
IEEE TRANSACTIONS ON ROBOTICS, VOL. 39, NO. 3, JUNE 2023 1781

Distributed Multirobot Task Assignment
via Consensus ADMM

Ola Shorinwa , Ravi N. Haksar , Patrick Washington, Graduate Student Member, IEEE,
and Mac Schwager , Member, IEEE

Abstract—In this article, we present a distributed algorithm to
solve a class of multirobot task assignment problems. We formulate
task assignment as a mathematical optimization and solve for opti-
mal solutions with a variant of the consensus alternating direction
method of multipliers (C-ADMM). We provide C-ADMM-based
algorithms for both the primal and dual problem formulations
and show the advantages of each form depending on the problem
specifics. In our algorithm, each robot solves a series of local
optimization problems and communicates the results to its local
neighbors, ultimately converging to an optimal task assignment in
problems with linear objective functions and an optimal solution
of the relaxed problem in convex problems. While many other
distributed algorithms require a central station for their imple-
mentation, in our algorithm, each robot only communicates with
its one-hop neighbors. In linear task assignment problems, our
algorithm converges to the optimal task assignment, unlike many
other distributed algorithms for this problem, which yield subopti-
mal solutions. We demonstrate our algorithms in task assignment
problems over a variety of communication network topologies,
where we show that our inexact dual algorithm is at least 60%
faster than other distributed algorithms, which produce an optimal
task assignment. In addition, our dual algorithm attains a 69%
speedup in computation time compared to a notable distributed
variant of the Hungarian method (Chopra et al., 2017). We also
apply our algorithm to a multi-unmanned-aerial-vehicle persistent
surveillance problem, showing its suitability for problems involving
periodic task assignments.

Index Terms—Distributed mathematical programming,
distributed optimization, distributed task assignment, multirobot
systems.

Manuscript received 29 August 2022; accepted 9 November 2022. Date of
publication 2 January 2023; date of current version 7 June 2023. This work was
supported in part by the Defense Advanced Research Projects Agency’s Young
Faculty Award D18AP00064, in part by the National Science Foundation’s
National Robotics Initiative under Award 1830402 and Award 1925030, in part
by the NASA University Leadership Initiative under Grant 80NSSC20M0163,
and in part by the Toyota Research Institute. This article solely reflects the
opinions and conclusions of its authors and not any NASA entity. This paper
was recommended for publication by Associate Editor P. Tokekar and Editor P.
Robuffo Giordano upon evaluation of the reviewers’ comments. (Corresponding
author: Ola Shorinwa.)

Ola Shorinwa is with the Department of Mechanical Engineering, Stanford
University, Stanford, CA 94305 USA (e-mail: shorinwa@stanford.edu).

Ravi N. Haksar is with the Nuro, Mountain View, CA 94043 USA (e-mail:
rhaksar@nuro.ai).

Patrick Washington and Mac Schwager are with the Department of Aero-
nautics and Astronautics Engineering, Stanford University, Stanford, CA 94305
USA (e-mail: phw@stanford.edu; schwager@stanford.edu).

This article has supplementary material provided by the au-
thors and color versions of one or more figures available at
https://doi.org/10.1109/TRO.2022.3228132.

Digital Object Identifier 10.1109/TRO.2022.3228132

I. INTRODUCTION

MULTIROBOT task assignment problems arise in a vari-
ety of applications, including disaster and rescue oper-

ations [2], persistent surveillance [3], [4], package delivery [5],
[6], and transportation [7], [8], [9], where the deployment of
multiple robots allows for the completion of several tasks con-
currently. In many situations, the robots possess heterogeneous
capabilities, with certain robots better suited for specific tasks.
In realistic settings, each robot has access to only its local data
and communication links to local neighbors, and as a result,
computing the optimal task assignment requires collaboration
among all robots. Centralized methods collate all the informa-
tion available to each robot at a central station, which computes
the optimal task assignment. This approach presents significant
computational and communication overhead, especially in prob-
lems with a large number of robots, and introduces a brittle single
point of failure in the central station. In this article, we introduce
distributed algorithms for the multirobot task assignment prob-
lem, where each robot computes an optimal task assignment in
problems with linear objective functions and, more generally, an
optimal solution of the relaxed task assignment problem locally,
overcoming these challenges.

We formulate the multirobot task assignment problem as a
mathematical program, considering both its primal and dual
forms, noting that these convex formulations yield the optimal
task assignment [10] when the objective function consists of a
sum of linear functions. This article has evolved from our earlier
work [11], in which we derived specialized primal and inexact
dual algorithms for the multirobot task assignment problem,
demonstrating its application to task assignment problems with
linear objective functions. In this article, we extend [11] by
presenting a distributed exact dual algorithm, in addition to
providing a more thorough analysis of our distributed algo-
rithms, which include a multirobot primal algorithm for the
task assignment problem (MUR-TAP), a multirobot exact dual
algorithm for the task assignment problem (MURD-TAP), and
a multirobot inexact dual algorithm for the task assignment
problem (MURID-TAP). Collectively, we refer to our distributed
algorithms as the MUR Family of algorithms for task assignment
problems. Our distributed task assignment algorithms apply to
task assignment problems with convex (linear or nonlinear)
objective functions and affine constraints a broader class of
task assignment problems than those previously treated in the
literature, which subsumes the classical task assignment prob-
lem with linear objective functions.

1552-3098 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Stanford University. Downloaded on August 29,2023 at 21:25:32 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4344-5945
https://orcid.org/0000-0002-4864-3334
https://orcid.org/0000-0002-7871-3663
mailto:shorinwa@stanford.edu
mailto:rhaksar@nuro.ai
mailto:phw@stanford.edu
mailto:schwager@stanford.edu
https://doi.org/10.1109/TRO.2022.3228132

1782 IEEE TRANSACTIONS ON ROBOTICS, VOL. 39, NO. 3, JUNE 2023

Our distributed algorithms are based on the alternating
direction method of multipliers (ADMM), which builds upon
the method of multipliers and the dual decomposition method,
blending the benefits of both methods to provide improved
convergence for a broader class of problems. While the ADMM
typically requires a central station for updating the dual vari-
ables [12], [13], we utilize a fully distributed variant of
ADMM, consensus ADMM [14], which imposes consensus
constraints on the local optimization variables of each robot,
ensuring that all the robots arrive at the same optimal solu-
tion. Other fully distributed variants of the ADMM exist [15],
[16]; however, these methods place stringent conditions on the
problem.

In our algorithms, each robot solves a local optimization
problem iteratively, while communicating with its neighbors,
to compute an optimal solution of the mathematical program.
We assume that each robot communicates with only its one-
hop neighbors over a point-to-point communication network.
Furthermore, our algorithm does not require strategic data flow
during the communication process. Although each robot has
access to only its local problem data, all the robots compute
the same optimal solution, without relying on a central station
at any point. Consequently, our algorithms offer stronger pro-
tection against adversarial attacks, eliminating vulnerabilities
associated with a single point of failure. Moreover, the iterates
in our algorithms converge to the optimal solution of the relaxed
task assignment problem, provided that the objective function
of the problem is proper and convex, and the Lagrangian of the
problem has a saddle point (standard technical conditions for
solving convex optimization problems), unlike many existing
distributed methods that produce suboptimal solutions. As with
other distributed methods, our algorithms provide better privacy
by minimizing the amount of data shared by each robot, as each
robot does not share its local objective and constraint functions
data with other robots.

We demonstrate the performance of our task assignment
algorithms in comparison to other distributed task assignment
algorithms, showing the balanced tradeoff provided by our
algorithms with respect to communication and computation
overhead. Particularly, MURID-TAP is about 60% faster com-
pared to the best competing distributed algorithm [17], among
distributed algorithms that produce an optimal task assignment,
in terms of the cumulative computation time required by each
robot to compute an optimal task assignment. In comparison
to a distributed variant of the widely used Hungarian method
for task assignment [1], MURD-TAP provides about a 69%
speedup in computation time per robot at the expense of a
greater number of communication rounds. Furthermore, we
demonstrate the application of our distributed algorithm to per-
sistent surveillance problems, where our algorithm produces the
optimal task assignment at each assignment episode. In addition,
we show the amenability of our algorithms to problems with dif-
ferent communication network topologies and, further, highlight
the versatility of our algorithms in multirobot problems with
constraints on the availability of different resources, including
computational, communication, and data storage resources.

II. RELATED WORKS

The task assignment problem, a canonical optimization
scenario, with applications extending beyond the multirobot
systems domain to task scheduling and operations management,
is widely solved using the Hungarian algorithm [18]—a central-
ized algorithm that requires the knowledge of the costs of all
the possible robot and task pairs. The need for global access to
the costs of all the robot and task pairs renders the algorithm
unsuitable for multirobot problems, where each robot only has
access to its local costs for each task. Dispersing information
on the costs among all robots introduces computational and
communication overhead, which degrades the efficiency of the
algorithm. A few distributed variants of the Hungarian algorithm
overcome these challenges [1], [19] and still provide the optimal
task assignment. As with the centralized Hungarian algorithm,
these distributed variants only apply to problems with linear
objective cost functions, limiting the scope of multirobot task
assignment problems that can be solved using these methods.
In contrast, our methods can be used for problems with general
convex objectives.

Another popular approach, auction methods, involves a mar-
ket construct where the robots negotiate with their neighbors to
compute an assignment that minimizes their costs while ensuring
that no task remains unassigned. Typically, a centralized auction-
eer manages the auctions, receiving bids from the robots before
assigning the task to the winning bidder [20], [21], [22], [23].
Consequently, these methods require all robots to communicate
with the auctioneer [24]. Other methods designate an auctioneer
from the group of robots, which also doubles as a bidder [25],
[26], with the auction process only being executed when the
robots are within the range of their neighbors for spatially
distributed tasks [27], [28]. In other methods, each robot serves
as an auctioneer, updating the assignment of all tasks iteratively
upon receiving bids from its neighbors until all the tasks are
assigned [29], [30], [31], [32], [33], [34]. Despite the relative
simplicity of auction methods, these methods do not generally
provide an optimal assignment of all tasks [35], [36]. However,
the auction method in [17], which involves a conflict resolution
procedure for robots assigned to the same task, results in an
optimal assignment. Unlike auction or market methods, our
method produces the optimal task assignment without relying
on any designated auctioneer.

The task assignment problem can be formulated as a mixed-
integer optimization problem with binary assignment variables.
As such, mixed-integer linear programming (MILP) methods ap-
ply to these problems with linear objective functions. The MILP
methods in [37], [38], [39], and [40] solve the task assignment
problem at a central station, which collates all the relevant local
information available to each robot. Some distributed MILP
methods employ dual decomposition in solving the task assign-
ment problem [41] without requiring each robot to communicate
its local objective functions. However, these methods still require
a central station for updating the dual variables after the local
primal updates performed by each robot. Other methods utilize
a primal decomposition approach to compute an approximate
solution to the task assignment problem [42]. In [43], each

Authorized licensed use limited to: Stanford University. Downloaded on August 29,2023 at 21:25:32 UTC from IEEE Xplore. Restrictions apply.

SHORINWA et al.: DISTRIBUTED MULTIROBOT TASK ASSIGNMENT VIA CONSENSUS ADMM 1783

robot computes its assignment from the dual formulation of
the task assignment problem by solving MILP subproblems
iteratively using the branch and bound procedure. Other MILP
methods utilize a distributed cutting-plane procedure to solve
the task assignment problem but require the objective function
to be integer-valued [44], introducing an additional limitation
on the class of task assignment problems suitable for these
methods.

Some distributed methods consider a convex relaxation of
the task assignment problem to a linear program with real-
valued variables over the unit simplex, producing the same
optimal solution as the original mixed-integer problem. These
distributed methods only apply to task assignment problems
with linear objective functions. In these methods, the robots
compute the optimal assignment using a distributed simplex
algorithm [10] or dual decomposition [45]. The surveys [46]
and [47] provide an overview of methods for the multirobot
task assignment problem, noting the conditions required for the
implementation of these methods. We consider a convex relax-
ation of the task assignment problem. However, we do not limit
the scope of our algorithms to problems with linear objective
functions. Rather, we derive algorithms that equally apply to
problems with nonlinear objective functions. In addition, our
algorithms do not require any stringent condition on the nature
of the objective function or the topology of the communication
network.

III. CONTRIBUTIONS

We summarize our contributions as follows.
1) We provide distributed algorithms for multirobot task as-

signment problems (MUR-TAP and MURD-TAP), where
each robot computes the optimal solution of the relaxed
task assignment problem, which corresponds to the op-
timal task assignment in problems with linear objective
functions, by solving a sequence of local optimization
problems. In our algorithms, each robot communicates
with other neighboring robots over a local network, with-
out any stringent conditions on the topology of the com-
munication network.

