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Abstract— We investigate the cooperative pursuit of an
evader by a group of quadrotors in an environment with no-
fly zones. While the pursuers cannot enter into no-fly zones,
the evader may freely move through zones to avoid capture.
Once the evader enters a no-fly zone, the pursuers calculate
a reachable set of evader positions. Using tools from Voronoi-
based coverage control applied to the evader’s reachable set,
we provide an algorithm that distributes the pursuers around
the zone’s boundary and minimizes the capture time once the
evader leaves the no-fly zone. Robust model predictive control
(RMPC) tools are used to control the quadrotors and to ensure
that they always remain in free space. We demonstrate the
performance of our proposed algorithms through a series of
experiments on KMEL Nano+ quadrotors.

I. INTRODUCTION

In this paper, we propose an algorithm for a group of
quadrotors to cooperatively pursue an evader. The quadrotors
move in an environment that has a set of “no-fly zones,”
which are regions that the quadrotors cannot enter, such as
buildings or forests. The evader can freely move through
these zones, while the pursuing quadrotors must position
themselves around the boundary of the no-fly zones, ready to
pursue the evader when it eventually emerges. Furthermore,
the quadrotors can sense the position of the evader when it is
in free space, but may not have information about the evader
when it is inside a no-fly zone. Our algorithm uses Robust
Model Predictive Control (RMPC) tools to always stay a
prescribed safe distance away from the no-fly zones while
pursuing the evader, and it adapts methods from Voronoi-
based coverage control to position the quadrotors when the
evader is inside a no-fly zone. We demonstrate our algorithm
in hardware experiments with three quadrotors pursuing a
manually-controlled ground robot.

Our algorithm is useful in a number of applications of
emerging importance, such as search and rescue, robotic
aerial videography, and security and surveillance. One ex-
ample is where the evader is a suspected criminal fleeing the
scene of a crime, and the pursuers are police surveillance
drones. The pursuers track the suspect as it flees, but also
must avoid buildings, bridges, trees and other environmental
obstacles. If the suspect enters a building where the drones
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Fig. 1: Once an evader enters the no-fly region, the pursuers
reposition themselves about the perimeter.

cannot follow, our algorithm will position the drones around
the building so that they can continue tracking the suspect
once it re-emerges, illustrated by Figure 1. Other settings
where the algorithm may be useful include tracking a lost
person or endangered animal in a park, or the subject of a
sports film such as a snowboarder or mountain biker.

When the evader is in free space, the quadrotors pursue
it directly using an RMPC controller to guarantee that they
do not enter the no-fly zones. When an evader enters a no-
fly zone, we adopt a three-part strategy for the quadrotors:
(i) compute the reachable set of the evader, (ii) tessellate
the reachable set with a centroidal Voronoi tessellation, then
(iii) drive the quadrotors to points on the perimeter of the
no-fly zone that are as close as possible to the centroids
of the tessellation. The quadrotors may not have access to
the evader’s position inside the no-fly zone, so the evader’s
reachable set is a conservative estimate that grows in time,
eventually filling up the no-fly zone. The RMPC control
approach is again used to keep the quadrotors safely outside
of the no-fly zones at all times as they navigate to their
positions on the perimeter of the no-fly zone.

This work brings together elements of the authors’ previ-
ous work in Robust Model Predictive Control for a single
pursuer, and in Voronoi-based coverage control for sensor
networks. In a previous work [1], we consider a single
pursuer, and assume that once the evader enters a no-fly zone,
the pursuer still has full information about its location. In
contrast, here we consider multiple pursuers, and we assume
that once the evader enters a no-fly zone, the pursuers may
not have information about its position.

While there has been extensive research on path planning
and obstacle avoidance for mobile robots [13], [10], most
algorithms rely on simple approximations of the robot dy-
namics [20], [4], [17], [16]. If the underlying robot is highly
nonlinear or is subject to uncertainties, these approxima-
tion may result in controller instability and collision with



obstacles. In [1], we proposed a robust MPC using linear
matrix inequalities (LMIs) by extending the work of [12].
We showed robust performance could be achieved under
modeling uncertainties and measurement noise. Furthermore,
we proposed a path planning algorithm which combined with
the RMPC technique could guarantee collision avoidance in
presence of uncertainties.

