approximation of the original objective
function. Several methods have been proposed for distributed
Sequential Convex Programming, as we survey here. As with
distributed first-order methods, distributed sequential convex
programming takes the perspective of using consensus to
approximate the global objective function, with the addition
of approximating not only the global gradient but also the
global Hessian. The benefit of this approach is that convergence
typically requires fewer iterations and is less dependent on
carefully selecting a step size. This comes at the expense of
requiring the robots to communicate more information in order
to approximate the second-order characteristics of the global
objective function.

A. Approximate Newton Methods

Newton’s method and its variants are commonly used
for solving convex optimization problems, and they provide
significant improvements in convergence rate when second-
order function information is available [78]. To apply Newton’s
method to the distributed optimization problem in (7), the
Network Newton-K (NN-K) algorithm [15] takes a penalty-
based approach which introduces consensus between the robots’
variables as components of the objective function. The NN-K
method reformulates the constrained form of the distributed
problem in (7) as the following unconstrained optimization
problem:

min
{xi∈Rn, ∀i∈V}

α
∑
i∈V

fi(xi) + x⊤
i

 ∑
j∈N∪{i}

w̄ijxj

 (13)

where W̄ = I −W , and α is a weighting hyperparameter.
However, the Newton descent step requires computing the

inverse of the joint problem’s Hessian which cannot be directly
computed in a distributed manner as its inverse is dense.
To allow for distributed computation of the Hessian inverse,
NN-K uses the first K terms of the Taylor series expansion
(I −X)−1 =

∑∞
j=0 X

j to compute the approximate Hessian
inverse, as introduced in [79]. Approximation of the Hessian
inverse comes at an additional communication cost, and requires
an additional K communication rounds per update of the primal
variable. Algorithm 4 summarizes the update procedures in
the NN-K method in which ϵ denotes the local step-size for
the Newton’s step. Selection of the step-size parameter does
not require any coordination between robots. As presented
in Algorithm 4, NN-K proceeds through two sets of update
equations: an outer set of updates that initializes the Hessian
approximation and computes the decision variable update and
an inner Hessian approximation update; a communication
round precedes the execution of either set of update equations.
Increasing K, the number of intermediary communication
rounds, improves the accuracy of the approximated Hessian
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Algorithm 4: Network Newton-K (NN-K)

Initialization: k ← 0, x(0)
i ∈ Rn

Internal variables: P(k)
i =

(
g
(k)
i , D

(k)
i

)
Communicated variables: Qi =

(
x
(k)
i , d

(k+1)
i

)
Parameters: Ri = (α, ϵ,K, w̄i)
do in parallel ∀i ∈ V

D
(k+1)
i = α∇2fi(x

(k)
i ) + 2w̄iiI

Communicate x
(k)
i to all j ∈ Ni

g
(k+1)
i = α∇fi(x(k)

i ) +
∑

j∈Ni∪{i}

w̄ijx
(k)
j

d
(0)
i = −

(
D

(k+1)
i

)−1

g
(k+1)
i

for p = 0 to K − 1 do
Communicate d

(p)
i to all j ∈ Ni

d
(p+1)
i =

(
D

(k+1)
i

)−1
[
w̄iid

(p)
i − g

(k+1)
i

−
∑

j∈Ni∪{i}

w̄ijd
(p)
j

]

end

x
(k+1)
i = x

(k)
i + ϵ d

(K)
i

k ← k + 1
while stopping criterion is not satisfied

inverse at the cost of increasing the communication cost per
primal variable update.

A follow-up work optimizes a quadratic approximation of the
augmented Lagrangian of the general distributed optimization
problem (7) where the primal variable update involves com-
puting a P -approximate Hessian inverse to perform a Newton
descent step, and the dual variable update uses gradient ascent
[80]. The resulting algorithm Exact Second-Order Method
(ESOM) provides a faster convergence rate than NN-K at the
cost of one additional round of communication for the dual
ascent step. Notably, replacing the augmented Lagrangian in the
ESOM formulation with its linear approximation results in the
EXTRA update equations, showing the relationship between
both approaches.