2) In certain problems, multirobot systems operate with
limited access to computational resources. As a result,
solving the optimization problems arising in MUR-TAP
and MURD-TAP might be computationally demanding for
these systems. We derive MURID-TAP for these specific
situations. MURID-TAP enables each robot to compute an
optimal solution of the relaxed task assignment problem
via closed-form updates, without having to resort to a
nested iterative optimization method to solve its local
optimization problems.

3) Compared to existing distributed algorithms for the task
assignment problem, which produce an optimal task as-
signment [1], [17], MURID-TAP provides at least 60%
faster performance in computing an optimal task assign-
ment, with respect to the cumulative computation time per
robot.

Organization: The rest of this article is organized as fol-
lows. We present the classical task assignment problem with
linear objective functions in Section IV before providing a
more general formulation for problems with nonlinear objective
functions and affine constraints, noting its distributed nature
over a network of robots where each robot has access to only
its local objective and constraint functions. We derive task
assignment problems in Section VI. We demonstrate our dis-
tributed multirobot task assignment algorithms in Section VII,
examining their performance in comparison to other distributed
task assignment methods. Finally, Section VIII concludes this
article.

IV. PROBLEM FORMULATION

We consider the classical multirobot task assignment problem
where we seek an optimal assignment of N robots to N tasks,
described by the optimization problem

minimize
x

N∑
i=1

cTi xi

subject to
N∑
i=1

xi = 1N

1T
Nxi = 1 ∀i ∈ V
xi,τ ∈ {0, 1} ∀τ ∈ T , ∀i ∈ V (1)

where xi ∈ RN denotes the optimization variable of robot i,
with component τ of xi indicating if a robot is assigned to
task τ and x = [xT1 , . . . , x

T
N]T ∈ RN2

. In addition, ci ∈ RN

denotes the objective cost vector of robot i. We denote the set
of all tasks by T = {1, . . . , N}. The optimization problem in
(1) represents an integer optimization problem from the binary
constraints on xi. Solving this combinatorial optimization prob-
lem proves challenging, with typical algorithms often resorting
to branch-and-bound methods, which fail to scale to problems
with large numbers of robots. Generally, existing methods solve
a relaxation of the task assignment problem, which replaces
the binary constraints with box constraints on xi, ∀i ∈ V . The
relaxed problem is given by

minimize
x

N∑
i=1

cTi xi

subject to

N∑
i=1

xi = 1N

1T
Nxi = 1 ∀i ∈ V

0 ≤ xi,τ ≤ 1 ∀τ ∈ T , ∀i ∈ V (2)

with xi constrained to lie between 0 and 1. Given a linear
objective function, an optimal solution of the problem (2) always
occurs at a vertex of the feasible set, since the relaxed optimiza-
tion problem has a bounded feasible set, although the optimal
solution might not be unique. As a result, an integer-valued

Authorized licensed use limited to: Stanford University. Downloaded on August 29,2023 at 21:25:32 UTC from IEEE Xplore. Restrictions apply.

1784 IEEE TRANSACTIONS ON ROBOTICS, VOL. 39, NO. 3, JUNE 2023

solution can always be obtained from an optimal solution of
(2). Moreover, this solution corresponds to an optimal solution
of the integer optimization problem in (1).

In more complex problems, the cost incurred by each robot
in performing a task is better captured by nonlinear objective
functions, e.g., in problems with strictly convex cost functions.
In addition, many task assignment problems often involve addi-
tional constraints arising from individual preferences and task
priorities. As a result, we extend the problem formulation in (1)
to consider a broader class of task assignment problems withN
robots, m tasks, convex (linear/nonlinear) objective functions,
and affine constraints, given by

minimize
x

N∑
i=1

fi(xi)

subject to

N∑
i=1

xi ≥ 1m

1T
mxi = 1 ∀i ∈ V
xi,τ ∈ {0, 1} ∀τ ∈ T , ∀i ∈ V (3)

where xi ∈ Rm denotes the optimization variable of robot i,
x = [xT1 , . . . , x

T
N]T ∈ RNm, fi(x) : Rm → R denotes the local

convex objective function of robot i, and T = {1, . . . ,m}. We
note that solving the task assignment problem in (3) is even
more challenging compared to solving (1), particularly via a
distributed approach. Consequently, we consider a relaxation of
(3), similar to (2). The relaxed problem is given by

minimize
x

N∑
i=1

fi(xi)

subject to

N∑
i=1

xi ≥ 1m

1T
mxi = 1 ∀i ∈ V

0 ≤ xi,τ ≤ 1 ∀τ ∈ T , ∀i ∈ V (4)

where xi lies between 0 and 1. The formulation in (4) encom-
passes task assignment problems with an unequal number of
robots and tasks, where N �= m. We note that the optimal solu-
tion of (4) might not be integer-valued. In these cases, heuristics
for obtaining a binary assignment can be employed [48], [49].
However, if an integer optimal solution is obtained for (4), then
this solution is optimal for the original integer optimization
problem.

V. PRELIMINARIES

We represent the robots as nodes in an undirected communica-
tion graphG = (V, E)with a set of verticesV = {1, . . . , N} and
a set of edges E ⊆ V × V . An edge (i, j) exists in E if robots
i and j share a communication link. To ensure that all robots
compute the same solution, we make the following assumptions
on the communication graph between the robots.

Assumption 1: The communication graph G is connected.

This assumption indicates that a communication path exists
between any pair of robots, possibly involving multiple hops
along the edges in E .

We denote the n× n identity matrix as In and the vector of
all ones as 1n. We interpret box constraints on vector-valued
variables elementwise. We provide the following definition of a
proper, closed, and convex function, in addition to the definition
of a coercive function, before introducing the next assumption.

Definition 1: A function f : Rn → R ∪ {+∞} is proper if
it does not attain a value of +∞ everywhere, i.e., there ex-
ists x ∈ Rn such that f(x) ∈ R. Furthermore, f is closed if
its epigraph epi(f) = {(x, t) ∈ Rn × R | x ∈ Rn, t ≥ f(x)} is
closed.

Definition 2: A function f : Rn → R ∪ {+∞} is convex if
for any x ∈ Rn, y ∈ Rn, and t ∈ R with t ∈ [0, 1]

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y). (5)

Definition 3: A continuous function f : Rn → R ∪ {+∞} is
coercive if

lim
‖x‖→∞

f(x) = +∞ (6)

i.e., for any constantL > 0, there exists a constantRL > 0 such
that ‖f(x)‖ > L when ‖x‖ > RL.

We assume that the Lagrangian of the task assignment prob-
lem in (4) has a saddle point.

Assumption 2: The objective function in (4) is proper, closed,
and convex, and a saddle point exists for the Lagrangian of the
task assignment problem.

This assumption is standard in many papers in constrained
optimization, although it is often not stated in many of these
papers. The Lagrangian of the task assignment problem has a
saddle point if the task assignment problem is feasible. As such,
Assumption 2 is not restrictive, as it is satisfied in almost all
practical cases. This assumption enables us to compute a primal-
dual solution of the problem in (4). Furthermore, this assumption
indicates that strong duality holds with equality between the
optimal primal objective value and the optimal dual objective
value.

VI. DISTRIBUTED ALGORITHMS FOR MULTIROBOT TASK

ASSIGNMENT PROBLEMS

In the following discussion, we derive distributed algorithms
for the multirobot task assignment problem (4), considering its
primal and dual forms.

A. Distributed Primal Algorithm

We derive a distributed algorithm for the task assignment
problem in (4). To obtain a concise formulation, we group all
the constraints in (4) into a single affine constraint, representing
the optimization problem as

P : minimize
x

N∑
i=1

fi(x)

subject to Aix ≤ bi ∀i ∈ V (7)

Authorized licensed use limited to: Stanford University. Downloaded on August 29,2023 at 21:25:32 UTC from IEEE Xplore. Restrictions apply.

SHORINWA et al.: DISTRIBUTED MULTIROBOT TASK ASSIGNMENT VIA CONSENSUS ADMM 1785

where

Ai =

⎡
⎢⎢⎢⎢⎣

−P̌
Q̌i

−Q̌i

−INm

INm

⎤
⎥⎥⎥⎥⎦ , bi =

⎡
⎢⎢⎢⎢⎣

−1m

1
−1
0Nm

1Nm

⎤
⎥⎥⎥⎥⎦ (8)

and P̌ ∈ Rm×Nm represents a horizontal block matrix consist-
ing of N identity matrices (Im) concatenated horizontally, and
Q̌i ∈ R1×Nm represents a horizontal block matrix of all zeros
except the ith horizontal block component, which is set to 1T

m.
Although the local objective function of robot i only depends on
xi, which is a component of x, we express it in a more general
form in (7), for simplicity.

We express the problem in (7) in its distributed form by intro-
ducing local copies of the optimization variables maintained by
each robot. Robot i maintains xi ∈ RNm, representing a copy
of x, with the resulting distributed form of the problem given by

minimize
x

N∑
i=1

fi(xi)

subject to Aixi ≤ bi ∀i ∈ V
xi = xj ∀j ∈ Ni, ∀i ∈ V (9)

where x = [xT
i , ∀i ∈ V]T denotes the vertical concatenation of

the optimization variables of all robots. We introduce the equal-
ity constraint between the optimization variables of neighboring
robots to ensure agreement between all robots.

Proposition 1: The distributed problem in (9) is equivalent
to the mathematical programming problem in (7) with the same
optimal solution and optimal objective value.

Proof: From the equality constraints in (9), all robots com-
pute the same solution for their local optimization variables
since the communication graph G is connected. Consequently,
we can replace the local optimization variable of each robot with
a common variable x̃. The resulting optimization problem has
the same objective function and feasible set as the problem in
(7). Hence, both the problems have the same optimal solution
and optimal objective value. �

We derive a distributed method for solving the mathematical
program in (9) using consensus ADMM [14]. We introduce
the local slack variables αij ∈ RNm and βij ∈ RNm into the
equality constraints between robots i and j in (9), expressing
the problem as

minimize
x,σ

N∑
i=1

fi(xi)

subject to Aixi ≤ bi ∀i ∈ V
xi = αij ∀j ∈ Ni, ∀i ∈ V
xj = βij ∀j ∈ Ni, ∀i ∈ V
αij = βij ∀j ∈ Ni, ∀i ∈ V (10)

where robot i optimizes overαij , robot j optimizes over βij , and
σ ∈ R2|E|Nm denotes the vertical concatenation of all the slack

variables. With the slack variables, the augmented Lagrangian
of (9) can be expressed as

Lp
a(x,σ, u, v) =

N∑
i=1

fi(xi)

+
∑

(i,j)∈E

(
uTij(xi − αij) + vTij(xj − βij)

)

+
ρ

2

∑
(i,j)∈E

(
‖xi − αij‖22 + ‖xj − βij‖22

)
(11)

where uij ∈ RNm and vij ∈ RNm denote the Lagrange mul-
tipliers for the equality constraints between the optimization
variables of robots i and j, respectively. We have not relaxed
the affine inequality constraint in (9) but rather enforce that the
local primal variable of each robot satisfies its local inequality
constraint. Likewise, we enforce the constraint αij = βij . The
augmented Lagrangian includes a penalty on the violation of
the equality constraints, with the contribution of this viola-
tion determined by the parameter ρ ∈ R. In the ADMM, the
primal variables are updated iteratively as the minimizers of
the augmented Lagrangian using the Lagrange multipliers at
the previous iteration before updating the Lagrange multipliers
through gradient ascent on the augmented Lagrangian.

The update procedure for the slack variable consists of mini-
mizing a strongly convex quadratic problem with a closed-form
solution, given by

αk+1
ij = βk+1

ij =
1

2

(
xk+1
i + xk+1

j

)
(12)

if the Lagrange multipliers are initialized with u0ij = v0ij = 0
(refer to [14] for additional details). Similarly, the update pro-
cedures of the Lagrange multipliers simplify to

uk+1
ij = ukij +

ρ

2

(
xk+1
i − xk+1

j

)
vk+1
ij = vkij +

ρ

2

(
xk+1
j − xk+1

i

)
(13)

at iteration k. With the specified initialization of the Lagrange
multipliers, ukij = −vkij at each iteration k. To update its pri-
mal variable xi at iteration k, robot i solves the minimization
problem

minimize
xi

{
fi(xi) +

∑
j∈Ni

(
ukij + vkji

)T
xi

+ ρ
∑
j∈Ni

∥∥∥∥∥xi −
xk
i + xk

j

2

∥∥∥∥∥
2

2

}

subject to Aixi ≤ bi (14)

which simplifies to

minimize
xi

{
fi(xi) + qkTi xi + ρ

∑
j∈Ni

∥∥∥∥∥xi −
xk
i + xk

j

2

∥∥∥∥∥
2

2

}

subject to Aixi ≤ bi (15)

Authorized licensed use limited to: Stanford University. Downloaded on August 29,2023 at 21:25:32 UTC from IEEE Xplore. Restrictions apply.

