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Distributed Model Predictive Control via
Separable Optimization in Multi-Agent Networks

Ola Shorinwa and Mac Schwager

Abstract— We present a distributed model predictive
control method which enables a group of agents to compute
their control inputs locally, while communicating with their
neighbors over a communication network. While many
distributed model predictive control methods require a
central station for some coordination or computation of
the optimization variables, our method does not require a
central station, making our approach applicable to a variety
of communication network topologies. With our method,
each agent solves for its control inputs without solving
for the control inputs of other agents, allowing for efficient
optimization by each agent, unlike some other distributed
methods. Further, our method attains linear convergence to
the optimal control inputs in convex model predictive control
problems, improving upon the sub-linear convergence rates
provided by some other distributed methods such as dual
decomposition methods. Moreover, our algorithm provides
a closed-loop controller for convex model predictive con-
trol problems with affine constraints. We demonstrate our
method in both convex and non-convex model predictive
control problems in wireless transceiver alignment and
satellite deployment, where we show robustness of our
method to time delays.

Index Terms— distributed model predictive control, opti-
mal control, distributed optimization, multi-agent networks,
separable optimization.

I. INTRODUCTION

The practical effectiveness of model predictive control (MPC)
as a means for optimizing online control actions has spurred its
application in a variety of problems such as power management
and chemical process control [1]–[5], climate regulation in
buildings [6]–[13], stabilization of vehicle platoons [14]–[18],
network scheduling and bandwidth allocation [19]–[21], and
trajectory optimization in robotics [22]–[26]. In all these
problems, the control inputs applied by each agent influence
other agents, coupling the performance of all agents through the
objective and constraint functions or dynamics models in the
problem. As such, achieving the desired overall performance
requires coordination among all agents. Centralized methods
allow for computation of the control inputs of each agent
while considering the existing coupling between the agents;
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however, these methods require all agents to communicate with
a central station, which might not be possible in many problems.
Moreover, computation of all the control inputs centrally can
be particularly difficult in problems with a large number of
agents. Distributed model predictive control methods attempt
to resolve these issues by enabling each agent to compute its
control inputs locally while communicating with its neighbors
over a communication network.

Nonetheless, many distributed model predictive control
methods still require a central station for coordination of
the agents or computation of some auxiliary variables [27]–
[31], imposing restrictive constraints on the topology of the
communication network between agents. In other distributed
model predictive control methods, each agent solves the global
optimization problem for its control inputs [32], [33], requiring
each agent to know the objective, dynamics, and constraints
functions of all agents, information unavailable to each agent
in many situations. Eliminating these requirements, we present
a distributed model predictive control method where each agent
computes its control inputs locally, in parallel with other agents,
allowing for efficient optimization especially in problems that
require high frequency control updates.

We decompose the model predictive control problem to allow
for distributed computation of the control inputs locally by each
agent, following a variant of the alternating direction method
of multipliers (ADMM) in [34]. In our algorithm, each agent
collaborates with those agents which influence its performance,
as defined by its objective and constraint functions, commu-
nicating with these agents over a communication network to
compute its local control inputs. Our algorithm exploits the
low-dimensionality of the coupling constraints between agents
to enable each agent to compute its control inputs locally
from a smaller model predictive control problem, involving
only its objective functions, dynamics, and constraint functions,
improving the efficiency of the computation and communication
procedures associated with distributed model predictive control.
We prove linear convergence of the control inputs computed
by each agent to the optimal control inputs for convex model
predictive control problems, with strongly convex objective
functions. As a result, our method provides faster convergence
rates which improve upon the sub-linear convergence rates
provided by other distributed model predictive control methods.

Many distributed model predictive control methods only
consider affine dynamics models for each agent along with
convex state and inputs constraints, with the exception of
a few [35], [36]. In contrast, our method applies to non-
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convex model predictive control problems, with non-convex
objective and constraint functions. As such, we demonstrate our
algorithm in model predictive control of satellites, considering
the non-convex dynamics models and problem constraints,
representative of other non-convex model predictive control
problems. In addition, we apply our algorithm to a wireless
transceiver alignment problem using convex model predictive
control, where we demonstrate robustness of our method to
time delays. Empirically, our method converges about two
times faster in the convex problem and about nine times faster
in the non-convex problem compared to other distributed model
predictive control methods.

Contributions
Our contributions are as follows:
• We present an algorithm for separable optimization of

distributed model predictive control problems (SOD-
MPC), where each agent solves a smaller optimization
problem locally to compute its control inputs without
relying on a central station for any coordination or
computation, in contrast with some other distributed
methods.

• With our algorithm, each agent does not compute the
control inputs of other agents irrelevant to its performance
and does not share its objective functions, dynamics mod-
els, and constraint functions with other agents, preserving
the privacy of each agent.

• In addition, our algorithm produces a closed-loop con-
troller for convex model predictive control problems
with affine constraints, providing robustness to modeling
errors and time delays arising from computation and
communication between agents.

II. RELATED WORKS

Lyapunov-based distributed control methods enable agents to
solve model predictive control problems locally in a sequential
order, with each agent receiving the control inputs of all
preceding agents [27], [36]–[39]. Upon computation of its
control inputs, each agent communicates its control inputs
as well as the control inputs of all preceding agents to the
following agent in the sequence. By not allowing for parallel
computation of the control inputs by each agent, these methods
can be ineffective in problems with a large number of agents,
as each agent waits for all preceding agents to compute their
control inputs before computing its control inputs. Moreover,
the communication complexity of these methods grows linearly
with the number of agents, further limiting the scalability of
these approaches. These methods assume the existence of a
Lyapunov-based controller which might not be readily available
in many situations.

In other distributed approaches [32], [33], [35], [40], each
agent optimizes over the global optimization problem to
compute its control inputs in parallel with other agents,
while constraining the control inputs of other agents to the
values received from these agents at the beginning of each
iteration. Consequently, these methods require each agent to
communicate with all other agents in the problem, imposing a

stringent requirement on the topology of the communication
network. Further, these methods require each agent to have
knowledge of the dynamics models, constraint functions, and
objective functions of all agents, information not necessarily
available to all agents in many problems.

Other approaches employ a distributed hierarchical control
scheme where each agent shares its reference trajectory with
all its neighbors and solves a local model predictive control
problem to compute its control inputs [28], [41]. These
approaches combine a stabilizing state-feedback controller,
computed centrally, with the nominal control inputs, which
can be computed using tube-based methods [42], during online
execution of the distributed model predictive control scheme.
Centralized computation of a state-feedback controller along
with feasible state and control sets can prove challenging,
making these methods unsuitable in many problems. In addition,
these approaches assume that the actual trajectories of all agents
remain within a bounded region of the reference trajectory, a
limiting assumption that is violated when agents deviate beyond
the bounds of the reference trajectory to satisfy feasibility
constraints in their local problems.

Dual decomposition methods enable each agent to compute
its control inputs without knowledge of the local objective
functions and constraints of other agents by solving the dual
problem [43]–[46], obtained from the Lagrangian of the original
optimization problem, (refer to [47] for a survey of dual
decomposition methods). At each iteration of these methods,
each agent computes a dual solution from which the agent can
compute its control inputs. However, feasibility of the resulting
control inputs only occur after convergence of the dual variables
to the optimal dual solution. Consequently, the iterations within
dual decomposition methods cannot be terminated at any time
before convergence to maintain feasibility, even in cases where
the time utilized for computation exceeds the agent’s control
intervals. Moreover, dual decomposition methods exhibit sub-
linear convergence at O(1/k), and thus require a significant
number of iterations to converge in many problems. To improve
its convergence rate, some dual approaches employ accelerated
gradient methods in updating the dual variables [48], while
others utilize a primal-dual active-set method [49]. In some
other methods, each agent computes its control inputs from the
primal problem using a distributed barrier method [50], [51]
which ensures feasibility of the computed control inputs.

The alternating direction method of multipliers (ADMM)
improves upon dual decomposition methods, extending its
convergence properties to a broader class of problems, while
retaining its distributed properties. Some distributed model
predictive control methods apply ADMM to the dual problem,
where each agent keeps a local copy of the dual variable with
a consensus constraint on these variables [52], [53]. These
methods suffer the same challenges with dual decomposition
methods with respect to feasibility of the resulting control
inputs and a sub-linear convergence rate of O(1/k). Other
methods apply ADMM to the primal problem, overcoming
these challenges, but require a central station for updating
the dual variables or for termination of the iterations [29]–
[31], [54]–[56], making them unsuitable for many problems.
To eschew central computation, some primal methods require
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each agent to compute the control inputs and states of all agents,
resulting in local optimization problems with a significantly
greater number of optimization variables which require notable
computational effort to solve. In addition, all agents share their
solutions with their neighbors, further degrading the efficiency
of these methods.