In some cases, computation of the Hessian is impossible
because second-order information is not available or intractable
due to the large dimensions of the problem. Quasi-Newton
methods like the Broyden-Flectcher-Goldman-Shanno (BFGS)
algorithm approximate the Hessian when it cannot be directly
computed. The distributed BFGS (D-BFGS) algorithm [81]
replaces the second-order information in the primal update in
ESOM with a BFGS approximation (i.e., replaces D

(k)
i in a

call to the Hessian approximation equations in Algorithm 4
with an approximation), and results in essentially a “doubly”
approximate Hessian inverse. In [82] the D-BFGS method
is extended so that the dual update also uses a distributed

Quasi-Newton update scheme, rather than gradient ascent.
The resulting primal-dual Quasi-Newton method requires two
consecutive iterative rounds of communication doubling the
communication overhead per primal variable update compared
to its predecessors (NN-K, ESOM, and D-BFGS). However,
the resulting algorithm is shown by the authors to still
converge faster in terms of required communication. In addition,
asynchronous variants of the approximate Newton methods
have been developed [83].

B. Convex Surrogate Methods

While the approximate Newton methods in [80], [81],
[82] optimize a quadratic approximation of the augmented
Lagrangian of (13), other distributed methods allow for more
general and direct convex approximations of the distributed
optimization problem. These convex approximations generally
require the gradient of the joint objective function which is
inaccessible to any single robot. In the NEXT family of
algorithms [16] dynamic consensus is used to allow each
robot to approximate the global gradient, and that gradient
is then used to compute a convex approximation of the joint
objective function locally. A variety of surrogate functions,
U(·), are proposed including linear, quadratic, and block-convex
functions, which allows for greater flexibility in tailoring the
algorithm to individual applications. Using its surrogate of the
joint objective function, each robot updates its local variables
iteratively by solving its surrogate for the problem, and then
taking a weighted combination of the resulting solution with
the solutions of its neighbors. To ensure convergence, NEXT
algorithms require a series of decreasing step-sizes, resulting
in generally slower convergence rates as well as additional
hyperparameter tuning.

The SONATA [84] algorithm extends the surrogate function
principles of NEXT, and proposes a variety of non-doubly-
stochastic weighting schemes that can be used to perform
gradient averaging similar to the push-sum protocols. The
authors of SONATA also show that several configurations of
the algorithm result in already proposed distributed optimization
algorithms including Aug-DGM [85], Push-DIG [47], and
ADD-OPT [53].

VI. ALTERNATING DIRECTION METHOD OF MULTIPLIERS

Considering the optimization problem in (9) with only
agreement constraints, we have

min
{xi∈Rn, ∀i∈V}

∑
i∈V

fi(xi) (14)

subject to xi = xj ∀(i, j) ∈ E . (15)

The method of multipliers solves this problem by alternating
between minimizing the augmented Lagrangian of the optimiza-
tion problem with respect to the primal variables x1, . . . , xn

(the “primal update”) and taking a gradient step to maximize
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Algorithm 5: NEXT

Initialization: k ← 0, x(0)
i ∈ Rn, y(0)i = ∇fi(x(0)

i ),
π̃
(k+1)
i = Ny

(0)
i −∇fi(x

(0)
i )

Internal variables: Pi =
(
x
(k)
i , x̃

(k)
i , π̃

(k)
i

)
Communicated variables: Q(k)

i =
(
z
(k)
i , y

(k)
i

)
Parameters: R(k)

i =
(
α(k), wi, U(·),Xi

)
do in parallel ∀i ∈ V

x̃
(k)
i = argmin

x∈Xi

U
(
x;x

(k)
i , π̃

(k)
i

)
z
(k)
i = x

(k)
i + α(k)