We also draw inspiration from Voronoi-based coverage
control. A Voronoi-based coverage strategy first proposed
by Cortés et al. [7], [6], often referred to as the move-to-
centroid controller, drives all robots continuously towards the
centroids of their Voronoi cells. This builds upon previous
work in optimal location of retail facilities [8], and in data
compression [9]. The Voronoi-based control strategy has also
been used to track intruders by a team of robots within
an environment [19], [14]. However, these works do not
consider no-fly zones, and do not use the guaranteed safe
RMPC tools that we use here. Other works [11], [18], [15]
have used a Voronoi-based strategy for multi-agent pursuit-
evasion, again without considering no-fly zones or RMPC
control. Similarly to our approach for placing the pursuers
around a no-fly zone, Susca et. al use a Voronoi-based
strategy to control a group of agents to monitor an evolving
boundary [21], and [3] uses a bug algorithm to explore an
obstacle boundary for finding the best position for sensing
inside the obstacle. These works do not consider the pursuit-
evasion problem, and also do not use the RMPC tools that
we use in this paper.

Here, we use a Voronoi tessellation to divide up the
reachable set of possible evader locations, with the goal of
minimizing the “cost of capture” once the evader emerges
from the no-fly zone. Using a virtual pursuer position, we
employ a move-to-centroid algorithm to optimally divide the
reachable set among the pursuers. Since the pursuers cannot
move inside the no-fly zone, we drive them to the point on
the boundary of the no-fly zone that is closest to the virtual
pursuer inside the no-fly zone. We show this minimizes a
relevant “cost-to-capture” metric, and demonstrate our algo-
rithm in hardware experiments using three KMEL Nano+
quadrotors pursuing an m3pi ground robot.

The remainder of this paper is organized as follows. In
Section II we describe the algorithm for pursuing the evader
in free space, and in Section III we consider the case when
the evader is inside a no-fly zone. Section IV describes
the RMPC control method used to robustly execute the
algorithms in the previous sections using a model of the
quadrotors’ dynamics with modeling uncertainties. Section V
describes our hardware experiments, and we offer our con-
clusions in Section VI.

II. ZONE-AWARE PURSUIT IN FREE SPACE

We first consider the case where the evader is in free space
and provide a path planning algorithm to steer the pursuers
towards the evader while avoiding entering any no-fly zone.
In Section III, we provide the tools necessary to track the
evader when it is inside a no-fly zone. Throughout this paper,
we assume that the pursuers can determine the position of
the evader when it is in free space, e.g. from an on-board
camera or other sensing system, or from a tracking beacon
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Fig. 2: (a) Construction of the maximum-volume ellipsoid.
Shaded areas represent the no-fly zones and the blue and red
dots represent the location of pursuer i and the evader, re-
spectively. (b) Schematic of the Algorithm 1 (Path Planning).

on the evader. We also assume that the pursuers know there
own positions, e.g. from GPS.

Let np be the number of pursuers in the group. Define
pi(k) and e(k) to be the xy-coordinates of the pursuer i
and the evader at time k, respectively. Similarly, let hpi (i =
1, 2, . . . , np) and he denote the altitude of pursuer i and the
evader, respectively. To avoid collision between the pursuer
quadrotors, we set hpi 6= hpj for all i 6= j, however this may
be achieved with existing collision avoidance algorithms, as
well.

Consider the case where the evader is stationary and is
close enough to the pursuer such that there exists an ellipsoid,
completely outside any no-fly zone, that is centered at the
position of the evader and includes pursuer i (see Fig. 2a).
We refer to this ellipsoid as the “safety ellipsoid.” Pursuer i
can safely reach the evader if there exists a controller which
guarantees both that it never leaves the safety ellipsoid and
also that it asymptotically converges to the center of the
ellipsoid. In Section IV-A, we review a robust MPC method
which can be used to guarantee both conditions.