Our distributed model predictive control method overcomes
these challenges, enabling each agent to compute its control
inputs efficiently, without having to compute the control inputs
of other agents unnecessarily. Further, our algorithm applies to
problems with a variety of communication network topologies
and scales to problems with a large number of agents.

The paper is organized as follows: In Section IV, we present
the model predictive control problem along with the dynamics
models, objective functions, and problem constraints between
agents. In Section V, we derive SOD-MPC, a distributed
method for model predictive control problems, and prove
linear convergence of our method to the optimal control inputs
for strongly convex model predictive control problems. We
derive a distributed closed-loop controller in Section VI and
provide an efficient procedure for computing the optimal
control inputs using the Riccati equations. We demonstrate
superior convergence rates of our method compared to dual
decomposition and ADMM-MPC methods in Section VII and
examine the robustness of the closed-loop controller provided
by our approach compared to other distributed approaches and
an open-loop centralized controller. We conclude in Section
VIII.

III. PRELIMINARIES AND NOTATION

We provide the definition of the following mathematical
concepts that will prove useful in the analysis of our algorithm.

Definition 1 (Convex Set). A set C is convex if for all x, y ∈ C
and all ζ ∈ [0, 1]

ζx+ (1− ζ)y ∈ C. (1)

Definition 2 (Convex Function). A function f : Rn → R is
convex if its domain dom(f) ⊆ Rn is convex, and for all
x, y ∈ dom(f) and all ζ ∈ [0, 1]

f(ζx+ (1− ζ)y) ≤ ζf(x) + (1− ζ)f(y). (2)

Definition 3 (Strong Convexity). A function f : Rn → R is
mf -strongly convex if and only if there exists mf > 0 such
that

f(y) ≥ f(x) +∇f(x)T(y − x) +mf∥y − x∥2, (3)

for all x, y ∈ dom(f) where ∇f(x) denotes the gradient of f
evaluated at x.

Definition 4 (Lipschitz Continuity). A function f : Rn → Rm

is Lipschitz continuous at x ∈ dom(f) if there exists a constant
Lf > 0 such that for all y ∈ dom(f) sufficiently close to x

∥f(y)− f(x)∥p ≤ Lf∥y − x∥p, (4)

where ∥ · ∥p denotes the p-norm. When the inequality in (4)
holds for all x, y ∈ dom(f), f is a Lipschitz function. In this
work, we consider the ℓ2-norm.

Definition 5 (Q-linear Convergence). A sequence {zk} con-
verges to a stationary point z⋆ Q-linearly if there exists
δ ∈ (0, 1) such that

∥zk+1 − z⋆∥
∥zk − z⋆∥

≤ δ (5)

for all k sufficiently large.

Definition 6 (R-linear Convergence). A sequence {zk} con-
verges to a stationary point z⋆ R-linearly if there exists another
sequence {bk} such that

∥zk+1 − z⋆∥ ≤ bk , (6)

{bk} converges Q-linearly to zero, and bk ≥ 0 for all k.

We represent the maximum singular value of a matrix A as
σmax(A) and its minimum non-zero singular value as σmin(A).

IV. PROBLEM FORMULATION

We consider a general model predictive control problem
among N agents where the performance of each agent
influences the performance of other agents through coupling
constraint functions, denoted by ϕij(·) for a coupling constraint
between agents i and j. We represent the coupling between
agents graphically, as discussed in the following subsection.

Coupling Graph
We represent the coupling between agents using a directed

graph G = (V, E) with a set of vertices V denoting the agents
and a set of edges E denoting the coupling between agents;
hence, if agent i influences the control inputs of agent j,
then edge (i, j) exists in E . We assume that an agent can
communicate with another agent over a communication network
in a timely fashion if its states and control inputs influence
the control inputs of the other agent, to ensure feasibility of
the control inputs computed by each agent. We describe the
neighbor set of agent i as Ni, consisting of all agents which
can communicate with agent i.

Figure 1 depicts the graphical representation of the coupling
constraints between agents.

𝑖 𝑘

𝑗𝜙!" ⋅

𝜙"! ⋅

𝜙"# ⋅

𝜙#" ⋅

Fig. 1. Graphical representation of the coupling constraints ϕ between
agents in the model predictive control problem. The vertices represent
the agents while edges between agents signify a coupling constraint
between these agents.

Remark 1 (Dynamic Graphs). Our method allows for dynamic
coupling graphs, which can change from time step to time step
of the MPC problem; however, we assume the coupling graph
remains static within a single time step during which the MPC
optimization problem is solved. Empirically, we see solve times
on the order of tens of milliseconds, which is typically faster
than the timescale of the dynamics, giving a justification for
this assumption.
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Coupling between agents in the model predictive control
problem could arise through the dynamics model of each agent.
We define N d

i ⊆ Ni as the set of agents which influence the
dynamics of agent i. We denote the state of agent i at time t
as x̂i,t ∈ Rn̂i , with its control inputs denoted by ûi,t ∈ Rm̂i .
We represent the dynamics model of agent i by

x̂i,t+1 =Mi,t(x̂i,t, Xi,t, ûi,t, Ui,t) (7)

where Xi,t = [x̂Tr,t, ∀r ∈ N d
i ]

T denotes the concatenation of
the states of all agents which influence the dynamics of agent
i, with Ui,t denoting the concatenation of the control inputs
of these agents.

For distributed optimization, agent i keeps a local copy
of the variables Xi,t and Ui,t, ∀t, with an associated set of
equality constraints between corresponding variables computed
by agent i and each agent in N d

i . We denote agent i’s local
copies of agent j’s state and control inputs as x̂ij,t and ûij,t,
respectively, and its local copies of the concatenation of the
states and control inputs of all agents in N d

i as Xc
i,t and U c

i,t,
respectively. With this procedure, the dynamics model of agent
i depends on its states and control inputs and its local variables
Xc

i,t and U c
i,t. Further, the dynamics model of agent i induces

the equality constraints given by

x̂ij,t = x̂j,t, û
i
j,t = ûj,t ∀t, ∀j ∈ N d

i , (8)

which are incorporated into the corresponding coupling con-
straint functions between agents i and j, given by ϕij(·),
∀j ∈ N d

i .
We represent the concatenation of the state of agent i and

Xc
i,t at time t as xi,t = [x̂Ti,t, X

cT
i,t ]

T and the concatenation
of its control inputs and U c

i,t as ui,t = [ûTi,t, U
cT
i,t ]

T. In ad-
dition, we represent the optimization variables of agent i as
xi = [xTi,0, · · · , xTi,P ]T and ui = [uTi,0, · · · , uTi,P ]T, concatenat-
ing its states and control inputs over a problem horizon P
on each instance of the model predictive control problem. We
collect the dynamics constraints across all time indices into a
single constraint function di(xi, ui) = 0.

Over the graph G, we describe the model predictive control
problem by

minimize
x,u

N∑
i=1

fi(xi, ui)

subject to di(xi, ui) = 0 i = 1, · · · , N
gi(xi, ui) = 0 i = 1, · · · , N
hi(xi, ui) ≤ 0 i = 1, · · · , N
ϕij(xi, ui, xj , uj) = 0 ∀(i, j) ∈ E

(9)

where xi ∈ Rni , ui ∈ Rmi , and fi : Rni × Rmi → R repre-
sents the local objective function of agent i. We assume the
objective function fi is lower-bounded, ∀i. We represent other
equality constraints in the model predictive control problem
by gi, including constraints on its initial states. Likewise, we
include inequality constraints on the optimization variables of
agent i in hi, such as constraints on its feasible states and its
control limits. The optimization variables of agent i depend
on the optimization variables of agent j through the coupling
constraint function ϕij(·). The coupling constraints between

agents can vary over time; however, we do not indicate its
dependence on time explicitly. We represent the concatenation
of the states of all agents as x ∈ Rnx and their control inputs
as u ∈ Rnu . For simplicity of exposition, we consider equality
constraints for ϕij(·); however, our method readily applies to
inequality constraints between agents. We note that inequality-
constrained problems can be reformulated using auxiliary
variables into the same form as (9).