(
x̃
(k)
i − x

(k)
i

)
Communicate Q(k)

i to all j ∈ Ni

Receive Q(k)
j from all j ∈ Ni

x
(k+1)
i =

∑
j∈Ni∪{i}

wijz
(k)
j

y
(k+1)
i =

∑
j∈Ni∪{i}

wijy
(k)
j

+
[
∇fi(x(k+1)

i )−∇fi(x(k)
i )

]
π̃
(k+1)
i = N · y(k+1)

i −∇fi(x(k+1)
i )

k ← k + 1
while stopping criterion is not satisfied

the augmented Lagrangian with respect to the dual (the “dual
update”). The augmented Lagrangian of (14) is given by

La(x, q) =

N∑
i=1

fi(xi)

+

N∑
i=1

∑
j∈Ni

(
q⊤i,j(xi − xj) +

ρ

2
∥xi − xj∥22

)
,

(16)

where qi,j represents a dual variable for the consensus con-
straints between robots i and j, q =

[
q⊤i,j , ∀(i, j) ∈ E

]⊤
, and

x =
[
x⊤
1 , x

⊤
2 , · · · , x⊤

N

]⊤
. The parameter ρ > 0 represents a

penalty term on the violations of the consensus constraints.
The quadratic penalty term is what distinguishes the augmented
Lagrangian, and it also distinguishes the method of multipliers
from dual ascent. The main benefit of using the augmented
Lagrangian is that the quadratic term essentially serves as a
proximal operator and helps to ensure convergence.

In the alternating direction method of multipliers (ADMM),
given the separability of the global objective function, the
primal update is executed as successive minimizations over
each primal variable (i.e., choose the minimizing x1 with all
other variables fixed, then choose the minimizing x2, and
so on). Most ADMM-based approaches do not satisfy our
definition of distributed in that either the primal updates take
place sequentially rather than in parallel or the dual update
requires centralized computation [86], [87], [88]. However,
the consensus alternating direction method of multipliers (C-
ADMM) provides an ADMM-based optimization method that
is fully distributed: the nodes alternate between updating their

primal and dual variable and communicating with neighboring
nodes [19], [89].

In order to achieve a distributed update of the primal and dual
variables, C-ADMM alters the agreement constraints between
agents with an existing communication link by introducing
auxiliary primal variables in (9) (instead of the constraint
xi = xj , we have two constraints: xi = zij and xj = zij).
Considering the optimization steps across the entire network,
C-ADMM proceeds by optimizing the original primal variables,
then the auxiliary primal variables, and then the dual variables,
as in the original formulation of ADMM. We can perform
minimization with respect to the primal variables and gradient
ascent with respect to the dual variables on an augmented
Lagrangian that is fully distributed among the robots. Further,
we note that although ADMM is typically applied to equality-
constrained problems, the method can be extended to inequality-
constrained problems quite easily. In particular, we note that
inequality-constrained problems can be expressed as equality-
constrained problems using indicator functions. With this
approach, corresponding update procedures for constrained
optimization problems can be derived using ADMM.

Algorithm 6 summarizes the update procedures for the
local primal and dual variables of each agent in constrained
optimization problems, where yi represents the dual variable
that enforces agreement between robot i and its neighbors. We
have incorporated the solution of the auxiliary primal variable
update into the update procedure for x

(k+1)
i , noting that the

auxiliary primal variable update can be performed implicitly
(z∗ij =

1
2 (xi + xj)). The parameter ρ that weights the quadratic

terms in La is also the step-size in the gradient ascent of the
dual variable. We note that the update procedure for x

(k+1)
i

requires solving an optimization problem which might be
computationally intensive for certain objective functions. To
simplify the update complexity, the optimization can be solved
inexactly using a linear approximation of the objective function
such as [90], [91], [92] or a quadratic approximation using the
Hessian such as DQM [93]. The convergence rate of ADMM
methods depends on the value of the penalty parameter ρ.
Several works discuss effective strategies for optimally selecting
ρ [94]. In general, convergence of C-ADMM and its variants
is only guaranteed when the dual variables sum to zero, a
condition that could be challenging to satisfy in problems
with unreliable communication networks. Other distributed
ADMM variants which do not require this condition have
been developed [95], [96]. However, these methods incur
a greater communication overhead to provide robustness in
these problems. Gradient tracking algorithms are related to C-
ADMM, when the minimization problem in the primal update
procedure is solved using a single gradient decent update.