1786 IEEE TRANSACTIONS ON ROBOTICS, VOL. 39, NO. 3, JUNE 2023

Algorithm 1: Distributed Multirobot Algorithm for Task
Assignment Problems (MUR-TAP).

where

qki =
∑
j∈Ni

(
ukij + vkji

)
(16)

by combining the local Lagrange multipliers of robot i into
qi ∈ Rn. Subsequently, robot i updates qi using

qk+1
i = qki + ρ

∑
j∈Ni

(
xk+1
i − xk+1

j

)
(17)

from the update procedures in (13).
Algorithm 1 outlines our distributed primal algorithm for the

task assignment problem. Each robot does not compute the slack
variables α and β and the Lagrange multipliers u and v.

As noted in Algorithm 1, robot i computes its local primal
variable xi along with its Lagrange multiplier qi. Our algorithm
for (9), MUR-MP, does not require a feasible initialization of
the local primal variables of each robot. Upon updating its local
variables, each robot communicates its primal variables with its
neighbors.

Theorem 1 (Convergence of {xk}): The sequence of primal
variables {xk

i } of robot i converges to the optimal solution x�

of the mathematical program in (7), ∀i ∈ V .
Proof: We provide the proof in Appendix A. �

B. Distributed Dual Algorithm

We note that the MUR-TAP algorithm requires robot i to
maintain a copy of the entire task assignment problem variable
x ∈ RNm, instead of only maintaining its local task assignment
variable xi ∈ Rn, which can result in unnecessary computation
overhead. As such, we derive a distributed algorithm for task
assignment problems by considering the dual formulation of
the problem, where robot i maintains only its task assignment
variable xi, without maintaining the task assignment variables
of other robots. First, we express the task assignment problem
in (4) as

D : minimize
x

N∑
i=1

fi(xi)

subject to
N∑
i=1

(
Aixi − bi

)
≤ 0

xi ≥ 0 ∀i ∈ V (18)

where

Ai =

⎡
⎢⎢⎣

−Im
Gi

−Gi

Hi

⎤
⎥⎥⎦ , bi =

⎡
⎢⎢⎣

− 1
N 1m
1
N 1N

− 1
N 1N

v̌i

⎤
⎥⎥⎦ (19)

Ai ∈ Re×m, with e = m+ 2N +Nm, and Gi ∈ RN×m has
all its entries set to zero except the ith row of Gi, which is set
to 1T

m. Likewise, Hi ∈ RNm×Nm represents a block diagonal
matrix of all zeros with the ith block set to Im, while v̌i ∈ RNm

represents a block column vector of all zeros with the ith block
set to 1m.

The Lagrangian of the mathematical program in (18) is given
by

L(x, y) =
N∑
i=1

fi(xi) + ỹT
N∑
i=1

(
Aixi − bi

)
(20)

where ỹ ∈ Re denotes the dual variable for the separable cou-
pling constraint in (18), with ỹ ≥ 0.

From the Lagrangian, we obtain the dual function associated
with (18), given by

g(ỹ) = inf
x

{
N∑
i=1

(
fi(xi) + ỹT

(
Aixi − bi

))}
(21)

involving the minimization of the Lagrangian L(·) over x. The
dual problem associated with the mathematical program D in
(18) consists of maximizing the dual function with respect to
the dual variable ỹ, resulting in the problem

maximize
ỹ

g(ỹ)

subject to y ≥ 0 (22)

which simplifies to

maximize
ỹ

N∑
i=1

inf
xi

(
fi(xi) + ỹT

(
Aixi − bi

))
subject to ỹ ≥ 0 (23)

from separability of the objective function in (21). Using Fenchel
conjugates, the dual problem reduces to

maximize
y

N∑
i=1

(−f�i (−AT
i ỹ)− ỹTbi)

subject to ỹ ≥ 0 (24)

where f�i (ỹ) = supxi
{ỹTxi − fi(xi)} denotes the Fenchel con-

jugate of the local objective function of robot i, which highlights
the separable structure of the dual optimization problem.

For a distributed approach to solving (24), we assign local dual
variables to each robot, with an equality constraint ensuring that
all robots compute the same dual variables. With this approach,
robot imaintains only its local dual variable ỹi, a copy of ỹ. We

Authorized licensed use limited to: Stanford University. Downloaded on August 29,2023 at 21:25:32 UTC from IEEE Xplore. Restrictions apply.

SHORINWA et al.: DISTRIBUTED MULTIROBOT TASK ASSIGNMENT VIA CONSENSUS ADMM 1787

express (24) in its distributed form as

maximize
ỹ

N∑
i=1

(
−f�i

(
−AT

i ỹi
)
− ỹTi bi

)
subject to ỹi ≥ 0 ∀i ∈ V

ỹi = ỹj ∀j ∈ Ni, ∀i ∈ V (25)

with the equality constraints enforced between neighboring
robots, as defined by the communication graph G. We denote
the vertical concatenation of the dual variables of all robots as
ỹ = [ỹTi , ∀i ∈ V]T.

Proposition 2: The dual optimization problem in (25) has
the same optimal solution and optimal objective value as the
problem in (24).

Proof: The proof of equivalence between both problems fol-
lows along the same lines as in Proposition (1). �

Following the same procedure utilized in Section VI-A, we
derive a method for solving (25) where each robot computes
its dual variables locally. We introduce local slack variables to
allow for local computations by each robot, with the augmented
Lagrangian of (25) given by

Ld
a(ỹ, γ, ζ, p, w) =

N∑
i=1

(−f�i (−AT
i ỹi)− ỹTi bi)

−
∑

(i,j)∈E

(
pTij(ỹi − γij) + wT

ij(ỹj − ζij)
)

− ρ

2

∑
(i,j)∈E

(
‖ỹi − γij‖22 + ‖ỹj − ζij‖22

)
(26)

with the Lagrange multipliers pij ∈ Re andwij ∈ Re and slack
variables γij ∈ Re and ζij ∈ Re. Likewise, we enforce that ỹi
satisfies the affine inequality constraint in (25) for nonnegative
dual variables and the constraint γij = ζij .

Robot i computes ỹi from the optimization problem

maximize
ỹi

{
−f�i (−AT

i ỹi)− ỹTi bi −
∑
j∈Ni

(
pkij + wk

ji

)T
ỹi

− ρ
∑
j∈Ni

∥∥∥∥∥ỹi − ỹki + ỹkj
2

∥∥∥∥∥
2

2

}

subject to ỹi ≥ 0 (27)

which simplifies to

maximize
ỹi

{
−f�i (−AT

i ỹi)− ỹTi bi − r̃kTi ỹi

− ρ
∑
j∈Ni

∥∥∥∥∥ỹi − ỹki + ỹkj
2

∥∥∥∥∥
2

2

}

subject to ỹi ≥ 0 (28)

with the update procedure for r̃i given by

r̃k+1
i = r̃ki + ρ

∑
j∈Ni

(
ỹk+1
i − ỹk+1

j

)
(29)

at iteration k.
We can further simplify the update procedures for the local

dual variable in (28) by recognizing that the equality constraint in
(4) corresponds to an unrestricted dual variable. Consequently,
the update procedure in (28) simplifies to

maximize
yi,λi

{
−f�i (yi − λi1m) +

1

N
1T
myi − λi − rkTi yi

− ρ
∑
j∈Ni

∥∥∥∥∥yi − yki + ykj
2

∥∥∥∥∥
2

2

}

subject to yi ≥ 0 (30)

where yi ∈ Rm denotes robot i’s dual variable for the first
inequality constraint in (4) and λi ∈ R denotes its dual variable
for the equality constraint, with the associated update procedure
for ri ∈ Rm given by

rk+1
i = rki + ρ

∑
j∈Ni

(
yk+1
i − yk+1

j

)
(31)

at iteration k.
Remark 1: In problems where the objective function fi(xi) of

robot i in (4) consists of a linear function, the Fenchel conjugate
f�i (yi − λi1m) has a closed-form solution when

ci − yi + λi1m ≥ 0 (32)

with an optimal value of zero. In these problems, robot i updates
yi and λi as the solution of the optimization problem

maximize
yi,λi

{
1

N
1T
myi − λi − rkTi yi

− ρ
∑
j∈Ni

∥∥∥∥∥yi − yki + ykj
2

∥∥∥∥∥
2

2

}

subject to ci − yi + λi1m ≥ 0

yi ≥ 0 (33)

at iteration k.
The dual optimization problem of robot i in (30) does not

involve the local constraints of other robots, noting that each
robot only knows a subset of the problem constraints in (25).
However, the equality constraints on the local dual variables in
(25) ensure that the dual variable of each robot satisfies all the
problem constraints.

Theorem 2 (Convergence of {yk}): The sequence of local
dual variables {yki } of robot i converges to the optimal dual
solution y�, ∀i ∈ V .

Proof: The proof follows along the same lines as the proof
of Theorem 1. For completeness, we provide the proof in
Appendix B. �

Authorized licensed use limited to: Stanford University. Downloaded on August 29,2023 at 21:25:32 UTC from IEEE Xplore. Restrictions apply.

1788 IEEE TRANSACTIONS ON ROBOTICS, VOL. 39, NO. 3, JUNE 2023

Upon convergence of the dual variables, each robot computes
its optimal primal solution from

minimize
xi

maximize
yi

{
fi(xi) + yTi

(
−xi +

1

N
1m

)
− r�Ti yi

− ρ
∑
j∈Ni

∥∥∥∥yi − ȳi + ȳj
2

∥∥∥∥
2

2

}

subject to yi ≥ 0

1T
mxi = 1

0 ≤ xi ≤ 1 (34)

where ȳi denotes the local dual variable of robot i computed at
the last iteration of our distributed algorithm. The problem in
(34) simplifies to

minimize
xi

maximize
yi

{
fi(xi)− ρ|Ni| ‖yi − ν�i (xi)‖22

+ ρ|Ni| ‖ν�i (xi)‖

− ρ

4

∑
j∈Ni

‖ȳi + ȳj‖22
}

subject to yi ≥ 0

1T
mxi = 1

0 ≤ xi ≤ 1 (35)

where

ν�i (xi) =
1

2ρ|Ni|

⎛
⎝−xi +

1

N
1m − r�i + ρ

∑
j∈Ni

(ȳi + ȳj)

⎞
⎠
(36)

which results in a closed-form solution for yi, given by

y�i (xi) = max (0, ν�i (xi)) (37)

with the resulting minimization problem

minimize
xi

{
fi(xi)− ρ|Ni| ‖min (0, ν�i (xi))‖22

+ ρ|Ni| ‖ν�i (xi)‖22
}

subject to 1T
mxi = 1

0 ≤ xi ≤ 1 (38)

for xi. After further simplifying the problem in (38), robot i
computes xi from the optimization problem

minimize
xi

{
fi(xi) +

ρ|Ni|
2

‖ν�i (xi)}‖22

+
ρ|Ni|
2

|ν�i (xi)|Tν�i (xi)
}

subject to 1T
mxi = 1

0 ≤ xi ≤ 1 (39)

Algorithm 2: Distributed Multirobot Dual Algorithm for
Task Assignment Problems (MURD-TAP).

after the last iteration of our distributed algorithm, as determined
by a specified stopping criterion.

Algorithm 2 outlines our distributed dual algorithm for task
assignment problems. Each robot does not maintain the slack
variables γ and ζ and the Lagrange multipliers p andw. Further-
more, the updates in (30) only require each robot to communicate
its dual variables with its neighbors, without communicating its
task assignment, minimizing the amount of potentially sensitive
data exchanged by each robot. MURD-TAP does not require a
feasible initialization of the local dual variables of each robot.