Let rmin and rmax be the lower and upper bounds on
the semi-minor axis and the semi-major axis of the safety
ellipsoid as shown in Fig. 2a. Let υκ, κ = 1, . . . , nυ denote
a sampled set of no-fly zone boundary points at the distance
of less or equal to rmax from the evader. For pursuers i =
{1, ..., np}, define the maximum-volume safety ellipsoid as

Qi(k) ,
{
z ∈ R2

∣∣ (z − e(k))T Qiε (z − e(k)) ≤ 1
}
, (1)

where Qiε is the solution of the semidefinite programming
problem

min trace(Qiε)

s.t. (υκ − e(k))TQε(υκ − e(k)) ≥ 1 + ε,

(pi(k)− e(k))TQiε(pi(k)− e(k)) ≤ 1− ε,

κ = 1, 2, ..., nυ,
1

r2
max

I � Qiε �
1

r2
min

I.

In the above problem, ε > 0 is a parameter that ensures
neither the sampled boundary points nor pi(k) fall on the
boundary of Qi(k).

The optimization problem in (2) can occasionally become
infeasible, e.g., when the distance between the evader and a



pursuer is larger than rmax or when the direct line between
a pursuer and the evader crosses a no-fly zone. In such
scenarios, we search for a “dummy” evader which can move
the pursuer in a direction towards the evader. Let e∗i be
the dummy evader corresponding to pursuer i and define
Zi (i = 1, . . . , nz), a no-fly zone, where nz denotes the
number of no-fly zones in the environment. Since the no-fly
zones can be non-convex, we calculate a minimum-volume
ellipsoid around them, which we use to navigate around a no-
fly zone. Let EZr be the minimum-volume ellipsoid around
Zr that is centered at the centroid of Zr and is rmin distance
from the closest boundary point of Zr.

Let line(pi, e) to be the line segment from pi to e. Define
los(pi, e) to be the line-of-sight indicator function such that
los(pi, e) is 0 if line(pi, e) crosses a no-fly zone and 1
otherwise. Consider the case where los(pi, e) = 1. Note
that the optimization problem (2) is infeasible if any point
along line(pi, e) is not at least rmin distance away from
the boundaries of all no-fly zones. Procedure 1 verifies if this
problem exists and resolves it by assigning a new dummy
evader (e∗i ) to pursuer i.

Procedure 1 Proximity Verification Procedure

Input: pi, e,Zj , EZj (j = 1, . . . , nz)
Output: e∗i . position of the dummy evader for pursuer i

1: procedure PROXIMITY(pi, e)
2: (xz, dz, k) ← the closest point along the boundary

of Zj to line(pi, e), its distance, and the corresponding
no-fly zone number, respectively

3: if dz ≥ rmin then
4: e∗i ← e
5: else
6: ez ← the nearest point on EZk to xz with
los(xz, ez) = 1

7: e∗i ← ez
8: end if
9: end procedure

Even when los(pi, e) = 1 and line(pi, e) is not in rmin

proximity of any no-fly zone, the optimization problem in
(2) can become infeasible due to the shape of no-fly zones
and the distance between the evader and pursuer i. In such
scenarios, we create and gradually move the dummy evader
from the position of the evader towards pursuer i until (2) is
feasible (see Step 18 of Algorithm 1 and its accompanying
Fig. 2b). Finally, if los(pi, e) = 0, we choose the dummy
evader e∗i , to be a point on the minimum-volume ellipsoid of
the closest intersecting no-fly zone such that los(pi, e

∗
i ) = 1

(see Step 11 of Algorithm 1).
Algorithm 1 provides a complete path planning algorithm

for a given pursuer i. Each pursuer track its assigned target
evader, ei. When the evader is outside any no-fly zone, all
target evaders are set to e(k). However, when the evader is
inside a no-fly zone, each pursuer is assigned a different
target evader to improve coverage of the no-fly zone as
described in Section III.

Algorithm 1 Path Planning Algorithm for Pursuer pi
Input: pi(k), ei(k),Zj , EZj (j = 1, . . . , nz)
Output: e∗i (k), Qiε . position of dummy evader for pi

1: Pick 0 < θp < 1
2: e∗i ← ei(k) . ei(k) = e(k) if e(k) is in free space
3: L1 ← 1, L2 ← 1 . feasibility indicator for (2)
4: while L1 = 1 do
5: if e∗i is inside a no-fly zone r then
6: e∗i ← nearest point to e∗i on the boundary of Zr
7: end if
8: if los(pi, e

∗
i ) = 1 then

9: e∗i ← PROXIMITY(pi, e
∗
i )

10: end if
11: if los(pi, e

∗
i ) = 0 then

12: r ← index of closest obstacle along line(pi, e
∗
i )