C-ADMM, as presented in Algorithm 6, requires each robot
to optimize over a local copy of the global decision variable x.
However, many robotic problems have a fundamental structure
that makes maintaining global knowledge at every individual
robot unnecessary: each robot’s data relate only to a subset of
the global optimization variables, and each agent only requires
a subset of the optimization variable for its role. For instance, in
distributed SLAM, a memory-efficient solution would require
a robot to optimize only over its local map and communicate
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Algorithm 6: C-ADMM

Initialization: k ← 0, x(0)
i ∈ Rn, y(0)i = 0

Internal variables: P(k)
i = y

(k)
i

Communicated variables: Q(k)
i = x

(k)
i

Parameters: R(k)
i = ρ

do in parallel ∀i ∈ V

x
(k+1)
i = argmin

xi∈Xi

{
fi(xi) + x⊤

i y
(k)
i · · ·

+ ρ
∑
j∈Ni

∥∥∥∥xi −
1

2

(
x
(k)
i + x

(k)
j

)∥∥∥∥2
2

}

Communicate Q(k)
i to all j ∈ Ni

Receive Q(k)
j from all j ∈ Ni

y
(k+1)
i = y

(k)
i + ρ

∑
j∈Ni

(
x
(k+1)
i − x

(k+1)
j

)
k ← k + 1

while stopping criterion is not satisfied

with other robots only messages of shared interest. Other
examples arise in distributed environmental monitoring by
multiple robots [97]. The SOVA method [98] leverages the
separability of the optimization variable to achieve orders of
magnitude improvement in convergence rates, computation,
and communication complexity over C-ADMM methods. The
general approach of SOVA can also be found in partitioning-
based methods such as in [99], [100], [101], which also
accomodate asynchronous or lossy communication. Like SOVA,
these methods exploit the partitioning of the state variables, in
that robot i need not estimate the states that are not relevant
to its local objective function.

In SOVA, each agent only optimizes over variables relevant
to its data or role, enabling robotic applications in which
agents have minimal access to computation and communication
resources. SOVA introduces consistency constraints between
each agent’s local optimization variable and its neighbors,
mapping the elements of the local optimization variables, given
by

Φijxi = Φjixj ∀j ∈ Ni, ∀i ∈ V

where Φij and Φji map elements of xi and xj to a common
space. C-ADMM represents a special case of SOVA where
Φij is always the identity matrix. The update procedures for
each agent reduce to the equations given in Algorithm 7.

VII. DISTRIBUTED OPTIMIZATION IN ROBOTICS AND
RELATED APPLICATIONS

In this section, we discuss some existing applications of
distributed optimization to robotics problems. To simplify the
presentation, we highlight a number of these applications in
the following notable problems in robotics: synchronization,
localization, mapping, and target tracking; online and deep
learning problems; and task assignment, planning, and control.
We refer the reader to the first paper in this two-part series [1]

Algorithm 7: SOVA

Initialization: k ← 0, x(0)
i ∈ Rni , y(0)i = 0

Internal variables: P(k)
i = y

(k)
i

Communicated variables: Q(k)
i = x

(k)
i

Parameters: R(k)
i = ρ

do in parallel ∀i ∈ V

x
(k+1)
i = argmin

xi∈Xi

{
fi(xi) + x⊤

i y
(k)
i · · ·

+ ρ
∑
j∈Ni

∥∥∥∥Φijxi −
1

2

(
Φijx

(k)
i +Φjix

(k)
j

)∥∥∥∥2
2

}

Communicate Q(k)
i to all j ∈ Ni

Receive Q(k)
j from all j ∈ Ni

y
(k+1)
i = y

(k)
i + ρ

∑
j∈Ni

Φ⊤
ij

(
Φijx

(k)
i − Φjix

(k)
j

)
k ← k + 1

while stopping criterion is not satisfied

for a case study on multi-drone target tracking, which com-
pares solutions using several different distributed optimization
algorithms.