For a model predictive control problem with a problem
horizon P , we define the objective function as

fi(xi, ui) =Wi,P(xi,P) +

P−1∑
τ=0

Wi,τ (xi,τ , ui,τ ) (10)

where Wi,τ : Rni × Rmi → R represents the per-stage objec-
tive function at time τ . In many model predictive control
problems, Wi,τ (·) takes a quadratic form given by

Wi,τ (xi,τ , ui,τ ) = (xi,τ − x̃i,τ )TQi,τ (xi,τ − x̃i,τ )
+ uTi,τRi,τui,τ

(11)

where x̃i,τ denotes a desired reference state trajectory,
Qi,τ ∈ Rni × Rni represents a positive semi-definite weight
matrix, and Ri,τ ∈ Rmi × Rmi represents a positive definite
weight matrix. The quadratic objective function in (11) penal-
izes deviations from the desired state trajectory x̃i,τ , while
minimizing energy consumption. We assume that the terminal
cost and terminal set are selected such that stability and
recursive feasibility of the model predictive control problem
are guaranteed [40], [57], [58]. This procedure may involve
constraint tightening of the terminal set or relaxation of the
dynamics constraints in problems with terminal set constraints
[59], [60]. In problems without terminal set constraints,
recursive feasibility and stability can be guaranteed if the
problem horizon and terminal cost are sufficiently large [61].
We note a terminal set can be selected to guarantee stability of
the model predictive control problem even in situations where a
sub-optimal solution is computed, which is particularly relevant
in non-convex problems [62]–[64]. Moreover, to preserve
separability of the objective and constraint functions in (9),
we can synthesize a separable terminal cost function, along
with local terminal set constraints, to guarantee stability of the
model predictive control problem, as described in [46].

V. DISTRIBUTED CONTROL

Noting that centralized approaches for solving the model
predictive control problem (9) require the computation of the
control inputs of all agents at a central station, which can
be impractical in many situations, we derive an algorithm
for distributed model predictive control, SOD-MPC, which
enables each agent to compute its local states and control
inputs without computing the states and control inputs of other
agents irrelevant to its performance.

We note that some other consensus ADMM methods [44],
[65], [66] require the introduction of local copies of all
the optimization variables arising in the coupling constraint
functions in (9), followed by a subsequent transformation of
the coupling constraints to local constraints enforced by each
agent. Moreover, the coupling constraints in (9) are replaced
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by consensus constraints between the original optimization
variables and the new local copies. This approach results in
greater computation and communication overhead, considering
the increase in the number of the optimization variables in the
problem. As a result, we derive a distributed algorithm that
avoids this approach.

We apply the SOVA method [34] based on ADMM to obtain
distributed update procedures for the local variables of each
agent. We express the coupling constraint function between
agents i and j as

ϕij(xi, ui, xj , uj) = ϕiij(xi, ui)− ϕ
j
ij(xj , uj) (12)

where ϕiij : Rni × Rmi → Rnij depends only on the optimiza-
tion variables of agent i and ϕjij : Rnj × Rmj → Rnij depends
only on the optimization variables of agent j. We emphasize
that the decomposition in (12) exists for any arbitrary coupling
constraint function ϕij , which we demonstrate in the subsequent
discussion, where we consider two broad classes of model
predictive control problems.

Convex Model Predictive Control Problems
In convex model predictive control problems, the coupling

constraint functions must be affine, which shows that the
optimization variables of agents i and j do not appear together
in the same term within the coupling constraint function.
Consequently, we can group all terms depending on the
optimization variables of agent i into a new function ϕiij(·)
and, likewise, group all terms depending on the optimization
variables of agent j into ϕjij(·), such that we obtain the
expression in (12). We can assign the constant term in the
coupling constraint function to either ϕiij(·) or ϕjij(·) or split
it between both functions.

Non-Convex Model Predictive Control Problems
The coupling constraints in some non-convex model predic-

tive control problems possess a separable structure naturally.
For example, coupling constraints of the form

ϕij(ui, uj) = ∥ui∥22 − ∥uj∥22 (13)

can be simply expressed in the form given in (12) with

ϕiij(ui) = ∥ui∥22 and ϕjij(uj) = ∥uj∥
2
2. (14)

We consider more general coupling constraint functions which
may not possess a separable structure, e.g., constraint functions
with bilinear terms. Many decomposition strategies exist for
expressing these constraint functions in the form given in (12).
Here, we discuss the simplest decomposition strategy, which
involves introducing new optimization variables representing
local copies of the original optimization variables in the original
coupling constraint. Subsequently, we transform the coupling
constraint to a local constraint, enforced by each agent locally.
Lastly, we create a new coupling constraint enforcing equality
between the original optimization variables and the local copies
of these variables which were introduced to decouple the
original coupling constraint. The new coupling constraint exists
in the form given in (12).

To provide a concrete illustration, we consider the bilinear
constraint xTi xj = 0. We begin by introducing a local copy of
xi, denoted by x̆i, and a local copy of xj , denoted by x̆j . Next,
we assign x̆j to agent i and x̆i to agent j. Agent i enforces
the local constraint

xTi x̆j = 0, (15)

while agent j enforces the local constraint

x̆Ti xj = 0. (16)

Lastly, we create a pair of new coupling constraints

xi − x̆i = 0 and xj − x̆j = 0, (17)

which are in the form given in (12). We note that more efficient
decomposition strategies exist; however, we do not discuss these
strategies here, due to space constraints.

Expressing the coupling constraints in the form in (12)
enables us to decouple the contribution of each agent to
the value of the coupling constraint, allowing each agent to
optimize over this constraint locally.

With the constraint in (12), the model predictive control
problem in (9) is given by

minimize
x,u

N∑
i=1

fi(xi, ui)

subject to di(xi, ui) = 0 i = 1, · · · , N
gi(xi, ui) = 0 i = 1, · · · , N
hi(xi, ui) ≤ 0 i = 1, · · · , N
ϕiij(xi, ui) = ϕjij(xj , uj) ∀(i, j) ∈ E

(18)

where agent i computes its local optimization variables xi
and ui. We introduce the auxiliary variables cij ∈ Rnij in the
coupling constraint ϕij(·), expressing the model predictive
control problem in (18) as

minimize
x,u,c

N∑
i=1

fi(xi, ui)

subject to di(xi, ui) = 0 i = 1, · · · , N
gi(xi, ui) = 0 i = 1, · · · , N
hi(xi, ui) ≤ 0 i = 1, · · · , N
ϕiij(xi, ui) = cij ∀ (i, j) ∈ E
ϕjij(xj , uj) = cij ∀(i, j) ∈ E

(19)

where c = [cTij , ∀(i, j) ∈ E ]T.
Next, we derive update procedures for the states and control

inputs of each agent from the augmented Lagrangian for the
problem in (19)

La(x,u, c,v,w) =

N∑
i=1

fi(xi, ui)

+
∑

(i,j)∈E

(
vTij(ϕ

i
ij(xi, ui)− cij)

+ wT
ij(ϕ

j
ij(xj , uj)− cij)

)
+
ρ

2

∑
(i,j)∈E

(
∥ϕiij(xi, ui)− cij∥22

+ ∥ϕjij(xj , uj)− cij∥
2
2

)
(20)
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with dual variables vij ∈ Rnij and wij ∈ Rnij for the
coupling constraints between agents i and j, where
v = [vTij , ∀(i, j) ∈ E ]T and w = [wT

ij , ∀(i, j) ∈ E ]T. We have
not dualized the dynamics constraints and the local equality and
inequality constraints in (20). Rather, we restrict the domain
of La(·) such that

di(xi, ui) = 0 i = 1, · · · , N
gi(xi, ui) = 0 i = 1, · · · , N
hi(xi, ui) ≤ 0 i = 1, · · · , N

(21)

which ensures that the control inputs generated by our algorithm
remain feasible for each agent.

The positive parameter ρ in the augmented Lagrangian deter-
mines the penalty on the violation of the coupling constraints
between the agents. Each agent updates its primal variables
iteratively as the minimizers of the augmented Lagrangian using
its dual variables at the previous iteration and subsequently
updates its dual variables through dual ascent on the augmented
Lagrangian using its computed primal variables. We update
the primal variables x and u before updating the auxiliary
variable c.