Theorem 3: The primal variable of all robots
xS = [xT1 , . . . , x

T
N]T, computed in (39), corresponds to the

optimal solution x� of (18).
Proof: We provide the proof in Appendix C. �

C. Distributed Inexact Dual Algorithm

In the MUR-TAP and MURD-TAP algorithms, each robot
solves the optimization problem arising in its primal update
procedure through a nested iterative method to update its local
variables. In problems where each robot has limited access to
computational resources, solving these optimization problems
may prove challenging for each robot. Consequently, we derive
a distributed algorithm with simpler update procedures for task
assignment problems. We express the problem in (4) as

minimize
x

N∑
i=1

fi(xi)

subject to

N∑
i=1

(
1

N
1m − xi

)
≤ 0

N∑
i=1

(
Gixi −

1

N
1N

)
= 0

0 ≤ xi ≤ 1 ∀i ∈ V (40)

where Gi ∈ RN×m. We set the ith row of Gi to 1T
m with all

other entries set to zero.

Authorized licensed use limited to: Stanford University. Downloaded on August 29,2023 at 21:25:32 UTC from IEEE Xplore. Restrictions apply.

SHORINWA et al.: DISTRIBUTED MULTIROBOT TASK ASSIGNMENT VIA CONSENSUS ADMM 1789

We express the Lagrangian of (40) as

Lp(x, y, λ) =

N∑
i=1

fi(xi) + yT
N∑
i=1

(
1

N
1m − xi

)

+ λT
N∑
i=1

(
Gixi −

1

N
1N

)
(41)

with dual variables y ∈ Rm and λ ∈ RN where y ≥ 0, without
relaxing the box constraints on x. From (41), we obtain the dual
problem

maximize
y,λ

N∑
i=1

φi(y, λ)

subject to y ≥ 0 (42)

where

φi(y, λ) = inf
xi

{
fi(xi) + yT

(
1

N
1m − xi

)

+ λT

(
Gixi −

1

N
1N

)}
(43)

with 0 ≤ xi ≤ 1. To derive a distributed method for solving (42),
we assign local copies of the dual variables y and λ to each robot,
with the resulting optimization problem given by

maximize
y,λ

N∑
i=1

φi(yi, λi)

subject to yi ≥ 0 ∀i ∈ V
yi = yj , λi = λj ∀j ∈ Ni, ∀i ∈ V (44)

where y = [yTi , ∀i ∈ V]T and λ = [λT
i , ∀i ∈ V]T. Following a

similar proof to that of Proposition 2, the optimization problems
in (42) and (44) have the same optimal solution and optimal
objective value.

Taking the same approach employed in Section VI-B, we de-
rive a distributed algorithm for solving the optimization problem
in (44). With this approach, robot i computes its local variables
yi and λi from

maximize
yi,λi

{
φi(yi, λi)− ηkTi yi − ψkT

i λi

− ρ
∑
j∈Ni

∥∥∥∥∥yi − yki + ykj
2

∥∥∥∥∥
2

2

− ρ
∑
j∈Ni

∥∥∥∥∥λi −
λk
i + λk

j

2

∥∥∥∥∥
2

2

}

subject to yi ≥ 0 (45)

where ηi ∈ Rm and ψi ∈ RN denote Lagrange multipliers for
the equality constraints in (44). The optimization problem in (45)
represents a min–max optimization problem, which in general
can be difficult to solve. However, we leverage the existence of

a saddle point for the Lagrangian of (40) to compute a solution
for (45). We express the optimization problem in (45) as

maximize
yi,λi

minimize
xi

{
fi(xi) + yTi

(
1

N
1m − xi

)

+ λT
i

(
Gixi −

1

N
1N

)
− ηkTi yi − ψkT

i λi

− ρ
∑
j∈Ni

∥∥∥∥∥yi − yki + ykj
2

∥∥∥∥∥
2

2

− ρ
∑
j∈Ni

∥∥∥∥∥λi −
λk
i + λk

j

2

∥∥∥∥∥
2

2

}

subject to 0 ≤ xi ≤ 1

yi ≥ 0 (46)

which simplifies to

maximize
yi,λi

minimize
xi

{
fi(xi)− ρ|Ni|

∥∥yi − νki (xi)
∥∥2
2

+ ρ|Ni|
∥∥νki (xi)∥∥22

− ρ|Ni|
∥∥λi − �ki (xi)

∥∥2
2

+ ρ|Ni|
∥∥�ki (xi)∥∥22 + θki

}
subject to 0 ≤ xi ≤ 1

yi ≥ 0 (47)

where

νki (xi) =
1

2ρ|Ni|

⎛
⎝ 1

N
1m − xi − ηki + ρ

∑
j∈Ni

(
yki + ykj

)⎞⎠

�ki (xi) =
1

2ρ|Ni|

⎛
⎝Gixi −

1

N
1N − ψk

i + ρ
∑
j∈Ni

(
λk
i + λk

j

)⎞⎠
(48)

and θki are independent of the dual variable yi. The existence of
a saddle point enables us to swap the order of the optimization
problems to solve (47), yielding a closed-form solution for yi
with

yk+1
i = max

(
0, νki

(
xk+1
i

))
λk+1
i = �ki

(
xk+1
i

)
(49)

where the max operator works elementwise [50]. By swapping
the order of the optimization problems, the minimization prob-
lem for xi simplifies to

minimize
xi

{
fi(xi)− ρ|Ni|

∥∥min
(
0, νki (xi)

)∥∥2
2

+ ρ|Ni|
∥∥νki (xi)∥∥22 + ρ|Ni|

∥∥�ki (xi)∥∥22}
subject to 0 ≤ xi ≤ 1 (50)

Authorized licensed use limited to: Stanford University. Downloaded on August 29,2023 at 21:25:32 UTC from IEEE Xplore. Restrictions apply.

1790 IEEE TRANSACTIONS ON ROBOTICS, VOL. 39, NO. 3, JUNE 2023

which represents a nonlinear optimization problem. We note that
the optimization problem in (50) might be challenging to solve
in some situations. Hence, we utilize a proximal gradient update
scheme for solving the problem in (50). We take a first-order
approximation of the objective function of (50) at xki and solve
the resulting optimization problem

minimize
xi

{
∇fi

(
xki

)T
xi − κi

(
xki

)T
xi − νki

(
xki

)T
xi

+ �ki
(
xki

)T
Gixi +

1

2βi

∥∥xi − xki
∥∥2
2

}
(51)

where

κi
(
xki

)
= −min

(
0, νki (x

k
i)
)

(52)

which yields the closed-form solution

x̂ki = xki − βi
(
∇fi

(
xki

)
− κi

(
xki

)
− νki

(
xki

)
+GT

i �
k
i

(
xki

))
(53)

equivalent to the gradient descent update of xi with step size βi
at iteration k. Subsequently, we take a proximal projection of
the solution in (53) using the proximal operator ρi

(
x̂ki

)
defined

as the solution to the optimization problem

minimize
xi

∥∥xi − x̂ki
∥∥2
2

subject to 0 ≤ xi ≤ 1 (54)

which admits a closed-form solution. Consequently, robot i
updates xi at iteration k using the closed-form procedure

xk+1
i = min

(
1,max

(
0, x̂ki

))
(55)

before computing yi and λi using (49). In addition, robot i
updates ηi and ψi using

ηk+1
i = ηki + ρ

∑
j∈Ni

(
yk+1
i − yk+1

j

)

ψk+1
i = ψk

i + ρ
∑
j∈Ni

(
λk+1
i − λk+1

j

)
(56)

at iteration k.
We outline our distributed inexact dual algorithm for the

multirobot task assignment problem in Algorithm 3. Note that
our distributed algorithm does not require each robot to utilize
a nested iterative method to update their local variables. Rather,
all the robots update their local variables using closed-form
solutions, which involve arithmetic operations.

Theorem 4 (Convergence of (xk,yk,λk)): The iterates
(xki , y

k
i , λ

k
i) of robot i converge to an optimal primal-dual solu-

tion pair (x�i , y
�
i , λ

�
i) of (40), ∀i ∈ V .

Proof: Refer to [51] for the proof. �

D. Algorithm Selection

Our algorithms apply to a variety of task assignment prob-
lems, given by (4), including the classical task assignment
problem with linear objective functions. The selection of the
most efficient algorithm for a given multirobot task assignment
problem depends on the relative availability of computation
and communication resources at each robot and the privacy

Algorithm 3: Distributed Multirobot Inexact Dual Algo-
rithm for Task Assignment Problems (MURID-TAP).

requirements in the given problem. To guide the selection of
an efficient algorithm, we examine the computational, storage,
and communication requirements of each algorithm.

1) Computational Complexity: The MUR-TAP algorithm re-
quires each robot to solve the constrained optimization problem
in (15) to compute its task assignment. The optimization problem
can be solved using an interior-point method, which involves
factorizing the matrix associated with the Karush–Kuhn–Tucker
(KKT) necessary conditions for optimality—the KKT matrix.
Assuming that the KKT matrix is positive definite, factorizing
the matrix can be performed through Cholesky decomposition
at a cost of O((Nm)3) floating-point operations (FLOPS),
where we have retained the dominant terms in quantifying
the number of FLOPS required. In addition, robot i updates
its local Lagrange multiplier qi in the MUR-TAP algorithm
using O(Nm) FLOPS. Hence, the MUR-TAP algorithm has
a net computational complexity of O((Nm)3) FLOPS at each
iteration.

In our distributed exact dual algorithm, MURD-TAP, each
robot updates its dual variables by solving the optimization
problem in (30). The optimization problem can be solved us-
ing an interior-point method, which requires O(m3) FLOPS
to factorize the associated KKT matrix. Furthermore, each
robot updates its Lagrange multiplier using (31) with O(m)
FLOPS. Consequently, the MURD-TAP algorithm has a
net computational complexity of O(m3) FLOPS at each
iteration.

MURID-TAP does not require a nested iterative method for
any optimization problem. Each robot updates its local variables
using the closed-form procedures in (49), (55), and (56). As a
result, robot i requires O(m+N) FLOPS to update its local
variables at each iteration.

2) Communication Complexity: In the MUR-TAP algorithm,
each robot shares its local primal variable with its neighbors at
each iteration. As such, each robot transmits O(Nm) bits of
information to its neighbors and, likewise, receivesO(Nm) bits
of information. The MURD-TAP algorithm requires each robot
to communicate its local dual variables to its neighbors. Hence,
the MURD-TAP algorithm has a communication complexity of
O(m) bits. Similarly, the MURID-TAP algorithm requires each

Authorized licensed use limited to: Stanford University. Downloaded on August 29,2023 at 21:25:32 UTC from IEEE Xplore. Restrictions apply.

SHORINWA et al.: DISTRIBUTED MULTIROBOT TASK ASSIGNMENT VIA CONSENSUS ADMM 1791

TABLE I
COMPLEXITY OF THE MULTIROBOT TASK ASSIGNMENT ALGORITHMS PER

ITERATION

robot to share its local dual variables with its neighbors, resulting
in a communication complexity of O(m+N) bits.

3) Data Storage Complexity: Each robot maintains a local
primal variable and a local Lagrange multiplier for the equality
constraints between its primal solution and that of its neighbors
in the MUR-TAP algorithm. We assume that each robot repre-
sents its optimization variables using Q bits. When these vari-
ables are represented as double-precision floating-point num-
bers, Q = 64 bits. With this assumption, each robot requires
2NmQ bits for storing its local variables in the MUR-TAP
algorithm. In the MURD-TAP algorithm, each robot maintains
a local dual variable and a Lagrange multiplier, which require
(2m+ 1)Q bits for data storage. The primal solution can be
recovered upon termination of the MURD-TAP algorithm. In
contrast, the MURID-TAP algorithm requires each robot to
maintain a local primal and dual variable and Lagrange mul-
tipliers for the equality constraints between its dual variable
and that of its neighbors. As a result, in the MURID-TAP
algorithm, robot i requires (3m+ 2N)Q bits for storing its local
variables.

4) Selection Guide: We summarize the results of the com-
plexity analysis in Table I. The computational complexity anal-
ysis reveals that the per-iteration computational complexity of
the MUR-TAP algorithm scales cubically the number of robots
N and the number of tasks m in the task assignment problem
in (4), while the per-iteration computational complexity of the
MURD-TAP algorithm scales cubically in the number of tasks
m only. In contrast, the MURID-TAP algorithm provides the
most efficient per-iteration computational complexity, scaling
linearly in the sum of the number of robots and tasks (m+N).
Consequently, the MURID-TAP algorithm provides an efficient
method for solving multirobot problems when access to ade-
quate computation resources poses a limiting constraint (and in
problems with a large number of robots/tasks). However, when
the availability of computation resources does not prove pro-
hibitive, the MUR-TAP and MURD-TAP algorithms should be
considered, as, generally, the MURID-TAP algorithm requires
a greater number of iterations for convergence, given its inexact
update procedures.