A. Synchronization, Localization, Mapping, and Tracking

Distributed optimization algorithms have found notable appli-
cations in robot localization from relative measurements [102],
[103], including in networks with asynchronous communication
[104]. More generally, distributed first-order algorithms have
been applied to optimization problems on manifolds, including
SE(3) localization [105], [106], [107], [108], synchronization
problems [109], and formation control in SO(3) [110], [111].
In pose graph optimization, distributed optimization has been
employed through majorization-minimization schemes, which
minimize an upper-bound of the objective function [112]; using
gradient descent on Riemannian manifolds [113], [114]; and
block-coordinate descent [115]. Other pose graph optimization
methods have utilized distributed sequential programming
algorithms using a quadratic approximation model of the
non-convex objective function with Gauss-Seidel updates to
enable distributed local computations among the robots [116].
Further, ADMM has been employed in bundle adjustment and
pose graph optimization problems, which involve the recovery
of the 3D positions and orientations of a map and camera
[117], [118], [119]. However, many of these algorithms require
a central node for the dual variable updates, making them
semi-distributed. Nonetheless, a few fully-distributed ADMM-
based algorithms exist for bundle adjustment and cooperative
localization problems [120], [121]. Other applications of
distributed optimization arise in target tracking [122], signal
estimation [19], and parameter estimation in global navigation
satellite systems [123].
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B. Online and Deep Learning Problems

Distributed optimization has also been applied in online,
dynamic problems. In these problems, each robot gains knowl-
edge of its time-varying objective function in an online fashion,
after taking an action or decision. A number of distributed
first-order algorithms have been designed for these problems
[124], [125], [126]. Similarly, DDA has been adapted for online
scenarios with both static communication graphs [127], [128]
and time-varying communication topology [129], [130]. The
push-sum variant of dual averaging has also been used for
distributed training of deep-learning algorithms, and has been
shown to be useful in avoiding pitfalls of other synchronous
distributed training frameworks, which face notable challenges
in problems with communication deadlocks [131]. Many of
these algorithms emphasize parallelization.

In addition, distributed sequential convex programming
algorithms have been developed for a number of learning
problems where data is distributed, including semi-supervised
support vector machines [132], neural network training [133],
and clustering [134]. Moreover, ADMM has been applied to
online problems, such as estimation and surveillance problems
involving wireless sensor networks [135], [136]. ADMM has
also be applied to distributed deep learning in robot networks
in [137].

C. Task Assignment, Planning, and Control

Distributed optimization has been applied to task assignment
problems, posed as optimization problems. Some works [138]
employ distributed optimization using a distributed simplex
method [139] to obtain an optimal assignment of the robots to
a desired target formation. Other works employ C-ADMM for
distributed task assignment [140], [141]. Further applications
of distributed optimization arise in motion planning [142],
trajectory tracking problems involving teams of robots using
non-linear model predictive control [143], and collaborative
manipulation [144], [145], which employ fully-distributed
variants of ADMM. One feature common to these problems
is that the joint decision variables, which consists of control
inputs or action variables concatenated over all the robots, can
often be partitioned so that each robot only needs to consider
its own actions, as in [98], [99], [100], [101]. This can lead to
significantly faster convergence compared methods in which
each agent has a complete copy of the joint decision variables,
as discussed as the end of Sec. VI above.