13: z ← nearest point to e∗i on EZr
14: x{CW,CCW} ← nearest point to z on EZr in CW

and CCW directions with los(pi, x{CW,CCW}) = 1
15: e∗i ← Pick xCW or xCCW that yields a shorter

arc to z
16: e∗i ← PROXIMITY(pi, e

∗
i ) . xP in Fig. 2b

17: else
18: while L2 = 1 do
19: Qiε ← Construct max-volume ellipsoid (2)
20: if Qiε = ∅ then
21: xd ← θp pi + (1− θp)e∗i
22: else
23: L1 ← 0, L2 ← 0
24: end if
25: end while
26: end if
27: end while

III. PURSUING AN EVADER IN A NO-FLY ZONE

The previous section described our multi-robot pursuit
algorithm when the evader is outside a no-fly zone, and the
pursuers know the evader’s current position. In this section
we address the case when the evader enters a no-fly zone.
Once inside, the pursuers may not have reliable information
about the evader’s position, so the pursuers construct a
reachable set of possible positions, based on the evader’s
maximum velocity and its entry point. The pursuers arrange
themselves around the perimeter of the no-fly zone to be
ready to capture the evader when it emerges. We adapt
strategies from Voronoi-based coverage control to partition
the reachable set of the evader, and position the pursuers as
close as possible to a centroidal Voronoi configuration over
the reachable set, without entering the no-fly zone. We note
that the evader could choose the strategy to stay inside a
no-fly zone so that it can never be captured. In this case, the
pursuers distribute themselves around the perimeter, thereby
effectively containing the evader within the no-fly zone.

Consider the no-fly zone Zj , where q ∈ Zj is an arbitrary
point in the zone. The set Zj need not be convex. Let vmax

be the maximum speed of the evader. Suppose an evader
enters the no-fly zone at some time t = τ . The entry point is
denoted as e(τ). For some time t ≥ τ , we can find the



reachable set of the evader locations as a ball of radius
(vmax(t− τ)) centered at e(τ), written B(e(τ), vmax(t−τ)).
This ball may include points outside the no-fly zone, so we
define Rj(t, τ, vmax) to be the part of the reachable set that
is inside the no-fly zone, written

Rj(t, τ, vmax) = B(e(τ), vmax(t− τ)) ∩ Zj .
We then define the indicator function ρ(q, t) such that
ρ(q, t) = 1 if q ∈ Rj(t, τ, vmax) at time t, and 0 otherwise.
We can write ρ(q, t) as

ρ(q, t) =

{
1, if q ∈ Rj(t, τ, vmax),
0, otherwise.

If the pursuers were free to move inside the no-fly zone,
we would want to distribute the pursuers to minimize the
average distance to any possible location of the evader. Let
p̄i be the unrestricted desired position of a pursuer. We can
also define the Voronoi tessellation of the reachable set Rj
based on these desired positions as

Vi =
{
q ∈ Rj

∣∣∣ ‖q − p̄i‖2 ≤ ‖q − p̄k‖2 , k = 1, 2, ..., np

}
.

This allows us to formulate a “cost of capture,” modeled after
previous Voronoi-based coverage cost functions introduced
in [7], [6] and written

V(p̄1, ..., p̄n) =

np∑
i=1

∫
Vi

‖q − p̄i‖2 ρ(q, t) dq. (2)

Intuitively, we see that a low value of V indicates a good
configuration of the pursuers. It is also useful to define a
“mass” and “centroid” of each Voronoi cell Vi, analogous to
physical masses and centroids, written

MVi =

∫
Vi

ρ(q, t) dq, CVi =
1

MVi

∫
Vi

qρ(q, t) dq. (3)

Although there is a complex dependency between the desired
positions p̄i and the geometry of the Voronoi cells, it is
known from locational optimization [8] that minima of V
correspond to configurations where all robots are at the
centroids of their Voronoi cells, or p̄i = CVi for all i =
1, . . . , np. In [7] Cortés et al. introduced a move-to-centroid
controller that guarantees that the robots are driven to the
centroids of their Voronoi cells, and hence they reach a local
minimum of (2). In our scenario, if the pursuers could enter
the no-fly zone, a move-to-centroid controller would position
them to locally minimize the cost of capture of the evader.
However, given that our pursuers must remain outside the
no-fly zone, we must adapt the move-to-centroid algorithm
to this constrained case.