In problems with low communication bandwidth and situa-
tions where communication between robots comes at a premium,
the communication complexity of the algorithms plays a critical
role in selecting an efficient distributed algorithm. MURD-TAP
provides the lowest communication complexity, independent of
the number of robots in the problem; however, MURID-TAP also
scales efficiently with respect to its communication complexity,
scaling linearly in the sum of the number of robots and tasks.

In situations with limited local data storage resources,
MURD-TAP and MURID-MP algorithms provide more efficient
methods for solving multirobot problems. However, MURID-
TAP scales linearly in the number of robots, which can be
consequential in problems with a large number of robots. In
contrast, the data storage complexity of MURD-TAP does not
depend on the number of robots. In general, the selection of
an efficient algorithm depends on the relative computation,
communication, and data storage resources available to each
robot in the multirobot problem.

VII. SIMULATIONS

In this section, we examine the performance of our distributed
algorithms in the multirobot task assignment problem. We com-
pare our methods to other distributed methods in each of these
problems, assessing the convergence rates of each method to the
optimal task assignment, computed centrally after collating all
the problem data. We begin with the task assignment problem
with linear objective functions and an equal number of robots
and tasks, which is amenable to other distributed task assign-
ment algorithms. Thereafter, we consider the multirobot task
assignment problem with nonlinear objective functions and an
unequal number of robots and tasks, a problem that is unsuitable
for many distributed task assignment algorithms. Finally, we
apply our algorithms to the multirobot persistent surveillance
problem, where we consider periodic assignments of robots to
aerial surveillance stations over time, with constraints on the
minimum allowable capacity level of each robot’s battery. We
execute all the algorithms on a laptop computer with an Intel i7
processor with 16-GB RAM and use the interior-point methods
for quadratic programming available in Gurobi [52].

A. Linear Multirobot Task Assignment Problem

We consider the multirobot task assignment problem in (2)
where the objective function f(x) consists of a sum of linear
functions, given by

f(x) =
N∑
i=1

cTi xi (57)

with xi ∈ Rm denoting the optimization variable of robot i
and x = [xT1 , . . . , x

T
N]T ∈ RNm. We examine the convergence

rate of our algorithms—MUR-TAP (primal algorithm), MURD-
TAP (exact dual algorithm), and MURID-TAP (inexact dual
algorithm)—to the optimal task assignment, assessing the con-
vergence of each algorithm in terms of the percentage relative
error with respect to the optimal solution of the problem. We de-
fine the relative error with respect to the optimal task assignment
as

RE(x) =
‖x− x�‖2
‖x�‖2

(58)

where x� denotes the optimal task assignment. In each task
assignment problem, we randomly generate the vectors in the
objective function.

1) Convergence to the Optimal Solution: We examine the
convergence rate of each algorithm to the optimal solution on
randomly generated connected communication networks. We

Authorized licensed use limited to: Stanford University. Downloaded on August 29,2023 at 21:25:32 UTC from IEEE Xplore. Restrictions apply.

1792 IEEE TRANSACTIONS ON ROBOTICS, VOL. 39, NO. 3, JUNE 2023

TABLE II
NUMBER OF OPTIMIZATION VARIABLES (# OF VAR.) AND THE MEAN AND

STANDARD DEVIATION OF THE NUMBER OF COMMUNICATION ROUNDS (# OF

COMM.) AND TOTAL COMPUTATION TIME (COMP. TIME) IN MILLISECONDS,
PER ROBOT, IN 60 TASK ASSIGNMENT PROBLEMS WITH FIVE ROBOTS AND

FIVE TASKS

begin with a task assignment problem with five robots and
five tasks. In Table II, we provide the number of optimization
variables maintained by each robot and the mean and standard
deviation of the number of communication rounds and total
computation time in milliseconds required by each robot in these
algorithms to achieve a relative error of at most 1e−11% across
60 problems.

From Table II, each robot in MURD-TAP optimizes over
six variables, while each robot in MUR-TAP and MURID-TAP
optimizes over 25 variables and 15 variables, respectively. Con-
sequently, the MURD-TAP algorithm requires the least data
storage capacity, which could be essential in robots with limited
onboard storage. Although each robot in MUR-TAP optimizes
over the greatest number of optimization variables compared to
the other algorithms, each robot requires the fewest number of
communication rounds to compute the optimal task assignment.
In MUR-TAP, each robot computes the optimal task assignment
within a mean of 25 communication rounds, while each robot
in MURD-TAP and MURID-TAP requires a mean of 31 and
45 communication rounds, respectively. However, the relatively
larger size of the optimization problem contributes to the longer
computation time required by MUR-TAP for convergence, with
each robot obtaining its optimal assignment after a mean com-
putation time of 4.164 ms. With MURID-TAP, each robot takes
the shortest mean computation time of about 1.608 ms to obtain
the optimal task assignment; however, MURID-TAP requires
the greatest number of communication rounds for convergence
to the optimal task assignment. MURD-TAP requires a shorter
mean computation time of 3.730 ms to converge to the opti-
mal solution compared to MUR-TAP, but the convergence of
MURD-TAP is attained after a greater number of communica-
tion rounds.

In Fig. 1, we show the relative error of the local variables
of all robots with the MUR-TAP, MURD-TAP, and MURID-
TAP algorithms during one trial. MUR-TAP attains the fastest
convergence rate, with each robot computing an optimal task
assignment within 35 communication rounds. In contrast, with
MURD-TAP, each robot requires about 40 communication
rounds to compute its optimal task assignment. MURID-TAP
achieves the slowest convergence rate among the three algo-
rithms, requiring about 50 communication rounds for conver-
gence.

Next, we examine the multirobot task assignment problem
with ten robots and ten tasks. Table III provides the number of
optimization variables maintained by each robot and the mean

Fig. 1. Relative error of MUR-TAP, MURD-TAP, and MURID-TAP on the
multirobot task assignment problem with five robots and five tasks. MUR-TAP
provides the fastest convergence rate, converging within 35 communication
rounds. With MURD-TAP, the relative error of the local variables of all robots
converges to zero faster than that of MURID-TAP.

TABLE III
NUMBER OF OPTIMIZATION VARIABLES (# OF VAR.) AND THE MEAN AND

STANDARD DEVIATION OF THE NUMBER OF COMMUNICATION ROUNDS (# OF

COMM.) AND CUMULATIVE COMPUTATION TIME (COMP. TIME) IN

MILLISECONDS, PER ROBOT, IN 60 TASK ASSIGNMENT PROBLEMS WITH TEN

ROBOTS AND TEN TASKS

and standard deviation of the number of communication rounds
and cumulative computation time in milliseconds required by
each robot to achieve a relative error of at most 1e−11% across
60 problems.

As in the problem with five robots, MUR-TAP requires the
greatest number of optimization variables, requiring each robot
to maintain 100 variables, which results in a notable increase
in the mean computation time per robot. In MUR-TAP, each
robot takes a mean computation time of over 29 ms. In contrast,
each robot in MURD-TAP maintains 11 variables, the smallest
number of optimization variables maintained by each robot
across all the algorithms. In addition, MURD-TAP requires
the fewest number of communication rounds for convergence,
with each robot computing the optimal task assignment within
a mean of 39 communication rounds. Although each robot in
MURID-TAP requires the greatest number of communication
rounds to compute the optimal solution, MURID-TAP offers the
shortest mean computation time of about 1.526 ms, compared to
a mean computation time of 5.68 ms required by MURD-TAP.
In MURID-TAP, each robot does not utilize a nested iterative
method to update its local variables; rather, each robot updates its
local variables using simple closed-form solutions, contributing
to the shorter cumulative computation time required by MURID-
TAP.

Authorized licensed use limited to: Stanford University. Downloaded on August 29,2023 at 21:25:32 UTC from IEEE Xplore. Restrictions apply.

SHORINWA et al.: DISTRIBUTED MULTIROBOT TASK ASSIGNMENT VIA CONSENSUS ADMM 1793

Fig. 2. Relative error of MUR-TAP, MURD-TAP, and MURID-TAP on the
multirobot task assignment problem with ten robots and ten tasks. Compared to
the task assignment problem with five robots, each robot in all the algorithms
requires a greater number of communication rounds to compute its optimal
task assignment. In this trial, MURD-TAP provides the fastest convergence rate
compared to the other algorithms.

Fig. 2 shows the relative error of the task assignment of
all robots in MUR-TAP, MURD-TAP, and MURID-TAP to an
optimal task assignment in the problem with ten robots and ten
tasks during one trial. In all the algorithms, each robot requires a
greater number of communication rounds to compute its optimal
task assignment compared to the number of communication
rounds required in the task assignment problem with five robots
and five tasks. In this trial, MUR-TAP achieves a slightly faster
convergence rate compared to MURID-TAP, with each robot
in MUR-TAP computing its optimal task assignment within 69
communication rounds, while MURID-TAP requires about 70
communication rounds for convergence. In MURD-TAP, each
robot computes its optimal task assignment within 45 commu-
nication rounds.

In general, in problems with a relatively small number of
robots and tasks, the MUR-TAP algorithm provides the fastest
convergence rate compared to the other algorithms, given that
each robot in the MUR-TAP algorithm computes a feasible
assignment for all robots at each iteration of the algorithm.
Each robot communicates with its neighbors across multiple
iterations to reach consensus on a joint optimal assignment for
all robots. In contrast, MURD-TAP and MURID-TAP do not
provide a feasible assignment for all robots at each iteration
until convergence. However, in larger problems, the effects of the
computation and communication complexity of each algorithm
become more apparent, resulting in slower convergence of the
MUR-TAP algorithm.

In the subsequent simulations, we consider communication
networks with different topologies in evaluating the convergence
rate of our algorithm and, in addition, compare our algorithm to
other distributed task assignment algorithms.

2) Convergence Across Networks With Different Topologies:
In this simulation study, we assume that each robot has limited
onboard storage, and thus, each robot requires a distributed
algorithm with a low data storage overhead. Considering these

TABLE IV
MEAN AND STANDARD DEVIATION OF THE NUMBER OF COMMUNICATION

ROUNDS (# OF COMM.) AND CUMULATIVE COMPUTATION TIME (COMP. TIME)
IN MILLISECONDS OF MURD-TAP, PER ROBOT, IN 60 TASK ASSIGNMENT

PROBLEMS WITH 20 ROBOTS AND 20 TASKS ON RANDOMLY GENERATED

CONNECTED NETWORKS WITH DIFFERENT CONNECTIVITY RATIOS

limitations, we select the MURD-TAP algorithm to solve the
task assignment problems in these scenarios. We examine the
convergence rate of MURD-TAP to the optimal solution of the
multirobot task assignment problem with 20 robots and 20 tasks
across randomly generated connected communication networks
with different connectivity ratios. We denote the connectivity
ratio of a graph as κ = 2 |E|

N(N−1) , noting that a fully connected
network has a connectivity ratio of 1. In Table IV, we show
the mean and standard deviation of the number of communica-
tion rounds and cumulative computation time in milliseconds
required by each robot to compute a task assignment with a
relative error of at most 1e−11% across 60 problems.

From Table IV, we note that the number of communication
rounds required for convergence decreases significantly as the
connectivity ratio of a communication network increases from
about 0.2 to 0.6, with a much smaller difference as the connec-
tivity ratio increases beyond 0.6. Likewise, the cumulative com-
putation time per robot decreases by about 7 ms over this range
of the connectivity ratio. On fully connected communication
networks, each robot requires about 54 communication rounds
and about 11.541 ms in total computation time, to compute its
optimal task assignment, compared to about 94 communication
rounds and about 19.745 ms on communication networks with
a connectivity ratio of 0.253. Consequently, the connectivity
ratio of the underlying communication network influences the
convergence rate of our algorithms, with a greater connectivity
ratio corresponding to faster convergence.

In Fig. 3, we show the relative error of our algorithm during
one trial across the communication networks presented in Ta-
ble IV. Our algorithm attains its slowest convergence rate when
κ = 0.253, the minimum connectivity ratio in Table IV, with a
notable improvement in the convergence rate for larger values of
κ. As a result, on communication networks with low connectivity
ratios, each robot requires a greater number of communication
rounds to achieve consensus with its neighbors on an optimal
task assignment.

3) Comparison to Benchmark Methods: We assume that
each robot has limited access to computational and data stor-
age resources. Consequently, we examine the convergence rate
of MURD-TAP and MURID-TAP for the multirobot task as-
signment problem in comparison to that of other distributed
task assignment algorithms, including the consensus-based auc-
tion method (CBAA) [29], market-based consensus (MBC)
method [17], and the distributed Hungarian (DH) method in [1].