VIII. RESEARCH OPPORTUNITIES IN DISTRIBUTED
OPTIMIZATION FOR MULTI-ROBOT SYSTEMS

In this section, we highlight challenges in the application
of existing distributed optimization algorithms to multi-robot
problems, each of which represents a promising direction for
future research.

A. Non-Convex and Constrained Robotics Problems

Distributed optimization methods have primarily focused on
solving unconstrained convex optimization problems, which
constitute a limited subset of robotics problems. Many robotics

problems involve non-convex objectives or constraints. For
example, problems in multi-robot motion planning, SLAM,
learning, distributed manipulation, and target tracking are often
non-convex and/or constrained.

Both DFO methods and C-ADMM methods can be modified
for non-convex and constrained problems; however, few exam-
ples of practical algorithms or rigorous analyses of performance
for such modified algorithms exist in the literature. One way to
implement C-ADMM for non-convex problems is to solve each
primal update step as a non-convex optimization (e.g., through
a quasi-Newton method, or interior point method). Another
option is to perform successive quadratic approximations in an
outer loop, and use C-ADMM to solve each resulting quadratic
problem in an inner loop. The trade-off between these two
options has not yet been explored in the literature, especially
in the context of non-convex problems in robotics.

B. Bandwidth-Constrained, Lossy, or Dynamic Communication

In many robotics problems, each robot exchanges information
with its neighbors over a communication network with a limited
communication bandwidth, which effectively limits the size of
the message packets that can be transmitted between robots.
Moreover, in practical situations, the communication links
between robots sometimes fail, resulting in packet losses. How-
ever, many distributed optimization methods do not consider
communication between agents as an expensive, unreliable
resource, given that many of these methods were developed
for problems with reliable communication infrastructure (e.g.,
multi-core computing, or computing in a hard-wired cluster).
Information quantization has been extensively employed in
many disciplines to allow for efficient exchange of information
over bandwidth-constrained networks. Quantization involves
encoding the data to be transmitted into a format which
utilizes a fewer number of bits, often resulting in lower
precision. Transmission of the encoded data incurs a lower
communication overhead, enabling each robot to communicate
with its neighbors within the bandwidth constraints. A few
distributed optimization algorithms have been designed for
these problems, including quantized distributed first-order
algorithms. Some of these algorithms assume that all robots
can communicate with a central node [146], [147], making
them unsuitable for a variety of robotics of problems, while
others do not make this assumption [148], [149], [150], [151].
In addition, quantized distributed variants of ADMM also exist
[21], [152], [153].

Generally, quantization introduces error between each robot’s
solution and the optimal solution. However, in some of
these algorithms, the quantization error decays during the
execution of the algorithms under certain assumptions on the
quantizer and the quantization interval [148], [149]. However,
quantization in distributed optimization algorithms generally
results in slower convergence rates, which poses a challenge in
robotics problems where a solution is required rapidly, such as
model predictive control problems, highlighting the need for
the development of more effective algorithms. Further, only
a few distributed optimization algorithms consider problems
with lossy communication networks [154], [155], [156].
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In many practical situations, the communication network
between robots changes as robots move, giving rise to a
time-varying communication graph. While many distributed
first-order optimization algorithms [47] and some distributed
sequential programming algorithms [16], [84] tolerate dynamic
communication networks under the condition of bounded
connectivity , in general, distributed ADMM algorithms are not
amenable to problems with dynamic communication networks.
This is an interesting avenue for future research.

C. Limited Computation Resources

Another valuable direction for future research is in develop-
ing algorithms specifically for computationally limited robotic
platforms, in which the timeliness of the solution is as important
as the solution quality. In general, many distributed optimization
methods involve computationally challenging procedures that
require significant computational power, especially distributed
methods for constrained problems. These methods ignore the
significance of computation time, assuming that agents have
access to significant computational power. These assumptions
often do not hold in robotics problems. Typically, robotics
problems unfold over successive time periods with an associated
optimization phase at each step of the problem. As such, agents
must compute their solutions fast enough to proceed with
computing a reasonable solution for the next problem which
requires efficient distributed optimization methods. Developing
such algorithms specifically for multi-robot systems is an
interesting topic for future work.