For any value of ρ > 0, the augmented Lagrangian is
quadratic in cij . As a result, the update procedure for cij
yields a closed-form solution, given by

ck+1
ij =

vkij + wk
ij

2ρ
+
ϕiij(x

k+1
i , uk+1

i ) + ϕjij(x
k+1
j , uk+1

j )

2
,

(22)
at iteration k. The dual ascent procedure for updating the dual
variables results in

vk+1
ij = vkij + ρ

(
ϕiij(x

k+1
i , uk+1

i )− ck+1
ij

)
(23)

and

wk+1
ij = wk

ij + ρ
(
ϕjij(x

k+1
j , uk+1

j )− ck+1
ij

)
. (24)

By simplifying (23) and (24) using (22), we obtain that
vk+1
ij = −wk+1

ij , at each iteration k.
Agent i updates xki and uki at iteration k as the minimizer

of the problem

minimize
xi,ui

fi(xi, ui) + qkTi ϕii(xi, ui)

+ ρ
∑
j∈Ni

∥∥∥ϕiij(xi, ui)− ψij

(
xki , u

k
i , x

k
j , u

k
j

)∥∥∥2
2

subject to di(xi, ui) = 0

gi(xi, ui) = 0

hi(xi, ui) ≤ 0
(25)

where ϕi(·) represents the vertical concatenation of the coupling
constraint functions between agent i and all its neighbors, given
by

ϕi(·) = [(ϕiij(·)− ϕ
j
ij(·))

T, ∀j ∈ Ni]
T,

ϕii(·) = [ϕiij(·)T, ∀j ∈ Ni]
T,

(26)

and

ψij

(
xki , u

k
i , x

k
j , u

k
j

)
=
ϕiij
(
xki , u

k
i

)
+ ϕjij

(
xkj , u

k
j

)
2

. (27)

We have introduced a composite dual variable qi ∈ Rnc , with
the component of qki corresponding to edge (i, j) given by[

qki
]
ij
= vkij + wk

ji, (28)

where v0 = w0 = 0. From (23) and (24), we obtain the
corresponding update procedure for qi at iteration k, given
by

qk+1
i = qki + ρ ϕi

(
xk+1
i , uk+1

i , xk+1
Ni

, uk+1
Ni

)
(29)

where xNi
and uNi

denote the vertical concatenation of the
optimization variables of all the neighbors of agent i. In
deriving the update procedure in (25), we have assumed that
agents i and j have access to ck+1

ij , i.e., agent i has access to the
value of ϕjij(x

k+1
j , uk+1

j ) and agent j has access to the value
of ϕiij(x

k+1
i , uk+1

i ), which requires that the communication
graph within a single instance of the model predictive control
problem remains static. This assumption enables us to reduce
the number of optimization variables maintained by each robot,
as each agent maintains a smaller composite dual variable, as
opposed to maintaining a dual variable for each edge in G. Note
that this assumption does not restrict the communication graph
from changing across different instances of the model predictive
control problem. In addition, we note that the update procedures
can be modified to allow for dynamic communication graphs
within a single instance of the model predictive control problem;
however, the resulting algorithm would require each agent to
maintain a dual variable for each edge in G.

Each agent does not need to compute the auxiliary vari-
ables as these variables have been included in the update
procedures in (25). From the update equations (25) and (29),
agent i only communicates with its neighbors to evaluate its
coupling constraints ϕi(·) and ψij(·), ∀j ∈ Ni. Specifically,
agent i shares the value of ϕiij(x

k+1
i , uk+1

i ) with agent j, its
neighbor, ∀j ∈ Ni, at iteration k. As a result, SOD-MPC does
not necessarily require each agent to share its iterates for the
local optimization variables x, u, and q with its neighbors.
Rather, each agent shares the value of its component of the
coupling constraints with its neighbors, ensuring the privacy
of its local variables. In addition, each agent only requires its
local objective and constraint functions in its update procedures,
maintaining the privacy of these local functions and the problem
data.

Theorem 1. For a non-convex model predictive control problem,
the iterates (xki , u

k
i ) of agent i converge to a locally optimal

solution, ∀i ∈ V , with the assumption that the objective function
of (9) has Lipschitz continuous gradients.

Proof. We omit the proof here. Refer to [67] for the proof.

Algorithm 1 outlines SOD-MPC for distributed model
predictive control.

At each iteration, the states and control inputs of agent
i, contained in its local optimization variables xi and ui
satisfy all the constraints in (9), except its coupling constraint,
which is satisfied at convergence of our algorithm. Hence, the
DistributedControl procedure can be terminated early to allow
each agent to apply its control inputs, if absolute satisfaction
of the coupling constraints is not required. Since the iterates
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Algorithm 1: Separable Optimization for Distributed
Model Predictive Control (SOD-MPC)
do in parallel i = 1, · · · , N

(xi, ui)← DistributedControl(t, x̄i,t)
Apply control input ǔi,t.

while task is in progress;

Function DistributedControl(t, x̄i,t)
Initialization:
k ← 0

q0i ← 0

(x0i , u
0
i )← argmin

xi,ui

fi(xi, ui)

do in parallel i = 1, · · · , N(
xk+1
i , uk+1

i

)
← Procedure (25)

Communication Step:
Agent i shares the value of ϕiij(x

k+1
i , uk+1

i ) with
agent j, its neighbor, and receives the value of
ϕjij(x

k+1
j , uk+1

j ), ∀j ∈ Ni.

qk+1
i ← Procedure (29)
k ← k + 1

while not converged or stopping criterion is not met;
return (xi, ui)

of each agent satisfy its dynamics constraints, control inputs
constraints, and terminal set constraints, we note that early
termination of our algorithm does not negatively impact the
stability guarantees of sub-optimal model predictive control
[62]. Moreover, our algorithm preserves the same stability
guarantees in non-convex model predictive control problems,
where, generally, sub-optimal solutions are computed. With
SOD-MPC, agent i computes its control inputs ǔi,t at its current
state x̄i,t and repeats this procedure for its control inputs at
the next time instant.

A. Convergence Analysis for Convex Model Predictive
Control Problems

We examine the convergence rate of our algorithm on convex
model predictive control problems. We note that the constraint
functions di, gi, and ϕij are restricted to affine functions in
convex model predictive problems. In addition, the function
hi must be convex. We express the optimization problem in
(18) in terms of the control inputs by eliminating the state
variables using the dynamics model in di(·) for agent i. In
addition, we eliminate constraints on the initial state of each
agent, specified in gi. With this formulation, the convex model
predictive control problem is given by

minimize
u

N∑
i=1

Fi(ui)

subject to Gi(ui) = 0 i = 1, · · · , N
Hi(ui) ≤ 0 i = 1, · · · , N
Φi

ij(ui) = Φj
ij(uj) ∀(i, j) ∈ E

(30)

where the constraint functions Gi and Φij are affine and
the objective function Fi and constraint function Hi are
convex functions. We assume that the problem in (30) and
the associated update procedures are feasible and, in addition,
an optimal primal-dual solution of (30) exists.

For convex model predictive problems, described by (30), we
provide a general convergence result in the following theorem.

Theorem 2 (Convergence of {uk}). In convex model predictive
control problems, the sequence of control inputs computed by
all agents {uk} converges sub-linearly to the optimal control
inputs u⋆.

Proof. We refer readers to [68] for the proof.

SOD-MPC converges for any value of ρ > 0. Specific
strategies for selecting the value of ρ can be found in [69], [70].
We can make stronger statements on the convergence rate of our
algorithm in convex model predictive control problems without
the local constraint functions Gi and Hi in (30). Particularly,
the iterates generated by our algorithm converge linearly to the
optimal solution in these problems. To show linear convergence
of our algorithm, we assume that the local objective function
Fi of agent i is continuously differentiable with Lipschitz
continuous gradients and strongly convex, for all agents. This
assumption is not restrictive, considering that, in many model
predictive control problems, the objective function takes a
quadratic form with a positive definite Hessian. In addition,
we define the sequence {zk} as

zk =

[
qk

ck

]
, (31)

composed of the primal variable c and the dual variable q,
where c = [cTij , ∀(i, j) ∈ E ]T and q = [qTi , ∀i ∈ V]T.

Lemma 1 (Sufficient Descent). The error ∥zk−z⋆∥ decreases
monotonically at each iteration, until convergence of the
sequence {zk} to a limit point, with∥∥zk − z⋆∥∥2

W
−
∥∥zk+1 − z⋆

∥∥2
W

≥ mf

∥∥uk+1 − u⋆
∥∥2
2
+
∥∥zk+1 − zk

∥∥2
W
,

(32)
where z⋆ and u⋆ denote the optimal solution of z and the
control inputs, respectively, and W > 0.

Proof. We provide the proof in the Appendix.

Lemma 2 (Q-linear Convergence of {zk}). The sequence {zk}
converges Q-linearly to z⋆ with

∥zk+1 − z⋆∥2W
∥zk − z⋆∥2W

≤ 1

ℓ+ 1
(33)

where

ℓ = min

{
4mfρ(µ− 1)σ2

min (J )
ρ2(µ− 1)σ2

max

(
J̄
)
σ2
min (J ) + 4µL2

f

,
σ2
min (J )

µσ2
min

(
J̄
)}

(34)
with ℓ > 0 and µ > 1.