Authorized licensed use limited to: Stanford University. Downloaded on August 29,2023 at 21:25:32 UTC from IEEE Xplore. Restrictions apply.

1794 IEEE TRANSACTIONS ON ROBOTICS, VOL. 39, NO. 3, JUNE 2023

Fig. 3. Relative error of MURD-TAP on the multirobot task assignment prob-
lem with 20 robots and 20 tasks across randomly generated connected networks
with different connectivity ratios. Our algorithm attains faster convergence rates
in communication networks with larger connectivity ratios.

TABLE V
MEAN AND STANDARD DEVIATION OF THE NUMBER OF COMMUNICATION

ROUNDS (# OF COMM.) AND CUMULATIVE COMPUTATION TIME (COMP. TIME)
IN MILLISECONDS, PER ROBOT, OF DIFFERENT ALGORITHMS, AS WELL AS

GUARANTEES ON PRODUCING AN OPTIMAL SOLUTION (OPT) AND

AMENABILITY TO PROBLEMS WITH NONLINEAR OBJECTIVE FUNCTIONS (NL)
IN 35 TASK ASSIGNMENT PROBLEMS WITH 50 ROBOTS AND 50 TASKS

While the MBC, DH, MURD-TAP, and MURID-TAP algo-
rithms provide an optimal task assignment, CBAA does not
guarantee an optimal task assignment. In addition, the MBC
method requires all robots with conflicting task preferences to
communicate with a merchant, which can be played by any of the
robots, to resolve conflicting choices between the robots—which
might be infeasible in randomly generated connected networks
and chain networks, making the algorithm unsuitable in these
problems. As a result, we consider a multirobot task assignment
problem with 50 robots, communicating over a fully connected
network, and 50 tasks. Table V presents the mean and standard
deviation of the number of communication rounds and cumula-
tive computation time in milliseconds required by each robot to
compute a solution with a percentage relative error of at most
1e−11% with respect to an optimal task assignment across 35
problems. In addition, we indicate any guarantees provided by
each algorithm on producing an optimal task assignment and the
amenability of each algorithm to task assignment problems with
nonlinear objective functions.

CBAA requires the minimum cumulative computation time
and the fewest number of communication rounds to compute
a feasible task assignment for all robots. However, we note
that CBAA did not produce an optimal task assignment in

all the problems that we considered. Among the optimal task
assignment algorithms—MBC, DH, MURD-TAP, and MURID-
TAP—the MURID-TAP algorithm requires the shortest mean
cumulative computation time to produce an optimal task assign-
ment. However, each robot in the MURID-TAP algorithm re-
quires a greater number of communication rounds to compute an
optimal task assignment compared to the DH and MURD-TAP
algorithms. Nonetheless, MURID-TAP requires fewer commu-
nication rounds to compute the optimal task assignment com-
pared to the MBC algorithm, which requires the greatest number
of communication rounds. In addition, the MBC algorithm
is unsuitable for problems with nonlinear objective functions.
Although the DH algorithm requires the fewest communication
rounds among the optimal algorithms, the DH algorithm requires
a greater cumulative computation time per robot compared to
MURD-TAP and MURID-TAP. Moreover, the DH algorithm
is not amenable to task assignment problems with nonlinear
objective functions and general affine constraints. In contrast,
MURD-TAP and MURID-TAP offer a balanced tradeoff with
respect to computation time, the number of communication
rounds required for convergence, and versatility, producing an
optimal solution in general task assignment problems with non-
linear objective functions and affine constraints. MURD-TAP
produces an optimal task assignment within fewer communica-
tion rounds while requiring a shorter cumulative computation
time. Conversely, MURID-TAP achieves the fastest cumulative
computation time with a greater number of communication
rounds.

B. Nonlinear Multirobot Task Assignment Problem

We consider the multirobot task assignment problem in (2)
with nonlinear objective functions and an unequal number of
robots and tasks, where the objective function fi(xi) of robot i
is given by

fi(xi) =

m∑
τ=1

1

1 + αi,τeβi,τxi,τ
(59)

with xi ∈ Rm denoting the optimization variable of robot i. We
examine the convergence rate of MURID-TAP on the nonlin-
ear task assignment problem on randomly generated connected
communication networks, noting the simple update procedures
involved in the algorithm. We randomly generate the vectors
αi ∈ Rm and βi ∈ Rm arising in the objective function of robot
i, with αi ≥ 0 and βi ≥ 0. In general, the optimal solution
of (2) does not always correspond to an integer-valued solu-
tion. However, when an integer-valued optimal solution exists,
this solution corresponds to the optimal task assignment. We
generate the objective function, given by (59), such that an
integer-valued optimal solution exists.

For the nonlinear task assignment problem with N = 20
robots and m = 15 tasks, we examine the number of com-
munication rounds and the cumulative computation time in
milliseconds required by each robot to compute a solution with
a relative error of at most 1e−11%, with the mean and standard
deviation across 60 problems provided in Table VI.

Authorized licensed use limited to: Stanford University. Downloaded on August 29,2023 at 21:25:32 UTC from IEEE Xplore. Restrictions apply.

SHORINWA et al.: DISTRIBUTED MULTIROBOT TASK ASSIGNMENT VIA CONSENSUS ADMM 1795

TABLE VI
MEAN AND STANDARD DEVIATION OF THE NUMBER OF COMMUNICATION

ROUNDS (# OF COMM.) AND CUMULATIVE COMPUTATION TIME (COMP. TIME)
IN MILLISECONDS, PER ROBOT, IN 60 NONLINEAR TASK ASSIGNMENT

PROBLEMS WITH 20 ROBOTS AND 15 TASKS

Fig. 4. Relative error of MURID-TAP on the nonlinear multirobot task assign-
ment problem with 20 robots and 15 tasks on randomly generated connected
networks.

With MURID-TAP, each robot computes its optimal task
assignment efficiently, within a mean computation time of
3.799 ms. The cumulative computation required by each robot
depends on the computational difficulty in evaluating the gradi-
ent of the objective function, required in the update procedure
in (53). Fig. 4 shows the relative error of the solution computed
by the robots during one trial. Each robot computes its optimal
task assignment within 300 communication rounds.

C. Case Study: Persistent Surveillance

In the previous discussion, we considered single or one-shot
task assignment problems; however, many multirobot systems
require periodic assignments of robots to tasks over time, such as
persistent surveillance problems with battery constraints. In this
case study, we consider multirobot persistent surveillance where
a group of robots must maintain coverage over a specified region.
Given the battery constraints of each robot, the robots must
alternate between performing the surveillance task and charging
their batteries. As a result, the assignment of robots to the
tasks must occur periodically. Moreover, robots at surveillance
stations can only move to a charging station if another robot
chooses to swap stations with it. We consider a problem with
12 robots and four dynamic surveillance stations, where the
location of the surveillance stations is prescribed by a given
trajectory. Fig. 5 shows four robots with spotlights surveilling
a city, with eight charging stations (the green squares) located
around the perimeter of the city. At this time instant, one robot
(the robot within the red circle) is in the process of swapping

Fig. 5. One time step of a simulation. The charging stations are green squares
around the perimeter of the city. The four drones over the city with spotlights
are performing the surveillance task. One drone near the lower left (the robot
within the red circle) is in the process of a replacement.

Fig. 6. Assignment of 12 robots to two surveillance stations on a persistent
surveillance task using MURD-TAP. MURD-TAP produces the optimal task
assignment at each episode, with a limit cycle emerging as the task proceeds.

stations, moving from a surveillance station to a charging station,
as depicted in the Fig. 5. We use the terms robot and drone
interchangeably. In the subsequent discussion, we provide the
state dynamics models of the robots, their battery levels, and the
surveillance stations. In addition, we specify the objective cost
associated with each task assignment and compute the optimal
task assignment for the surveillance problem.

1) State Dynamics: The state consists of a position pi ∈ R3

and battery level bi ∈ Z for each robot. At each time step, each
robot can be at a charging station, at a surveillance station, or
flying between stations. When at a charging station, the robot
charges at a rate of rc per time step up to a maximum battery
level of bmax. Otherwise, the robot discharges at a rate of rd per
time step down to a minimum battery level of 0, at which point
the robot shutdowns as its battery capacity is fully drained. We
provide the dynamics model for the battery capacity at time t in

bt+1
i =

⎧⎪⎨
⎪⎩
0, if bti = 0

min(bti + rc, bmax), if i charging

max(bti − rd, 0), otherwise

. (60)

Authorized licensed use limited to: Stanford University. Downloaded on August 29,2023 at 21:25:32 UTC from IEEE Xplore. Restrictions apply.

1796 IEEE TRANSACTIONS ON ROBOTICS, VOL. 39, NO. 3, JUNE 2023

Fig. 7. Battery levels of the 12 robots during the simulation. The mean and
minimum battery levels are highlighted to demonstrate the limit cycle and show
that no batteries are completely discharged.

Stations follow known paths and are represented by functions
sj(t) : Z → R3. Charging stations are at fixed points in space,
meaning that sj(t1) = sj(t2) ∀t1, t2 ∈ Z. Surveillance stations
may be at fixed points or follow paths.

Actions ati ∈ Z dictate where each robot should go at time
step t. If ati = j, then robot i should stay at station j if it is
there already or fly to station j if it is at a different station. If
robot i needs to change its station, it chooses its goal location gti
according to

gti = sat
i

(
min
Δt≥1

(
Δt | ‖sat

i
(t+Δt)− pti‖2 ≤ vΔt

))
(61)

where v ∈ R denotes its speed. The goal point is the first point
along the assigned station’s path that the robot can reach no later
than it needs to in order to intercept the station when moving at
a speed v. Once it has a goal location, the robot moves toward
the goal point at a rate of v per time step, with the dynamics of
the robot given by

pt+1
i = pti +

gti − pti
‖gti − pti‖2

min
(
‖gti − pti‖2, v

)
. (62)

The surveillance paths are set so that they do not require move-
ment faster than v.

2) Costs and Assignments: Assignments are influenced by
constraints on the process of swapping between stations, as well
as the costs associated with swapping stations. We delineate the
problem constraints: First, each surveillance station must always
have a drone at it. The drone at a surveillance station may only
leave once a replacement has arrived, at which point it travels to
the charging station that the replacement vacated. Second, once
a replacement is sent, a second replacement may not be sent
until the original replacement arrives. Third, a charging drone
should not replace a surveillance drone if the latter has a higher
battery level. Fourth, drones may not change assignments when
traveling between stations. Fifth, drones may not swap between
charging stations.

Costs determine the replacements. If drone i is charging at
station j, the cost of staying at station j is

cij = −(bti − bmax)
2 (63)

which gives the drone less incentive to keep charging as its
battery level rises. If, however, station j is a surveillance station,
the cost of assigning drone i to be the replacement is

cij = d2ij − (bti − btj) (64)

where dij is the required travel distance, computed with (61),
and btj denotes the battery level of the drone currently at station j.
This cost encourages replacements where the drone at the charg-
ing station has a much larger battery capacity and discourages
replacements that require a large travel distance.

We compute the task assignments using MURID-TAP at each
assignment episode, comparing the resulting assignments to the
optimal solution obtained using the Hungarian method. In all
episodes, MURID-TAP produces the optimal task assignment,
depicted in Fig. 6 for 2000 assignment episodes. The assignment
cost obtained using MURID-TAP overlays the assignment cost
achieved using the Hungarian method at all episodes. A limit
cycle of the total objective cost emerges as the task proceeds,
with the robots alternating between surveillance and charging
stations. Furthermore, we show the battery capacities of the 12
robots in Fig. 7, with a limit cycle also emerging. The battery
capacity of each robot ranges from 0 (fully discharged) to 100
(fully charged). From Fig. 7, we note that the battery capacities
of all robots remain above 20 at all episodes during the task,
highlighting that no robot ends up with a fully discharged battery.
In addition, the robots maintain a mean battery capacity of about
70 (see the supplementary video for more details).