D. Coordination and synchronization

Many distributed optimization algorithms implicitly assume
coordination in several aspects of implementation. First, while
most algorithms accommodate an arbitrary initialization of the
initial solution of each robot (at least in convex problems), they
often place stringent requirements on the initialization of the
algorithms’ parameters. For instance, DFO methods assume
a common step size across all robots and in some cases a
scheduled decrease in that step size. Similarly, distributed first-
order algorithms and distributed sequential convex program-
ming algorithms require the specification of a stochastic matrix,
which must be compatible with the underlying communication
network. However, generating doubly-stochastic matrices for
directed communication networks is nontrivial if each robot
does not know the global network topology. ADMM and its
distributed variants require the selection of a common penalty
parameter ρ.

Second, some distributed first-order, distributed sequential
programming, and distributed ADMM algorithms require syn-
chronous execution (see Definition 8). If robots have variable
computation times and a synchronous distributed optimization
algorithm is being used, one solution is to implement a
distributed barrier scheme where each robot waits until all of its
neighbors have computed and communicated their most recent
update before proceeding. However, barrier schemes can lead
to significantly increased time to convergence as some robots
idle while waiting for their neighbors. To address this issue, a
number of asynchronous distributed optimization algorithms

have been developed [157], [158], [81], [83], [121], which
allow each robot to perform its local updates asynchronously,
eliminating the need for synchronization. These asynchronous
variants are guaranteed to converge to an optimal solution,
provided that an integer T ∈ Z exists such that each robot
performs at least one iteration of the algorithm over T time-
steps.

E. Hardware Implementation

Finally, we believe there is a gap between the analysis in
the distributed optimization literature and the applicability
of these distributed optimization algorithms to hardware
implementations [26], [27], [29]. The suitability of algorithms
to run efficiently and robustly on robots has still not be
thoroughly proven. We provide empirical results of a hardware
implementation of C-ADMM over XBee radios in the first paper
in this series [1]. While this survey considers adapting existing
distributed optimization algorithms for robotic implementations,
it could also be useful to consider the co-design of general
purpose distributed optimization algorithms with practical
hardware setups.

IX. CONCLUSION

Despite the amenability of many robotics problems to
distributed optimization, few applications of distributed op-
timization to multi-robot problems exist. In this work, we have
categorized distributed optimization methods into three broad
classes—distributed first-order methods, distributed sequential
convex programming methods, and the alternating direction
method of multipliers (ADMM)—highlighting the distinct
mathematical techniques employed by these algorithms. In
addition, we have provided practical notes on the implemen-
tation of distributed optimization algorithms, with a view
towards advancing the application of distributed optimization
in robotics. Further, we have identified a number of important
open challenges in distributed optimization for robotics, which
could be interesting areas for future research. In general, the
opportunities for research in distributed optimization for multi-
robot systems are plentiful. Distributed optimization provides
an appealing unifying framework from which to synthesize
solutions for a large variety of problems in multi-robot systems.
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[40] F. Bénézit, V. Blondel, P. Thiran, J. Tsitsiklis, and M. Vetterli, “Weighted
gossip: Distributed averaging using non-doubly stochastic matrices,” in
2010 ieee international symposium on information theory. IEEE, 2010,
pp. 1753–1757.

[41] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based computation of
aggregate information,” in 44th Annual IEEE Symposium on Foundations
of Computer Science. IEEE, 2003, pp. 482–491.

[42] K. Yuan, Q. Ling, and W. Yin, “On the convergence of decentralized
gradient descent,” SIAM Journal on Optimization, vol. 26, no. 3, pp.
1835–1854, 2016.
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