Proof. We provide the proof in the Appendix.
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Theorem 3 (R-linear Convergence of {uk}). The sequence
of control inputs computed by all agents {uk} converges R-
linearly to the optimal control inputs u⋆ with

∥uk+1 − u⋆∥2W ≤
1

mf
∥zk − z⋆∥2W (35)

where mf > 0, for convex model predictive control problems
with strongly convex objective functions and Lipschitz continu-
ous gradients.

Proof. From Lemma 1 and Q-linear convergence of {zk}
(Lemma 2),

∥∥uk+1 − u⋆
∥∥2
2
≤ 1

mf

∥∥zk − z⋆∥∥2
W

, (36)

showing R-linear convergence of {uk} to the optimal control
inputs u⋆.

VI. CLOSED-LOOP CONTROL LAW

SOD-MPC provides a time-varying closed-loop control law
for convex model predictive control problems with affine
constraints, from the update procedure in (25). We consider
model predictive problems where the dynamics model of agent
i is given by

xi,τ+1 = Ai,τxi,τ +Bi,τui,τ (37)

with xi,τ ∈ Rni denoting its state, ui,τ ∈ Rmi denoting its con-
trol inputs, and Ai,τ ∈ Rni×ni and Bi,τ ∈ Rni×mi describing
its dynamics, at time τ . In these problems, the agents compute
their states and control inputs by solving the optimization
problem

minimize
x,u

N∑
i=1

fi(xi, ui)

subject to xi,0 = x̄i,t i = 1, · · · , N
xi,τ+1 = Ai,τxi,τ +Bi,τui,τ ∀τ, i = 1, · · · , N
ϕij(xi, ui, xj , uj) = 0 ∀(i, j) ∈ E

(38)
where x̄i,t indicates the state of agent i at time t and fi
represents the objective function of agent i given by

fi(xi, ui) = xTi,PHixi,P +

P−1∑
τ=0

(
xTi,τQi,τxi,τ + uTi,τRi,τui,τ

)
(39)

with a terminal weight Hi ∈ Rni×ni , weights on agent i’s states
Qi ∈ Rni×ni , and weights on its control inputs Ri ∈ Rmi×mi .
For the existence of a stabilizing solution to the model
predictive control problem, we require positive definite weights
Qi and positive semi-definite weights for Ri.

Using Algorithm 1, agent i computes its states and control

inputs at time t from the optimization problem

minimize
xi,ui

xTi,PHixi,P +

P−1∑
τ=0

(
xTi,τQi,τxi,τ + uTi,τRi,τui,τ

)
+ qkTi ϕii(xi, ui)

+ ρ
∑
j∈Ni

∥∥∥ϕiij(xi, ui)− ψij

(
xki , u

k
i , x

k
j , u

k
j

)∥∥∥2
2

subject to xi,0 = x̄i,t

xi,τ+1 = Ai,τxi,τ +Bi,τui,τ ∀τ
(40)

with ψij(·) given by (27). A direct approach to computing
agent i’s control inputs involves solving the quadratic program
(40) numerically. Numerical quadratic optimization techniques
involve factorizing the Hessian of the Lagrangian of (40) which
can require notable computational effort, depending on the
length of the problem horizon and the dimensions of the state
and control inputs of each agent. Consequently, this approach
quickly creates computation overhead, especially in problems
with high control bandwidths.

In contrast, we derive a time-varying closed-loop control
law for computing the optimal control inputs of (40), which
involves factorizing a matrix of a much smaller dimension,
significantly reducing the computation overhead associated with
solving (40). For convex model predictive control problems,
we eliminate the state variables of agent i in the coupling
constraints ϕii(·) and express the resulting coupling constraints
at time t as

ϕii(ui, t) = νii,tui + ηii,t (41)

where νii,t represents the Jacobian of ϕii(·) with respect to ui
given by

νii,t = ∇ui
ϕii(ui, t) (42)

and ηii,t represents constant terms in ϕii(·), independent of
agent i’s control inputs.

From dynamic programming, agent i solves for its control
input ui,P−1 from the optimization problem

minimize
xi,P ,ui,P−1

xTi,PHixi,P + qkTi,Pν
i
i,Pui,P−1

+ ρ
∑
j∈Ni

∥∥∥νiij,Pui,P−1 − γij,P
(
uki,P−1, u

k
j,P−1

)∥∥∥2
2

+ xTi,P−1Qi,P−1xi,P−1

+ uTi,P−1Ri,P−1ui,P−1 + qkTi,P−1ν
i
i,P−1ui,P−1

+ ρ
∑
j∈Ni

∥∥∥νiij,P−1ui,P−1 − γij,P−1

(
uki,P−1, u

k
j,P−1

)∥∥∥2
2

subject to xi,P = Ai,P−1xi,P−1 +Bi,P−1ui,P−1

(43)
given xi,P−1, the state of agent i at time P − 1, with

γij,τ (ui, uj) =
ϕiij(ui, τ) + ϕjij(uj , τ)

2
− ηiij,τ (44)

which includes the coupling constraints between agents i and
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j. The optimization problem simplifies to

minimize
xi,P ,ui,P−1

xTi,PHixi,P + xTi,P−1Qi,P−1xi,P−1

+ uTi,P−1Ri,P−1ui,P−1 + zkTi,P−1ui,P−1

subject to xi,P = Ai,P−1xi,P−1 +Bi,P−1ui,P−1

(45)

where

Ri,P−1 = Ri,P−1 + ρ
∑
j∈Ni

(
νiTij,Pν

i
ij,P + νiTij,P−1ν

i
ij,P−1

)
(46)

and

zki,P−1 =

P∑
τ=P−1

(
νiTi,τq

k
i,τ − 2ρ

∑
j∈Ni

νiTij,τγij,τ
(
uki,P−1, u

k
j,P−1

))
(47)

for the control inputs ui,P−1 at iteration k. The optimization
problem for the control inputs of agent i at time τ takes the
same form as the problem in (45), given by

minimize
xi,τ ,ui,τ−1

xTi,τHi,τxi,τ + xTi,τ−1Qi,τ−1xi,τ−1

+ uTi,τ−1Ri,τ−1ui,τ−1

+ (zki,τ−1 −BT
i,τ−1Ci,τ )Tui,τ−1

subject to xi,τ = Ai,τ−1xi,τ−1 +Bi,τ−1ui,τ−1

(48)

where
Ri,τ = Ri,τ + ρ

∑
j∈Ni

νiTij,τν
i
ij,τ (49)

and

zki,τ = νiTi,τq
k
i,τ − 2ρ

∑
j∈Ni

νiTij,τγij,τ
(
uki,τ , u

k
j,τ

)
(50)

for τ ∈ {1, · · · ,P − 1}. With

Gi,τ =
(
BT

i,τHi,τ+1Bi,τ +Ri,τ

)−1
, (51)

agent i computes Hi,τ ∈ Rni×ni from the Riccati equation

Hi,τ = AT
i,τHi,τ+1Ai,τ +Qi,τ

−AT
i,τHi,τ+1Bi,τGi,τB

T
i,τHi,τ+1Ai,τ

(52)

beginning with Hi,P = Hi, for τ = 0, · · · ,P−1, and likewise,
computes Ci,τ ∈ Rni from the Riccati equation

Ci,τ = AT
i,τCi,τ+1 +AT

i,τHi,τ+1Bi,τGi,τ (z
k
i,τ −BT

i,τCi,τ+1)
(53)

beginning with Ci,P = 0.
By solving (48), agent i obtains its control inputs

uk+1
i,τ = −Gi,τ

(
BT

i,τHT
i,τ+1Ai,τx

k+1
i,τ +

1

2
(zki,τ −BT

i,τCi,τ+1)

)
(54)

with the resulting value of the objective function given by

fi,τ = x
(k+1)T
i,τ Hi,τx

(k+1)
i,τ − x(k+1)T

i,τ Ci,τ

− 1

4

P−1∑
w=τ

(
zki,w −BT

i,wCi,w+1

)T
Gi,w

(
zki,w −BT

i,wCi,w+1

)
(55)

for τ = 0, · · · ,P − 1. Note that agent i needs to factorize the
matrix in (51) only once when solving for its control inputs.

For each agent, the closed-loop control law in (54) consists
of a feedback controller which depends on the current state
of the agent and a feedforward controller which incorporates
information from its neighbors into its inputs, enabling each
agent to satisfy the coupling constraints in (38).

With (54), SOD-MPC provides a computationally efficient
procedure for computing the optimal states and control inputs
at every iteration. Agent i’s state xk+1

i,τ result from its dynamics
model in (37) by applying uk+1

i,τ−1 at state xk+1
i,τ−1.