VIII. CONCLUSION

In this article, we derived distributed algorithms for solving
multirobot task assignment problems that only require a con-
nected communication graph among the robots. We presented
three related algorithms, all derived from variants of the ADMM,
each with its own advantages and disadvantages. All three
algorithms were proven to produce the optimal task assignment.
The two algorithms based on the dual problem formulation
also provided improved privacy to each robot, as each robot
did not share its own task assignment while communicating
with its neighbors. We provided extensive empirical results
showing the tradeoffs among the three algorithms in terms of
computational speed, storage requirements, and communication
complexity. We also showed faster convergence rates attained
by our algorithms in comparison to other distributed methods
for multirobot task assignment. Finally, we demonstrated the
potential of our algorithms in a more complex sequential task
assignment problem in which a group of drones must coordinate
with one another to perform aerial surveillance over a city
while periodically returning to charging stations to charge their
batteries. Our task assignment algorithms allowed the robots to
achieve a limit cycle persistent monitoring behavior, balancing
recharging and surveillance activities among themselves in a
fully distributed fashion in perpetuity.

Authorized licensed use limited to: Stanford University. Downloaded on August 29,2023 at 21:25:32 UTC from IEEE Xplore. Restrictions apply.

SHORINWA et al.: DISTRIBUTED MULTIROBOT TASK ASSIGNMENT VIA CONSENSUS ADMM 1797

APPENDIX A
PROOF OF THEOREM 1

We can express the primal mathematical program in (10) as

minimize
x,σ

N∑
i=1

fi(xi)

subject to Aixi ≤ bi ∀i ∈ V
Fx = Gσ (65)

where F ∈ R2|E|Nm×mN2
and G ∈ R2|E|Nm×2|E|Nm define the

mapping between the local x variable of each robot and the slack
variables in σ, as expressed by the equality constraints in (10).
The augmented Lagrangian for the problem in (65) is given by

LF
a (x,σ, μ) =

N∑
i=1

fi(xi) + μT
(
Fx− Gσ

)

+
ρ

2
‖Fx− Gσ‖22 (66)

where μ ∈ R2|E|Nm represents a Lagrange multiplier for the
equality constraint in (65). We have not relaxed the inequality
constraint in (65).

By simplifying the minimization problem for the primal up-
date procedure in (15), robot i computes its primal variables
from the problem

minimize
xi

{
fi(xi) + ρ|Ni| ‖xi‖22 + xT

i q
k
i

− ρxT
i

∑
j∈Ni

(
xk
i + xk

j

)}

subject to Aixi ≤ bi (67)

at each iteration. The local objective function of each robot as
defined in (7) is convex, proper, and closed. Consequently, the
minimization problem in (67) has a proper, closed, and coercive
objective function. From the Weierstrass theorem [53], the min-
imization problem has a minimum value, which is attained at
a solution x̃, within the feasible set of the problem. As such, a
minimizer exists for the minimization problems arising at each
iteration of our algorithm.

At iteration k, the iterate xk+1 minimizes LF
a (x,σ

k, μk).
Likewise, σk+1 minimizes LF

a (x
k+1,σ, μk). From the opti-

mality conditions arising in the primal update procedure, the
iterates generated by our algorithm satisfy

1

ρ

(∥∥μk − μ�
∥∥2
2
−
∥∥μk+1 − μ�

∥∥2
2

)

+ ρ
(∥∥G (

σk − σ�
)∥∥2

2
−
∥∥G (

σk+1 − σ�
)∥∥2

2

)
≥ ρ

∥∥Fxk+1 − Gσk+1
∥∥2
2
+ ρ

∥∥G (
σk+1 − σk

)∥∥2
2

(68)

at each iteration, where (x�,σ�, μ�) represents a saddle point of
the Lagrangian of (65). From (68), the weighted error between

the iterates (σk, μk) and (σ�, μ�)

1

ρ

∥∥μk − μ�
∥∥2
2
+ ρ

∥∥G (
σk − σ�

)∥∥2
2

(69)

decreases sufficiently at each iteration, which shows that the
iterates (Gσk, μk) are bounded. Summing (68) over all iterations
results in

ρ
∞∑

k=0

(∥∥Fxk+1 − Gσk+1
∥∥2
2
+
∥∥G (

σk+1 − σk
)∥∥2

2

)

≤ 1

ρ

∥∥μ0 − μ�
∥∥2
2
+ ρ

∥∥G (
σ0 − σ�

)∥∥2
2

(70)

which shows that

Fxk+1 − Gσk+1 → 0 and

G
(
σk+1 − σk

)
→ 0 (71)

as k → ∞. Consequently, the local primal variables of all robots
converge to the same solution, satisfying the equality constraints
in (10). In addition, the iterates satisfy

N∑
i=1

fi
(
xk+1
i

)
− fi (x

�
i)

≤ −
(
Fxk+1 − Gσk+1

)T
μk+1

+ ρ
(
Fxk+1 − Gσk+1

)T G
(
σk+1 − σk

)
− ρ

(
G
(
σk+1 − σ�

))T G
(
σk+1 − σk

)
(72)

along with

N∑
i=1

fi
(
xk+1
i

)
− fi (x

�
i) ≥ −

(
Fxk+1 − Gσk+1

)T
μk+1

(73)
at each iteration, where x�

i = x�. As k → ∞,

N∑
i=1

fi
(
xk+1
i

)
− fi (x

�
i) → 0 (74)

from the boundedness of G
(
σk+1 − σ�

)
and (71), showing that

the objective value converges to its optimal value. Furthermore,
the iterates (xk,σk, μk) converge to (x�,σ�, μ�), the saddle
point of the Lagrangian. Refer to [54] and [55] for a detailed
proof.

APPENDIX B
PROOF OF THEOREM 2

The proof follows along the same lines as the proof of The-
orem 1. For completeness, we provide the proof here. We can
express the mathematical program in (25) as

maximize
y,ϑ

N∑
i=1

(−f�i (−AT
i yi)− yTi bi)

subject to yi ≥ 0 ∀i ∈ V

F̃y = G̃ϑ (75)

Authorized licensed use limited to: Stanford University. Downloaded on August 29,2023 at 21:25:32 UTC from IEEE Xplore. Restrictions apply.

1798 IEEE TRANSACTIONS ON ROBOTICS, VOL. 39, NO. 3, JUNE 2023

where F̃ ∈ R2|E|m×Nm and G̃ ∈ R2|E|m×2|E|m define the map-
ping between the local y variable of each robot and the slack
variables [γTij , ζ

T
ij , ∀(i, j) ∈ E]T in ϑ. Note that the maximiza-

tion problem in (30) has a proper, closed, and coercive objective
function. Furthermore, a maximizer exists for the optimization
problem in (30). As a result, our algorithm for the class of math-
ematical programs D generates bounded iterates (yk,ϑk, �k),
which satisfy

1

ρ

(∥∥�k −��
∥∥2
2
−
∥∥�k+1 −��

∥∥2
2

)

+ ρ

(∥∥∥G̃ (
ϑk − ϑ�

)∥∥∥2
2
−
∥∥∥G̃ (

ϑk+1 − ϑ�
)∥∥∥2

2

)

≥ ρ
∥∥∥F̃yk+1 − G̃ϑk+1

∥∥∥2
2
+ ρ

∥∥∥G̃ (
ϑk+1 − ϑk

)∥∥∥2
2

(76)

at each iteration, showing that the weighted error between
(ϑk, �k) and (ϑ�, ��)

1

ρ

∥∥�k −��
∥∥2
2
+ ρ

∥∥∥G̃ (
ϑk − ϑ�

)∥∥∥2
2

(77)

decreases at each iteration, where (y�,ϑ�, ��) represents a
saddle point of the Lagrangian of (75).

In addition, as k → ∞,

F̃yk+1 − G̃ϑk+1 → 0 and

G̃
(
ϑk+1 − ϑk

)
→ 0 (78)

showing that the dual variables of all robots converge to the same
solution. Ultimately, the objective value of (75) computed at yk

converges to its optimal value, with the iterates (yk,ϑk, �k)
converging to a saddle point (y�,ϑ�, ��) of the Lagrangian of
(75).

APPENDIX C
PROOF OF THEOREM 3

We can express the Lagrangian in (20) as

La(ỹ, x) =

N∑
i=1

fi(xi) + ỹTi (Aixi − bi) (79)

where robot i maintains the local dual variable ỹi, with the
constraints

ỹi = ỹj ∀(i, j) ∈ E (80)

ensuring that all the dual variables have the same value. By relax-
ing the constraints in (80), we obtain the augmented Lagrangian

La(ỹ, x, γ, ζ, p, w) =

N∑
i=1

fi(xi) + ỹTi (Aixi − bi)

−
∑

(i,j)∈E

(
pTij(ỹi−γij) + wT

ij(ỹj − ζij)
)

− ρ

2

∑
(i,j)∈E

(
‖ỹi−γij‖22+ ‖ỹj−ζij‖22

)
(81)

with Lagrange multipliers p and w and slack variables γ and ζ
for the equality constraints in (80) over the feasible set where
γij = ζij . From the existence of a saddle point, we can compute
the optimal primal solution x� from the problem

minimize
x

maximize
ỹ

Ld
a(ỹ, x, γ

�, ζ�, p�, w�)

subject to ỹi ≥ 0 ∀i ∈ V (82)

where γ�, ζ�, p�, and w� represent an optimal solution for
the slack variables and Lagrange multipliers. The optimization
problem in (82) simplifies to

minimize
x

maximize
ỹ

N∑
i=1

Pi(ỹi, xi)

subject to ỹi ≥ 0 ∀i ∈ V (83)

where

Pi(ỹi, xi) = fi(xi) + ỹTi (Aixi − bi)

− r�Ti ỹi − ρ
∑
j∈Ni

∥∥∥∥ỹi − ȳi + ȳj
2

∥∥∥∥
2

2

(84)

upon convergence of the MURD-MP algorithm. The optimiza-
tion problem in (83) decomposes intoN independent optimiza-
tion problems, with the problem for robot i given by

minimize
xi

maximize
ỹi

Pi(ỹi, xi)

subject to ỹi ≥ 0 (85)

which simplifies to the same optimization problem in (34).
Hence, the local primal variables computed by all robots using
(34) correspond to the optimal primal solution x� of (18).

REFERENCES

[1] S. Chopra, G. Notarstefano, M. Rice, and M. Egerstedt, “A distributed
version of the Hungarian method for multirobot assignment,” IEEE Trans.
Robot., vol. 33, no. 4, pp. 932–947, Aug. 2017.

[2] J. Turner, Q. Meng, G. Schaefer, A. Whitbrook, and A. Soltoggio, “Dis-
tributed task rescheduling with time constraints for the optimization of
total task allocations in a multirobot system,” IEEE Trans. Cybern., vol. 48,
no. 9, pp. 2583–2597, Sep. 2018.

[3] J. Scherer and B. Rinner, “Multi-robot persistent surveillance with con-
nectivity constraints,” IEEE Access, vol. 8, pp. 15093–15109, 2020.

[4] L. C. B. Da Silva, R. M. Bernardo, H. A. De Oliveira, and P. F. Rosa, “Multi-
UAV agent-based coordination for persistent surveillance with dynamic
priorities,” in Proc. Int. Conf. Mil. Technol., 2017, pp. 765–771.

[5] X. Bai, M. Cao, W. Yan, and S. S. Ge, “Efficient routing for precedence-
constrained package delivery for heterogeneous vehicles,” IEEE Trans.
Autom. Sci. Eng., vol. 17, no. 1, pp. 248–260, Jan. 2020.

[6] N. Mathew, S. L. Smith, and S. L. Waslander, “Planning paths for package
delivery in heterogeneous multirobot teams,” IEEE Trans. Autom. Sci.
Eng., vol. 12, no. 4, pp. 1298–1308, Oct. 2015.

[7] B. Shirani, M. Najafi, and I. Izadi, “Cooperative load transportation using
multiple UAVs,” Aerosp. Sci. Technol., vol. 84, pp. 158–169, 2019.

[8] D. Weyns, N. Boucké, and T. Holvoet, “Gradient field-based task assign-
ment in an AGV transportation system,” in Proc. 5th Int. Joint Conf. Auton.
Agents Multiagent Syst., 2006, pp. 842–849.

[9] K. Vivaldini, L. F. Rocha, N. J. Martarelli, M. Becker, and A. P. Moreira,
“Integrated tasks assignment and routing for the estimation of the opti-
mal number of AGVS,” Int. J. Adv. Manuf. Technol., vol. 82, nos. 1–4,
pp. 719–736, 2016.

[10] M. Bürger, G. Notarstefano, F. Bullo, and F. Allgöwer, “A distributed
simplex algorithm for degenerate linear programs and multi-agent assign-
ments,” Automatica, vol. 48, no. 9, pp. 2298–2304, 2012.

Authorized licensed use limited to: Stanford University. Downloaded on August 29,2023 at 21:25:32 UTC from IEEE Xplore. Restrictions apply.