Remark 1. Note that the above approach can easily be
extended to more complex scenarios where predictions about
the position of the evader in a no-fly zone is available. Such
scenarios can be captured with either a complex reachable
set Rj or by using indicator function to represent the
probability of the position estimate at a given point q ∈ Rj .

Let di = pi − p̄i be the vector from the ideal pursuer
position (if the pursuer could enter the no-fly zone) to the

actual pursuer position (constrained to lie outside the no-fly
zone). Consider minimizing the cost of capture in this case,
V(p1, ..., pn), with pi = p̄i + di, and with pi constrained to
lie outside Zj . For i = {1, ..., np}, j = {1, ..., nz}, we can
re-write the cost as a function of the vectors di as

H(d1, . . . , dn) =

np∑
i=1

∫
Vi

‖q − p̄i − di‖2ρ(q, t) dq (4)

where p̄i = CVi , are the unconstrained locally optimal
positions. Then our problem is to solve the following op-
timization

min
(d1,...,dn)

H(d1, . . . , dn)

s.t. di + p̄i 6∈ Zj .
We find constrained positions to optimize the cost of capture
function (4) with the following proposition.

Proposition 1 (Projected Centroids). Given p̄i = CVi for
all i = 1, . . . , np, the locations pi that minimize the cost to
capture (4) are given by pi = p̄i + d∗i , where

d∗i = arg min
di+p̄i∈∂Zj

‖di‖, (5)

and ∂Zj denotes the boundary of the no-fly zone Zj .
Proof. To see that (5) minimizes (4) given our constraints,
we first expand the cost function as

H =

np∑
i=1

∫
Vi

(
‖q + p̄i‖2 − 2dTi (q − p̄i) + ‖di‖2

)
ρ(q, t) dq.

Breaking the above equation into three parts, we find H =
H1 +H2 +H3, where

H1 =

np∑
i=1

∫
Vi

(
‖q − p̄i‖2

)
ρ(q, t) dq,

H2 = −2

np∑
i=1

dTi

∫
Vi

(q − p̄i)ρ(q, t) dq,

H3 =

np∑
i=1

‖di‖2
∫
Vi

ρ(q, t) dq =

np∑
i=1

‖di‖2MVi .

We see thatH1 is the same as the unconstrained cost function
(2), and is independent of di, so letting p̄i = CVi yields a
local minimum of H1 [8]. When p̄i = CVi , it follows from
(3) that H2 = 0. It remains then to minimize H3, which
is accomplished by minimizing ‖di‖, since MVi does not
depend on di. Given that the pursuer cannot enter the no-fly
zone, ‖di‖ is minimized when pi is the closest point to the
centroid CVi on the boundary of the no-fly zone Zj .

Note that Step 5 in Algorithm 1 in effect ensures that
e∗i = di, where e∗i denotes the position of the dummy evader
for pursuer i. Therefore, each centroid CVi can be treated as
an evader target position that can be assigned to a pursuer.

Figure 3 illustrates the evolution of our no-fly zone
planning algorithm. Once the evader enters a no-fly zone,
the pursuers generate an estimate of the reachable set Rj ,
updated at each time step. Between time step, the pursuers
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Fig. 3: Simulation of three pursuers executing the no-fly-zone
planning algorithm. At each step, the pursuers move to the
nearest feasible point to the centroids of the Voronoi cells.

use a move-to-centroid algorithm that projects their desired
position to the center of their Voronoi cell (see Algorithm 2).
A simple target assignment, using the well-known Hungarian
algorithm, matches each centroid point p̄i = CVi with a
pursuer. Algorithm 1 is then applied to each pursuer and its
associated dummy evader.

Algorithm 2 No-Fly Zone Planning Algorithm

Input: e(τ), t, Zj , vmax
Output: p̄i

1: Calculate B(e(τ), vmax(t−τ)) and Rj(e(τ), vmax(t−τ))
2: Compute Voronoi tessellation about p̄i
3: while p̄i 6= CVi ∀ i do
4: Assign p̄i = CVi
5: Recompute Voronoi tessellation
6: end while
7: Assign p̄i as target points for pi

IV. QUADROTOR MODELING AND CONTROL

Up to this point, we have assumed that we can control the
pursuer positions to a desired waypoint, while staying inside
an elipse. Here we describe the low-level controller used
to accomplish this. We first control the rotational dynamics
of the quadrotor to a desired attitude, which then allows us
to control the translational dynamics to a desired location
[2]. The translational sub-system controls the position and
velocity of the quadrotor by generating the total rotor output
and the desired roll and pitch angles. The rotational sub-
system regulates the attitude of the vehicle to the desired
values computed by the translational sub-system.