The closed-loop control law involves factorizing the matrix
in (51). The factorization procedure can be performed using
the Cholesky or LDLT decomposition which requires O(m3

i )
floating-point operations (FLOPS) in the dense case and
O(nnz(L)) FLOPS if sparsity is exploited, where L ∈ Rmi×mi

denotes a lower triangular matrix. Similarly, when solving
(40) using a direct numerical approach, the Hessian of the
Lagrangian of (40) can be factorized using the Cholesky or
LDLT decomposition, which would require O(N3

τ (n
3
i +m3

i ))
FLOPS in the dense case and O(nnz(L)) FLOPS if sparsity
is exploited, where L ∈ RNτ (ni+mi)×Nτ (ni+mi) denotes a
lower triangular matrix. Hence, our approach reduces the
computational complexity of solving (40) significantly, even
after exploiting sparsity of the problem or reducing the
problem size by eliminating the state variables and subsequently
solving for the control inputs. Particularly, the computational
complexity of our method does not depend on the length of
the problem horizon, unlike the computational complexity of
a direct numerical approach.

While other distributed model predictive control methods
can be applied to solve (38), these methods do not consider
the effects of time delays on the control inputs applied by
each agent, which can be particularly significant in problems
involving agents with fast dynamics. In contrast, SOD-MPC
produces a closed-loop control law, providing robustness to
time delays arising from the computation and communication
procedures performed by each agent, in addition to modeling
errors in the dynamics of the agents.

Algorithm 2 describes SOD-MPC for the convex model
predictive control problem.

Algorithm 2: SOD-MPC for Closed-Loop Distributed
Model Predictive Control

do in parallel i = 1, · · · , N
(xi, ui)← DistributedClosedControl(t, x̄i,t)
Get state x̄i,t′ at current time t′.
ǔi,t′ ← ui,0(x̄i,t′)
Apply control input ǔi,t′ .

while task is in progress;

The agents execute the DistributedClosedControl procedure
to compute a closed-loop controller at each time t. On
completion of this procedure, each agent measures its current
state at time t′ and computes its feedback control inputs at its
current state, with its feedforward controller utilizing the most
recent information received from its neighbors. Each agent
repeats this procedure to obtain its control inputs at the next
time instant. Noting that the states and control inputs obtained
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Function DistributedClosedControl(t, x̄i,t)
Initialization:
k ← 0
q0i ← 0
xi,0 ← x̄i,t

do in parallel i = 1, · · · , N
Compute Hi,τ , Ci,τ with (52), (53) ∀τ .
for τ = 0, · · · ,P − 1 do

uk+1
i,τ ← Equation (54)

xk+1
i,τ+1 ← Equation (37)

end
Communication Step:

Agent i shares the value of ϕiij(x
k+1
i , uk+1

i ) with
agent j, its neighbor, and receives the value of
ϕjij(x

k+1
j , uk+1

j ), ∀j ∈ Ni.

qk+1
i ← Equation (29)
k ← k + 1

while not converged or stopping criterion is not met;
return (xi, ui)

using SOD-MPC always satisfy the dynamics constraints of
each agent, the DistributedClosedControl procedure can be
terminated early if needed. In these cases, each agent uses
the most recent information received from its neighbors in
computing its control inputs.

VII. SIMULATIONS

We examine the performance of SOD-MPC in convex and
non-convex model predictive control problems, comparing our
method to other distributed model predictive control methods
including ADMM-MPC [54] and dual decomposition [43]–
[45], [48]. In ADMM-MPC, each agent optimizes over a
copy of the states and control inputs of all its neighbors,
with a consensus constraint between each pair of neighboring
agents, ensuring the agents compute the same solution for
equivalent variables. Consequently, ADMM-MPC differs from
SOD-MPC, which does not require an agent to compute the
states and control inputs of other agents. Rather, each agent
in SOD-MPC optimizes over its contributions to the coupling
constraints between the agent and its neighbors. We select the
gradient ascent step-size in the dual decomposition algorithm
and penalty parameters in ADMM-MPC and SOD-MPC using
a modified binary search procedure, in which we examine the
convergence rate of each algorithm at each candidate value
of each parameter. Ultimately, we select the parameters that
provide the fastest convergence rates in each method. We
assume each agent represents the numerical values of its local
optimization variables using the double precision floating-point
format.

Remark 2. ADMM-MPC does not consider the relevance
of neighboring agents’ variables to an agent’s objective or
constraint functions when assigning local variables to each
agent. We modify ADMM-MPC to remove extraneous variables
within each agent’s set of local variables, obviating unneces-
sary optimization over these variables which would otherwise

degrade the convergence rate of the method. In modifying
ADMM-MPC, we further eliminate the need for computation
of the dual variables at a central station, extending the method
beyond problems with fully-connected communication networks.

A. Convex Model Predictive Control

We consider a model predictive control problem involving
agents with directional transceivers where optimum communica-
tion between agents requires alignment of the transceivers along
an optimal surface (direction). For optimum communication
while agents perform their desired tasks, we introduce a
coupling constraint between neighbors, specifying the optimal
surface for the transceivers for each pair of neighboring agents.
The agents compute their optimal control inputs from the model
predictive control problem

minimize
x,u

N∑
i=1

fi(xi, ui)

subject to xi,0 = x̄i,t i = 1, · · · , N
xi,τ+1 = Ai,τxi,τ +Bi,τui,τ ∀τ, i = 1, · · · , N
ϕij(xi, ui, xj , uj) = 0 ∀(i, j) ∈ E

(56)
where x̄i,t represents the state of agent i at time t, fi(·)
represents the objective function in (39), and ϕij(·) describes
the optimal surface for the transceivers on agents i and j. We
define the coupling constraint between agents i and j as

ϕij(xi, ui, xj , uj) = eTij(xi − xj) (57)

where eij ∈ Rnij specifies the normal to the desired hyperplane
for optimal communication between agents i and j. By
expressing the coupling constraint in (57) in the form given in
(12), we obtain that

ϕiij(xi, ui) = eTijxi and ϕjij(xj , uj) = eTijxj . (58)

With SOD-MPC, each agent only computes its states and
control inputs without computing the states and control
inputs of other agents, including its neighbors. Consequently,
each agent does not communicate its control inputs to other
agents. As such, in SOD-MPC, agent i communicates the
value of ϕiij(·), represented by 64 bits of information, with
agent j. In contrast, each agent in ADMM-MPC shares 384
bits of information with its neighbors. Each agent in dual
decomposition shares the same amount of information as agents
in SOD-MPC.

We consider a randomly-generated connected communication
network between the agents. In Figure 2, we show the
transceivers on each agent along with the surfaces for optimal
communication between a pair of transceivers. Each agent
computes its optimal control inputs from (56) to arrive at
its desired location, depicted in wireframe, while optimizing
communication with its neighbors. By applying the resulting
control inputs, the agents arrive at their desired locations,
depicted in Figure 3.
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Fig. 2. Each agent has a directional transceiver displayed in the figure,
with optimum communication between a pair of transceivers achieved
when the transceivers lie on a collinear surface. By solving the model
predictive control problem, each agent computes its control inputs to
arrive at its desired location, depicted by the transceiver in wireframe,
while optimizing communication with its neighbors.

Fig. 3. At the end of the model predictive control problem, each agent
arrives at its desired location with the transceivers oriented along collinear
surfaces for optimum communication.

Convergence Analysis
We begin by examining the convergence rate of SOD-MPC

to the optimal solution of the centralized problem compared to
the convergence rate of ADMM-MPC and dual decomposition
for the model predictive control problem in (56) with N = 60
agents and a sampling interval of 0.01 second. To visualize the
solution obtained by each method in Figure 3, we set ni = 6
and mi = 3 for agent i. In certain problems, satisfaction of the
coupling constraints between agents attain greater importance
when these constraints influence the overall performance of
all agents more significantly than the expended effort by each
agent. As such, we compute the violations of the coupling
constraints at each iteration along with the convergence of the
value of the objective function to its optimal value.

Figure 4 shows the convergence rates of SOD-MPC, dual
decomposition, and ADMM-MPC to the optimal solution. The
objective value of the solution obtained using SOD-MPC
converges faster to the optimal objective value compared to
the other methods. SOD-MPC requires about 100 iterations
for convergence to the optimal objective value compared to
dual decomposition which converges in about 1000 iterations.
ADMM-MPC exhibits the slowest convergence rate among all
the methods. ADMM-MPC requires each agent to optimize
over local copies of the optimization variables of other agents
with which it shares a coupling constraint. As a result, agents
in ADMM-MPC solve local optimization problems with a
greater number of optimization variables compared to agents
in SOD-MPC, leading to a slower convergence rate.