SHORINWA et al.: DISTRIBUTED MULTIROBOT TASK ASSIGNMENT VIA CONSENSUS ADMM 1799

[11] R. N. Haksar, O. Shorinwa, P. Washington, and M. Schwager, “Consensus-
based ADMM for task assignment in multi-robot teams,” in Proc. Int.
Symp. Robot. Res., 2019, pp. 35–51.

[12] R. Zhang and J. Kwok, “Asynchronous distributed ADMM for consensus
optimization,” in Proc. Int. Conf. Mach. Learn., 2014, pp. 1701–1709.

[13] W. Deng, M.-J. Lai, Z. Peng, and W. Yin, “Parallel multi-block ADMM
with O (1/k) convergence,” J. Sci. Comput., vol. 71, no. 2, pp. 712–736,
2017.

[14] G. Mateos, J. A. Bazerque, and G. B. Giannakis, “Distributed sparse linear
regression,” IEEE Trans. Signal Process., vol. 58, no. 10, pp. 5262–5276,
Oct. 2010.

[15] E. Wei and A. Ozdaglar, “Distributed alternating direction method of mul-
tipliers,” in Proc. 51st IEEE Conf. Decis. Control, 2012, pp. 5445–5450.

[16] S. Hosseini, A. Chapman, and M. Mesbahi, “Online distributed ADMM via
dual averaging,” in Proc. 53rd IEEE Conf. Decis. Control, 2014, pp. 904–
909.

[17] L. Liu and D. A. Shell, “Optimal market-based multi-robot task allocation
via strategic pricing,” in Proc. Robot.: Sci. Syst. Conf, 2013, vol. 9, no. 1,
pp. 33–40.

[18] H. W. Kuhn, “The Hungarian method for the assignment problem,” Nav.
Res. Logistics Quart., vol. 2, no. 12, pp. 83–97, 1955.

[19] S. Giordani, M. Lujak, and F. Martinelli, “A distributed algorithm for
the multi-robot task allocation problem,” in Trends in Applied Intelligent
Systems, N. García-Pedrajas, F. Herrera, C. Fyfe, J. M. Benítez, and M.
Ali, Eds. Berlin, Germany: Springer, 2010, pp. 721–730.

[20] M. Berhault et al., “Robot exploration with combinatorial auctions,” in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2003, vol. 2, pp. 1957–1962.

[21] D. P. Bertsekas, “The auction algorithm: A distributed relaxation method
for the assignment problem,” Ann. Oper. Res., vol. 14, no. 1, pp. 105–123,
1988.

[22] R. Zlot and A. Stentz, “Market-based multirobot coordination for complex
tasks,” Int. J. Robot. Res., vol. 25, no. 1, pp. 73–101, 2006.

[23] E. Nunes and M. Gini, “Multi-robot auctions for allocation of tasks with
temporal constraints,” in Proc. AAAI Conf. Artif. Intell., 2015, pp. 2110–
2216.

[24] M. G. Lagoudakis, M. Berhault, S. Koenig, P. Keskinocak, and A. J.
Kleywegt, “Simple auctions with performance guarantees for multi-robot
task allocation,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2004,
vol. 1, pp. 698–705.

[25] S. Sariel and T. Balch, “Real time auction based allocation of tasks for
multi-robot exploration problem in dynamic environments,” in Proc. AAAI
Workshop Integr. Plan. Scheduling, 2005, pp. 27–33.

[26] T. Lemaire, R. Alami, and S. Lacroix, “A distributed tasks allocation
scheme in multi-UAV context,” in Proc. IEEE Int. Conf. Robot. Autom.,
2004, pp. 3622–3627.

[27] P. Sujit and R. Beard, “Distributed sequential auctions for multiple UAV
task allocation,” in Proc. IEEE Amer. Control Conf., 2007, pp. 3955–3960.

[28] S. L. Smith and F. Bullo, “Monotonic target assignment for robotic
networks,” IEEE Trans. Autom. Control, vol. 54, no. 9, pp. 2042–2057,
Sep. 2009.

[29] H. Choi, L. Brunet, and J. P. How, “Consensus-based decentralized
auctions for robust task allocation,” IEEE Trans. Robot., vol. 25, no. 4,
pp. 912–926, Aug. 2009.

[30] N. Michael, M. M. Zavlanos, V. Kumar, and G. J. Pappas, “Distributed
multi-robot task assignment and formation control,” in Proc. IEEE Int.
Conf. Robot. Autom., 2008, pp. 128–133.

[31] L. Luo, N. Chakraborty, and K. Sycara, “Distributed algorithm design for
multi-robot task assignment with deadlines for tasks,” in Proc. IEEE Int.
Conf. Robot. Autom., 2013, pp. 3007–3013.

[32] T. Mercker, D. W. Casbeer, P. T. Millet, and M. R. Akella, “An extension
of consensus-based auction algorithms for decentralized, time-constrained
task assignment,” in Proc. Amer. Control Conf., 2010, pp. 6324–6329.

[33] M. M. Zavlanos, L. Spesivtsev, and G. J. Pappas, “A distributed auction
algorithm for the assignment problem,” in Proc. 47th IEEE Conf. Decis.
Control, 2008, pp. 1212–1217.

[34] W. Yao, N. Qi, N. Wan, and Y. Liu, “An iterative strategy for task
assignment and path planning of distributed multiple unmanned aerial
vehicles,” Aerosp. Sci. Technol., vol. 86, pp. 455–464, 2019.

[35] M. Otte, M. J. Kuhlman, and D. Sofge, “Auctions for multi-robot task al-
location in communication limited environments,” Auton. Robots, vol. 44,
no. 3, pp. 547–584, 2020.

[36] E. Schneider, E. I. Sklar, S. Parsons, and A. T. Özgelen, “Auction-based
task allocation for multi-robot teams in dynamic environments,” in Proc.
Conf. Towards Auton. Robot. Syst., 2015, pp. 246–257.

[37] C. Schumacher, P. Chandler, M. Pachter, and L. Pachter, “UAV task as-
signment with timing constraints via mixed-integer linear programming,”
in Proc. AIAA 3rd “Unmanned Unlimited” Tech. Conf., Workshop Exhib.,
2004, Art. no. 6410.

[38] M. Darrah, W. Niland, and B. Stolarik, “Multiple UAV dynamic task
allocation using mixed integer linear programming in a SEAD mission,”
in Proc. Infotech, Aerosp., 2005, Art. no. 7164.

[39] R. J. Afonso, M. R. Maximo, and R. K. Galvão, “Task allocation and
trajectory planning for multiple agents in the presence of obstacle and
connectivity constraints with mixed-integer linear programming,” Int. J.
Robust Nonlinear Control, vol. 30, no. 14, pp. 5464–5491, 2020.

[40] N. Atay and B. Bayazit, “Mixed-integer linear programming solution to
multi-robot task allocation problem,” Washington Univ., St Louis, MO,
USA, Tech. Rep. WUCSE-2006-54, 2006.

[41] A. Falsone, K. Margellos, and M. Prandini, “A decentralized approach to
multi-agent MILPs: Finite-time feasibility and performance guarantees,”
Automatica, vol. 103, pp. 141–150, 2019.

[42] A. Camisa, I. Notarnicola, and G. Notarstefano, “A primal decomposition
method with suboptimality bounds for distributed mixed-integer linear
programming,” in Proc. IEEE Conf. Decis. Control, 2018, pp. 3391–3396.

[43] S. Karaman and G. Inalhan, “Large-scale task/target assignment for UAV
fleets using a distributed branch and price optimization scheme,” IFAC
Proc. Vol., vol. 41, no. 2, pp. 13310–13317, 2008.

[44] A. Testa, A. Rucco, and G. Notarstefano, “A finite-time cutting plane
algorithm for distributed mixed integer linear programming,” in Proc.
IEEE 56th Annu. Conf. Decis. Control, 2017, pp. 3847–3852.

[45] A. Settimi and L. Pallottino, “A subgradient based algorithm for distributed
task assignment for heterogeneous mobile robots,” in Proc. 52nd IEEE
Conf. Decis. Control, 2013, pp. 3665–3670.

[46] A. Khamis, A. Hussein, and A. Elmogy, “Multi-robot task allocation: A
review of the state-of-the-art,” Cooperative Robots Sens. Netw., vol. 2015,
pp. 31–51, 2015.

[47] G. A. Korsah, A. Stentz, and M. B. Dias, “A comprehensive taxonomy
for multi-robot task allocation,” Int. J. Robot. Res., vol. 32, no. 12,
pp. 1495–1512, 2013.

[48] J. L. Miller and L. S. Franz, “A binary-rounding heuristic for multi-period
variable-task-duration assignment problems,” Comput. Oper. Res., vol. 23,
no. 8, pp. 819–828, 1996.

[49] J. W. Fowler, P. Wirojanagud, and E. S. Gel, “Heuristics for workforce
planning with worker differences,” Eur. J. Oper. Res., vol. 190, no. 3,
pp. 724–740, 2008.

[50] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex Optimization. Cam-
bridge, U.K.: Cambridge Univ. Press, 2004.

[51] T. Chang, M. Hong, and X. Wang, “Multi-agent distributed optimization
via inexact consensus ADMM,” IEEE Trans. Signal Process., vol. 63,
no. 2, pp. 482–497, Jan. 2015.

[52] Gurobi Optimizer Reference Manual, Gurobi Optim., LLC, Houston, TX,
USA, 2022. [Online]. Available: https://www.gurobi.com

[53] E. Bishop, “A generalization of the Stone–Weierstrass theorem,” Pacific
J. Math., vol. 11, no. 3, pp. 777–783, 1961.

[54] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method of
multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122, 2011.

[55] L. Chen, D. Sun, and K.-C. Toh, “A note on the convergence of ADMM
for linearly constrained convex optimization problems,” Comput. Optim.
Appl., vol. 66, no. 2, pp. 327–343, 2017.

Ola Shorinwa is working toward the Ph.D. degree
with the Department of Mechanical Engineering,
Stanford University, Stanford, CA, USA.

He is a Member of the Multirobot Systems Lab,
Stanford University. His research interests include
distributed control, optimization, estimation, and
planning for multirobot systems.

Authorized licensed use limited to: Stanford University. Downloaded on August 29,2023 at 21:25:32 UTC from IEEE Xplore. Restrictions apply.

https://www.gurobi.com

1800 IEEE TRANSACTIONS ON ROBOTICS, VOL. 39, NO. 3, JUNE 2023

Ravi N. Haksar received the B.S. degree in me-
chanical engineering from the Georgia Institute of
Technology, Atlanta, GA, USA, in 2014, and the M.S.
and Ph.D. degrees in mechanical engineering from
Stanford University, Stanford, CA, USA, in 2017 and
2020, respectively.

He is currently with Nuro, Mountain View, CA.
His research interests include control theory, decision
making under uncertainty, decentralized optimiza-
tion, and cooperative multirobot teams.

Patrick Washington (Graduate Student Member,
IEEE) received the B.S. degree in aerospace engineer-
ing from the University of Maryland, College Park,
MD, USA, in 2017, and the M.S. degree in aeronautics
and astronautics engineering in 2020 from Stanford
University, Stanford, CA, USA, where he is currently
working toward the Ph.D. degree with the Department
of Aeronautics and Astronautics.

His research interests include task scheduling
and controlling systems based on learned dynamical
models.

Mac Schwager (Member, IEEE) received the B.S.
degree from Stanford University, Stanford, CA, USA,
in 2000, and the M.S. and Ph.D. degrees from the
Massachusetts Institute of Technology (MIT), Cam-
bridge, MA, USA, in 2005 and 2009, respectively, all
in mechanical engineering.

He is currently an Associate Professor with the
Department of Aeronautics and Astronautics, Stan-
ford University. He was a Postdoctoral Researcher
working jointly with the GRASP Laboratory, Uni-
versity of Pennsylvania, Philadelphia, PA, USA, and

the Computer Science and Artificial Intelligence Laboratory, MIT, from 2010 to
2012. From 2012 to 2015, he was an Assistant Professor with Boston University,
Boston, MA. His research interests include distributed algorithms for control,
perception, and learning in groups of robots, and models of cooperation and
competition in groups of engineered and natural agents.

Dr. Schwager received the National Science Foundation CAREER Award in
2014, the Defense Advanced Research Projects Agency Young Faculty Award in
2018, a Google Faculty Research Award in 2018, and the IROS Toshio Fukuda
Young Professional Award in 2019.

Authorized licensed use limited to: Stanford University. Downloaded on August 29,2023 at 21:25:32 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