In [1], we designed a robust MPC controller for the trans-
lational sub-system and an LQR controller for the rotational
sub-system. Here, we assume the rotational sub-system is
regulated through an on-board controller which rotates the
frame to the desired angles and consider the control design
only for the translational dynamics of the aircraft. We borrow
elements from the translational controller in [1] and expand
it to a group of quadrotors. While the relevant theorems
and propositions are included for completeness, we refer the
reader to [1] for their proof.

Let Ui be the total output of the rotors for pursuer i
and define U∗ to be the total output required for hovering.
We denote the control inputs to the translational sub-system
corresponding to the desired roll and pitch angles of the
pursuer i by φdi , θdi , respectively. We treat the desired yaw
angle as a parameter set by the user, and without loss of
generality we set it to zero. Let ξi = (pi, hpi), where pi
denotes the xy-coordinates of pursuer i and hpi denotes its
altitude. Define x̂i = (ξi, ξ̇i) and ûi = (Ui, φdi , θdi) to be the
translational state space and control input vectors for pursuer
i, respectively.

Suppose e∗i is the dummy evader for pursuer i as defined
in Sections II and set ξ∗i = (e∗i , he). Let x∗i = (ξ∗i , 03) be
a hovering position with u∗ = (U∗, 0, 0). A discrete-time
linear model of the translational sub-system can be derived
by linearizing the nonlinear system dynamics around x∗ and
u∗, which yields [1],

xi(k + 1) = Aixi(k) +Biui(k), (6)

where xi = x̂i − x∗i and ui = ûi − u∗. The state and input
matrices in (6) are given by,

Ai =

[
I3 TsI3
03 I3

]
, Bi = Ts


03

0 0 −g
0 g 0
−g
U∗ 0 0

 ,
where Ts denotes the sampling time and g is the gravitational
acceleration.

The linearized system in (6) is subject to modeling errors
induced by system linearization. These effects become spe-
cially dominant when the quadrotor performs more aggres-
sive maneuver with large roll and pitch angles. Furthermore,
the uncertainty caused by disturbance and measurement
errors in pi and e can also be captured as uncertainties in the
system. We can therefore treat the system as a linear time-
variant system with uncertain Ai and Bi matrices. Since the
algorithm requires each pursuer to remain inside its safety
ellipsoid, we wish to construct a controller which not only
achieves stability but also guarantees that a pursuer trajectory
never leaves its corresponding safety ellipsoid even in the
presence of uncertainties. To this end, we use the following
robust MPC technique proposed in our earlier work in [1]
and included here for completeness.

A. Robust Model Predictive Control

To improve the readability, throughout this section, we use
superscript κ to denote a variable corresponding to pursuer
κ. Consider the discrete-time linear time-variant system in



(6) for pursuer κ with the output vector yκ defines as,

xκ(k + 1) = Aκ(k)xκ(k) +Bκ(k)uκ(k),

yκ(k) = Cκxκ(k),
(7)

where x(k) ∈ Rnx , u ∈ Rnu and y ∈ Rny . Let Dκ ,
[Aκ |Bκ] and define the uncertainty set as,

U , {D ∈ Rnx×(nx+nu)
∣∣ |Dκ

ij − D̄ij | ≤ ∆κ
ij , ∀i, j}, (8)

where D̄ = [Ā|B̄] denotes the matrix corresponding to the
nominal values of Aκ and Bκ, and ∆κ = [∆κ

ij ] is a matrix
with non-negative elements.

Let δ be the vector containing the non-zero elements of
∆κ. For the l-th element of δ, let iδl and jδl denote the row
and column index of δl in ∆, respectively (i.e. ∆iδl jδl

= δl).
Define Uκ(i, j,∆ij) to be a matrix whose ij−th element is
set to ∆κ

ij and the rest are zero. We can now write D as,

Dκ = D̄ +

nδ∑
l=1

ζlU
κ(iδl , jδl ,∆

κ
iδl jδl

), (9)

where |ζl| ≤ 1. Note that the above definition effectively cov-
ers the set of uncertain Aκ and Bκ matrices with polytopic
uncertainties.