In addition, we examine the violations of the coupling
constraints between agents in Figure 5. The violations of
the coupling constraints between agents converge rapidly to

zero with SOD-MPC, compared to dual decomposition and
ADMM-MPC. Hence, SOD-MPC not only converges rapidly
to the optimal objective value, the violations of the coupling
constraints in SOD-MPC decreases rapidly likewise. As with
convergence to the optimal objective value, the violations of the
coupling constraints in SOD-MPC converge to zero in about
100 iterations while dual decomposition, which converges faster
than ADMM-MPC, requires about 1000 iterations. With its
faster convergence rates, SOD-MPC enables each agent to
efficiently compute its control inputs, especially in problems
with high control bandwidths. Moreover, faster convergence of
the coupling constraints violations enables the application of
SOD-MPC to problems where satisfaction of these constraints
significantly influence the performance of all agents.
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Fig. 4. Convergence of SOD-MPC, dual decomposition, and ADMM-
MPC to the optimal objective value in convex model predictive control.
SOD-MPC provides the fastest convergence rate to the optimal objective
value, converging in about 100 iterations. Dual decomposition, which
converges faster than ADMM-MPC, requires about 1000 iterations.
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Fig. 5. Violation of the coupling constraints between agents using SOD-
MPC, dual decomposition, and ADMM-MPC. The violations of these
constraints in SOD-MPC converge rapidly to zero in about 100 iterations
while dual decomposition requires about 1000 iterations for convergence
of the coupling constraints violations.

Closed-Loop Performance
Regardless of the method applied in solving the model

predictive control problem in (56), the computation and
communication procedures performed by the agents or a central
station introduce time delays between the specification of
the model predictive control problem and the application
of the control inputs by each agent. Note that the model
predictive control problem in (56) depends on the state of each
agent at time t and other time-dependent problem parameters.
Considering the time delays, the resulting control inputs will
no longer be optimal for each agent at the time of application
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of the control inputs, which can severely impact the overall
performance of all agents, especially in problems involving
agents with fast dynamics.

We examine the performance of SOD-MPC, dual decomposi-
tion, ADMM-MPC, and an open-loop centralized method in the
model predictive control problem (56) for different time delays
in Figure 6. We do not modify the model predictive control
problems to account for the time delay between the specification
of the control problem and the application of the computed
control inputs. In our simulations, we propagate each agent’s
dynamics forward in time assuming its control inputs are set
to zero, while the agent is still computing its control inputs
for the current instance of the model predictive optimization
problem. At small time delays, all the methods attain almost
the same mean violation of the coupling constraints between
agents. However, the mean violation of the coupling constraints
increases precipitously in dual decomposition, ADMM-MPC,
and the open-loop centralized method as the duration of the time
delay increases. These methods do not consider the effects of
time delays in the controllers utilized by each agent; hence, the
mean violation of the coupling constraints in the centralized
method rises to almost 1000 m at a time delay of 100 ms.
In contrast, SOD-MPC attains a mean coupling constraints
violation close to 1 m even at a time delay of 100 ms. The
closed-loop controller provided by SOD-MPC enables each
agent to mitigate the effects of time delays, improving the
performance of all agents in the model predictive control
problem. Eventually, when the time delay exceeds 100 ms, the
model predictive controllers resulting from dual decomposition,
ADMM-MPC, and the open-loop centralized method become
unstable.

In Figure 7, we show the violations of the coupling
constraints for the first 60 time intervals at a time delay of
100 ms. The agents begin their tasks with their transceivers
not aligned along the optimal surface for communication with
their neighbors. Dual decomposition, ADMM-MPC, and the
open-loop centralized method fail to align the transceivers on
each agent to the optimal surface specified in the coupling
constraints as the agents proceed with their tasks. As such, the
violations of the coupling constraints do not converge to zero
with these methods. However, the violations of the coupling
constraints converge to zero in SOD-MPC, with each agent
aligning its transceiver along the specified optimal surface in
its coupling constraints.

B. Non-Convex Model Predictive Control

We consider the deployment of satellites using non-convex
model predictive control. We assume the satellites are equipped
with thrusters, enabling them to maneuver to specified desired
positions and orientations. We represent the orientation of each
satellite using a rotation matrix C(t) ∈ R3×3 at time t with
the angular velocity ω(t) ∈ R3. Over a sampling interval δt
with an angular velocity ω(t), the satellite rotates through an
angle α ∈ R around the axis a ∈ R3 with the dynamics of the
rotation matrix given by the model

C(t+ δt) = D(t)C(t) (59)

0 10 20 30 40 50 60 70 80 90 100
10

-1

10
0

10
1

10
2

10
3

10
4

SOD-MPC

Dual-Decomposition

ADMM-MPC

Open-Loop Centralized

Fig. 6. Violations of the coupling constraints between agents for different
time delays using SOD-MPC, dual decomposition, ADMM-MPC, and
an open-loop centralized method. The mean violation of the coupling
constraints increases rapidly for dual decomposition, ADMM-MPC, and
the open-loop centralized method as the duration of the time delay
increases. However, SOD-MPC exhibits robustness to time delays with a
mean coupling constraints violation close to 1 m even at a time delay of
100 ms where the open-loop centralized method attains a mean coupling
constraints violation close to 1000 m.
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Fig. 7. Violations of the coupling constraints between agents for the
first 60 time intervals at a time delay of 100 ms. While the violations of
the coupling constraints do not converge with other methods, SOD-MPC
attains convergence of the violations of the coupling constraints to zero.

with

D(t) = cos(α)I + (1− cos(α))aaT + sin(α)ω̂ (60)

where I ∈ R3×3 represents the identity matrix, ω̂ ∈ R3×3 repre-
sents a skew-symmetric matrix derived from ω, α = ∥ω · δt∥2,
and a = ω·δt

α .
We consider the presence of other orbiting agents and space

debris in the vicinity of the satellites and thus introduce
collision-avoidance constraints in the model predictive control
problem to prevent collisions. In addition, we include non-
convex coupling constraints between neighboring satellites
which indicate the dependence of the quality of service provided
by the group of satellites on the states of each satellite.

The satellites compute their inputs F from the model
predictive control problem

minimize
x,C,F

N∑
i=1

fi(xi, Ci,Fi)

subject to di(xi, Ci,Fi) = 0 i = 1, · · · , N
gi(xi, Ci,Fi) = 0 i = 1, · · · , N
hi(xi, Ci,Fi) ≤ 0 i = 1, · · · , N
ϕij(xi, Ci,Fi, xj , Cj ,Fj) = 0 ∀(i, j) ∈ E

(61)
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where xi,τ ∈ R6 represents the linear states and velocities of
satellite i at time τ , xi = [xTi,τ , τ = 0, · · · ,P]T and F and C
represent the concatenation of the inputs and rotation matrices
of all the satellites respectively. We represent the dynamics
constraints of satellite i with di(·) and include constraints on
its initial and desired position, orientation, and velocities in
gi(·). In hi(·), we specify the inputs constraints as well as the
collision-avoidance constraints of satellite i, given by

dist(xi, p) ≥ λmin ∀p ∈ A (62)

where A comprises of the state of all space debris detected
by satellite i and the state of all satellites in its vicinity. We
denote the minimum distance between a satellite and other
agents as λmin. In this problem, we define the distance function
dist(·) using the Euclidean norm. We specify that neighboring
satellites maintain the same altitude, giving rise to the non-
convex coupling constraint ϕij(·) between satellites i and j.

Using SOD-MPC, satellite i computes its inputs Fi ∈ R6

locally, without computing the states and inputs of other
satellites. Each satellite applies its resulting inputs, satisfying
its coupling constraints with other satellites while avoiding
collisions with other orbiting agents and space debris, as
depicted in Figure 8. At each iteration, each agent in SOD-
MPC and dual decomposition shares 64 bits of information
with its neighbors. In contrast, each agent in ADMM-MPC
shares 384 bits of information with its neighbors.

Fig. 8. Deployment of satellites to their orbits in space using non-convex
model predictive control. Using SOD-MPC, each satellite computes its
control inputs locally while satisfying coupling constraints with other
satellites and avoiding collisions with space debris, denoted by the gray
objects.