Let xκ(k + i|k) be an estimate of xκ at sampling time
k + i based on the measurements obtained at time k. For
brevity, we denote xκ(k + i|k) for all i ≥ 0 by xκ(k + i)
and extend the same notation for other variables. Consider
an MPC problem with an infinite prediction horizon, where
at each sampling time k, a control law uκ(k + i) (i ≥ 0)
is designed to solve the following min-max optimization
problem

min
uκ(k+i), i≥0

max
(Aκ,Bκ)∈U

Jκ∞(k), where (10)

Jκ∞(k) ,
∞∑
i=0

xκ(k + i)TQ∞x
κ(k + i)

+ uκ(k + i)TR∞u
κ(k + i),

(11)

Q∞ � 0, and R∞ � 0.
Suppose there exists a feedback control law uκ(k + i) =

Fκxκ(k+ i) and a quadratic function V κ(x) = (xκ)TPκxκ

with P � 0 such that for all i ≥ 0,

V κ(xκ(k + i))− V κ(xκ(k + i+ 1)) ≥
xκ(k + i)TQ∞x

κ(k + i)+uκ(k + i)TR∞u
κ(k + i).

(12)

Then, V κ(xκ(k)) is a Lyapunov function for the optimization
problem (11) [5]. Note that the control law should satisfy
(12) for all (Aκ, Bκ) ∈ Uκ. This, in general, will require
solving the optimization problem over all vertices of Uκ
which grow exponentially with the dimension of Uκ. In
[1], we show an alternative approach where the size of the
problem grows linearly with the dimension of Uκ.

Theorem 1 ([1]). Consider the uncertain discrete system in
(7), where uncertainties are defined by (8). Let uκ(k+ i) =
Fκxκ(k+i) be the control action for time k+i for all i ≥ 0.

Consider the following LMI problem:

min
γκ,Qκ,Gκ,Zκδl | l=1,...,nδ

γκ

s.t.

[
1 ∗

xκ(k) Qκ

]
� 0, Lκ0 � 0,

nδ∑
l=1

Zκδl � Lκ0 ,

Zκδl � Lκδl , Zκδl � −Lκδl , ∀l = 1, 2, . . . , nδ

(13)

where Zκδl = (Zκδl)
T ,

Lκ0 =


Q ∗ ∗ ∗

ĀQκ + B̄Gκ Qκ ∗ ∗
Q

1
2∞Qκ 0 γκI ∗

R
1
2∞Gκ 0 0 γκI

 ,

Lκδl =


0 ∗ ∗ ∗

AκδlQ
κ +BκδlG

κ 0 ∗ ∗
0 0 0 ∗
0 0 0 0

 ,
Aκδl and Bκδl are matrices with the same dimensions as
Aκ and Bκ, respectively, whose values are extracted from
Uκ(iδl , jδl ,∆

κ
iδl jδl

) = [Aκδl |Bκδl ] in (9). If the above opti-
mization problem has a solution, then Jκ∞ in the worst-case
scenario is bounded from above by γκ and the minimizing
feedback control gain is given by,

Fκ = Gκ(Qκ)−1. (14)

While the above theorem guarantees stability of the
quadrotor system for the given uncertainty set, it does not
ensure that the trajectories will always remain inside the
safety ellipsoid. Let Qκε be the safety ellipsoid for pursuer
κ calculated from (2). The following proposition guarantees
that the pursuer trajectory does not leave the safety ellipsoid.

Proposition 2 (Output Constraints [1]). Consider the un-
certain discrete system in (7), the feedback control law
uκ(k+i) = Fκxκ(k+i), where Fκ is given by (14), and the
safety ellipsoid Qκ in (1). Let C = [I2 | 02×4]. The pursuer
κ is guaranteed to remain in the safety ellipsoid Qκ if the
following LMI feasibility problem has a solution,

find Z̃κδl | l=1,...,nδ

s.t. Mκ
0 � 0,

nδ∑
l=1

Z̃κδl �Mκ
0 , Z̃

κ
δl
�Mκ

δl
, Z̃κδl � −Mκ

δl
,

where Z̃κδl = (Z̃κδl)
T , l = 1, . . . , nδ , and

Mκ
0 =

[
Qκ ∗

C(ĀQκ + B̄Gκ) (Qκε )−1

]
,

Mκ
δl

=

[
0 ∗

C(AκδlQ
κ +BκδlG

κ) 0

]
.

To ensure stability and safety conditions are satisfied
simultaneously, we add the constraints in Proposition 2 to
Theorem 1 and solve the resulting optimization problem.

V. EXPERIMENTS

In this section, we present experimental results demon-
strating our proposed tracking algorithm. For the pursuers,



we used three KMEL Nano+ quadrotors equipped with Kbee
radios for communication. Localization was performed with
NaturalPoint’s OptiTrack system. MATLAB was used to
perform all calculations, and the updated waypoints were
transmitted to the quadrotors. Two scenarios are presented.
The first experiment uses a simulated evader following a pre-
planned trajectory. The pursuers do not know the pre-planned
trajectory, but react to the evader in real time. The second
experiment uses a Pololu m3pi robot manually driven with a
joystick, and pursuers react in real time. A video with both
experimental runs can be found in the video attachment, and
can be viewed on our website1. In both experiments, we see
the pursuers are able to successfully track the evader as it
moves in and out of the no-fly zones.

In the first experiment, three quadrotors tracked a sim-
ulated evader as it moved throughout the environment. The
trajectories can be seen in Figure 4(a), with the evader shown
in red and final positions denoted by the circles. Over time,
we see that the trajectories of the pursuers remain outside the
no-fly zones, demonstrating a successful implementation of
the path-planning algorithm. Figure 4(b) shows the minimum
distance from any pursuer to the evader over time. The
shaded areas indicate when the evader was within a no-fly
zone, and the red dashed line corresponds to the maximum
distance the evader could achieve given its entry point and
maximum velocity. By employing the centroidal Voronoi
algorithm, we find that the minimum distance remains rela-
tively small, despite the pursuers not knowing the true evader
position. By the end of the experiment, the pursuers are
within 10 cm of the evader.

Figure 5 shows stills from the experimental video demon-
strating the Voronoi-based coverage strategy while the evader
is in the no-fly zone. Over time, we see the pursuers spread
out as Rj grows. In the final frame, the evader emerges from
the top of the no-fly zone, with a pursuer nearby.

For our second experiment, we controlled an m3pi robot
with a joystick to create a “live” evader for our three
quadrotors to track. The trajectories over time are shown
in Figure 6(a). Again, we see the pursuers never enter the
no-fly zone. Figure 6(b) plots the minimum distance from
any pursuer to the evader, as well as the maximum possible
distance in red. Our Voronoi-based control strategy keeps
the distance to the evader relatively small, even though its
position is unknown. Stills from the experimental video are
shown in Figure 7. As with the simulated evader, we see the
pursuers distributing themselves around the boundary of Zj
while the evader remains inside the no-fly zone.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a series of algorithms to coordinate
a group of pursuers tracking an evader while avoiding no-
fly zones. While the evader remains outside the no-fly zone,
we assume the pursuers know the evaders position. Once the
evader enters a no-fly zone, an estimate of the reachable set
of all evader positions is generated based on the entry point
and the maximum velocity of the evader. Each pursuer is then
assigned to the centroid of a Voronoi cell, which is used to

1http://sites.bu.edu/msl/research/cooperative-multiquad-pursuit
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Fig. 4: (Top) Trajectories of the pursuers (green, blue, purple)
and evader (red) over time. (Bottom) Minimum distance from
any pursuer to the evader over time. The red dashed line
shows the maximum distance to the evader inside the no-fly
zone. Our strategy keeps the distance well below the max.

distribute the pursuers about the zone’s boundary. Through
experiments, we show that as a result of the coordinated
pursuit, the quadrotors remain in close proximity of the
evader even when it enters a no-fly zone.

Here, when the evader is in free space, all pursuers track
to the same target. Future work may consider a better way
to track the target using the group for more efficient capture.
Another direction may consider the case where pursuers only
know the evader’s position if there exists a direct line of sight
from at least one pursuer.
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