We assess the performance of SOD-MPC, dual decomposi-
tion, and ADMM-MPC in this problem (61), over a randomly-
generated connected communication network with N = 12
satellites and a 0.01 second sampling interval, solving each
problem using the interior-point optimization solver IPOPT
[71] with the linear solver MA-57 and the maximum number
of iterations at 300. We examine the convergence of the
value of the objective function obtained from each method
to the objective value from a centralized method in Figure
9. The objective value of the solution obtained using SOD-
MPC converges faster than the objective value resulting from
dual decomposition and ADMM-MPC, converging in about
600 iterations to the optimal objective value. ADMM-MPC
converges faster than dual decomposition, requiring about 1000
iterations for convergence.

Likewise, we examine the convergence of the violations of
the coupling constraints between the satellites in (61) to zero

for SOD-MPC, dual decomposition, and ADMM-MPC. SOD-
MPC attains the fastest convergence rate with the violations
of the coupling constraints converging to zero in about 600
iterations. ADMM-MPC requires about 1000 iterations for
convergence of the coupling constraints violations to zero,
converging faster than dual decomposition. Hence, SOD-MPC
provides a more efficient method for computing the control
inputs of each satellite in addition to satisfying the coupling
constraints between the satellites.
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Fig. 9. Convergence of the objective value obtained using SOD-
MPC, dual decomposition, and ADMM-MPC to the objective value
obtained from a centralized method. SOD-MPC provides the fastest
convergence rate and converges in about 600 iterations. ADMM-MPC,
which converges faster than dual decomposition, requires about 1000
iterations for convergence.
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Fig. 10. Convergence of the violations of the coupling constraints
between agents using SOD-MPC, dual decomposition, and ADMM-MPC.
SOD-MPC converges faster than dual decomposition and ADMM-MPC
in about 600 iterations, with ADMM-MPC converging faster than dual
decomposition in about 1000 iterations.

VIII. CONCLUSION

We introduce an algorithm for distributed model predictive
control, SOD-MPC, where each agent computes its control
inputs locally, in parallel, without computing the the control
inputs of other agents irrelevant to its performance. Each
agent does not rely on a central station for computing its
control inputs, unlike some other distributed methods. Our
algorithm achieves linear convergence to the optimal control
inputs, providing faster convergence rates compared to other
distributed model predictive control methods including dual
decomposition, in convex problems with strongly convex
objective functions. In addition, SOD-MPC produces a closed-
loop controller in convex model predictive control problems
with affine constraints, providing robustness to time delays
arising from the communication and computation procedures
performed by the agents.
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IX. APPENDIX

A. Proof of Lemma 1

We provide the proof of Lemma 1. For the problem in (30),
we express the coupling constraints between all agents as

Φ(u) = Ju+ η (63)

where J represents the Jacobian of the coupling constraints
with respect to u and η represents constant terms in the
coupling constraints. For convex problems, note that the
coupling constraints are affine. As such, we can always obtain
the constraint in (63) in any convex model predictive control
problem. We can further express the Jacobian as

J = J⃗ − ⃗J (64)

where J⃗ ij denotes the Jacobian of the coupling constraint
ϕij(·), represented by the edge (i, j) ∈ E , with ϕjij(·) = 0 and
⃗J ij denotes the Jacobian of ϕij(·) with ϕiij(·) = 0. Likewise,

we express the constant terms in the coupling constraints as

η = η⃗ − ⃗η (65)

with η⃗ij = ηiij and ⃗ηij = ηjij . By defining J̄ and η̄ as

J̄ = J⃗ + ⃗J
η̄ = η⃗ + ⃗η ,

(66)

we can express the update procedures for the auxiliary variables
c and dual variables q of all agents (29) as

ck+1 =
1

2

(
J̄uk+1 + η̄

)
(67)

with
qk+1 = qk + ρ

(
Juk+1 + η

)
. (68)

We define the W-norm as ∥ · ∥W with

W =

[ 1
4ρI 0

0 ρI

]
(69)

where W > 0.
Following the procedure in (25), the control inputs of all

agents satisfy

∇F
(
uk+1

)
+

1

2
J Tqk+1 + ρJ̄ T

(
ck+1 − ck

)
= 0 (70)

for the update procedure at iteration k. The optimal control
inputs satisfy the optimality conditions

∇F
(
u⋆
)
+

1

2
J Tq⋆ = 0 (71)

with the optimal auxiliary variables and dual variables satisfying

c⋆ =
1

2

(
J̄u⋆ + η̄

)
0 = ρ (Ju⋆ + η)

(72)

from (67) and (68). With (70) and (71), we obtain

∇F
(
uk+1

)
−∇F

(
u⋆
)
+

1

2
J T
(
qk+1 − q⋆

)
+ ρJ̄ T

(
ck+1 − ck

)
= 0 ,

(73)

along with

ck+1 − c⋆ =
1

2
J̄
(
uk+1 − u⋆

)
qk+1 − qk = ρJ

(
uk+1 − u⋆

) (74)

from (67), (68), and (72).
For a strongly convex function f(x),

(∇f(xa)−∇f(xb))T (xa − xb) ≥ mf∥xa − xb∥22 (75)

where mf > 0. For the convex model predictive control
problem in (30),(
∇F
(
uk+1

)
−∇F

(
u⋆
))T (

uk+1 − u⋆
)

= −
(
1

2
J T
(
qk+1 − q⋆

)
+ ρJ̄ T

(
ck+1 − ck

))T (
uk+1 − u⋆

)
= −2

(
zk+1 − z⋆

)T
W
(
zk+1 − zk

)
=
∥∥zk − z⋆∥∥2

W
−
∥∥zk+1 − z⋆

∥∥2
W
−
∥∥zk+1 − zk

∥∥2
W

(76)
from (74). Consequently,∥∥zk − z⋆∥∥2

W
−
∥∥zk+1 − z⋆

∥∥2
W

≥ mf

∥∥uk+1 − u⋆
∥∥2
2
+
∥∥zk+1 − zk

∥∥2
W

(77)
from (75).

B. Proof of Lemma 2
We prove Lemma 2. With Lipschitz continuity of ∇F(u),∥∥∇F(uk+1)−∇F(u⋆)

∥∥2
2
≤ L2

f

∥∥uk+1 − u⋆
∥∥2
2

(78)

where Lf > 0. From (67),∥∥ck+1 − c⋆
∥∥2
2
≤ 1

4

∥∥J̄ ∥∥2
2

∥∥uk+1 − u⋆
∥∥2
2
. (79)

Using the relation ∥a+ b∥22 ≥ (µ− 1)∥a∥22 +
µ−1
µ ∥b∥

2
2 for

µ > 1 and (73),∥∥∥∥12J T
(
qk+1 − q⋆

)
+ ρJ̄ T

(
ck+1 − ck

)∥∥∥∥2
2

≥ µ− 1

4µ
σ2
min (J )

∥∥qk+1 − q⋆
∥∥2
2

+ (1− µ)ρ2σ2
min

(
J̄
) ∥∥ck+1 − ck

∥∥2
2

(80)

which gives
µ− 1

4µ
σ2
min (J )

∥∥qk+1 − q⋆
∥∥2
2

+ (1− µ)ρ2σ2
min

(
J̄
) ∥∥ck+1 − ck

∥∥2
2

≤ L2
f

∥∥uk+1 − u⋆
∥∥2
2
,

(81)

resulting in
1

4ρ

∥∥qk+1 − q⋆
∥∥2
2
+ ρ

∥∥ck+1 − c⋆
∥∥2
2

≤
ρµσ2

min

(
J̄
)

σ2
min (J )

∥∥ck+1 − ck
∥∥2
2

+

(
µL2

f

ρ(µ− 1)σ2
min (J )

+
ρ

4
σ2
max

(
J̄
))∥∥uk+1 − u⋆

∥∥2
2

(82)
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with (79).
Simplifying (82) gives

ℓ

4ρ

∥∥qk+1 − q⋆
∥∥2
2
+ ℓρ

∥∥ck+1 − c⋆
∥∥2
2

≤ ρ
∥∥ck+1 − ck

∥∥2
2
+mf

∥∥uk+1 − u⋆
∥∥2
2

(83)

where

ℓ = min

{
4mfρ(µ− 1)σ2

min (J )
ρ2(µ− 1)σ2

max

(
J̄
)
σ2
min (J ) + 4µL2

f

,
σ2
min (J )

µσ2
min

(
J̄
)}

(84)
with ℓ > 0. From (77) and (83),

ℓ
∥∥zk+1 − z⋆

∥∥2
W
≤
∥∥zk − z⋆∥∥2

W
−
∥∥zk+1 − z⋆

∥∥2
W

, (85)

resulting in ∥∥zk+1 − z⋆
∥∥2
W

∥zk − z⋆∥2W
≤ 1

ℓ+ 1
, (86)

showing Q-linear convergence of {zk} to z⋆.
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