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RAT iLQR: A Risk Auto-Tuning Controller to
Optimally Account for Stochastic Model Mismatch

Haruki Nishimura1, Negar Mehr2, Adrien Gaidon3, and Mac Schwager1

Abstract—Successful robotic operation in stochastic environ-
ments relies on accurate characterization of the underlying
probability distributions, yet this is often imperfect due to
limited knowledge. This work presents a control algorithm that is
capable of handling such distributional mismatches. Specifically,
we propose a novel nonlinear MPC for distributionally robust
control, which plans locally optimal feedback policies against a
worst-case distribution within a given KL divergence bound from
a Gaussian distribution. Leveraging mathematical equivalence
between distributionally robust control and risk-sensitive optimal
control, our framework also provides an algorithm to dynam-
ically adjust the risk-sensitivity level online for risk-sensitive
control. The benefits of the distributional robustness as well
as the automatic risk-sensitivity adjustment are demonstrated
in a dynamic collision avoidance scenario where the predictive
distribution of human motion is erroneous.

Index Terms—Optimization and Optimal Control, Ro-
bust/Adaptive Control, Collision Avoidance

I. INTRODUCTION

PROPER modeling of a stochastic system of interest is a
key step towards successful control and decision making

under uncertainty. In particular, accurate characterization of
the underlying probability distribution is crucial, as it encodes
how we expect the system to behave unexpectedly over time.
However, such a modeling process can pose significant chal-
lenges in real-world problems. On the one hand, we may have
only limited knowledge of the underlying system, which would
force us to use an erroneous model. On the other hand, even if
we can perfectly model a complicated stochastic phenomenon,
such as a complex multi-modal distribution, it may still not
be appropriate for the sake of real-time control or planning.
Indeed, many model-based stochastic control methods require
a Gaussian noise assumption, and many of the others need
computationally intensive sampling.

The present work addresses this problem via distributionally
robust control, wherein a potential distributional mismatch is
considered between a baseline Gaussian process noise and
the true, unknown model within a certain Kullback-Leibler
(KL) divergence bound. The use of the Gaussian distribution
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Fig. 1: Model-based stochastic control methods often require a Gaussian
noise assumption, such as the one in the left that represents process noise
in pedestrian motion under a collision avoidance scenario (see Section V).
However, the true stochastic model can be highly multi-modal and better
captured by a more complex distribution as shown in the right, which we
may not exactly know. The proposed MPC effectively handles such a model
mismatch without the knowledge of the true distribution, except for a bound
on the KL divergence between the two.

is advantageous to retain computational tractability without
the need for sampling in the state space. Our contribution is a
novel model predictive control (MPC) method for nonlinear,
non-Gaussian systems with non-convex costs. This controller
would be useful, for example, to safely navigate a robot among
human pedestrians while the stochastic transition model for
humans is not perfect.

It is important to note that our contribution is built on
the mathematical equivalence between distributionally robust
control and risk-sensitive optimal control [1]. Unlike the con-
ventional stochastic optimal control that is concerned with the
expected cost, risk-sensitive optimal control seeks to optimize
the following entropic risk measure [2]:

Rp,θ(J) ,
1

θ
logEp [exp(θJ)] , (1)

where p is a probability distribution characterizing any source
of randomness in the system, θ > 0 is a user-defined
scalar parameter called the risk-sensitivity parameter, and J
is an optimal control cost. The risk-sensitivity parameter θ
determines a relative weight between the expected cost and
other higher-order moments such as the variance [3]. Loosely
speaking, the larger θ becomes, the more the objective cares
about the variance and is thus more risk-sensitive.

Our distributionally robust control algorithm can alterna-
tively be viewed as an algorithm for automatic online tuning of
the risk-sensitivity parameter in applying risk-sensitive control.
Risk-sensitive optimal control has been shown to be effective
and successful in many robotics applications [4], [5], [6], [7].
However, in prior work the user has to specify a fixed risk-
sensitivity parameter offline. This would require an extensive
trial and error process until a desired robot behavior is ob-
served. Furthermore, a risk-sensitivity parameter that works in
a certain state can be infeasible in another state, as we will see
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in Section IV. Ideally, the risk-sensitivity should be adapted
online depending on the situation to obtain a specifically
desired robot behavior [5], [7], yet this is highly nontrivial
as no simple general relationship is known between the risk-
sensitivity parameter and the performance of the robot. Our
algorithm addresses this challenge as a secondary contribution.
Due to the fundamental equivalence between distributionally
robust control and risk-sensitive control, it serves as a non-
linear risk-sensitive control that can dynamically adjust the
risk-sensitivity parameter depending on the state of the robot
as well as the surrounding environment.

The rest of the paper is organized as follows. Section II
reviews the related work in controls and robotics literature.
Section III summarizes the theoretical results originally pre-
sented in [1] that connect distributionally robust control to
risk-sensitive optimal control. Section IV develops this theory
into an algorithm that provides a locally optimal solution for
general nonlinear systems with non-convex cost functions,
which is a novel contribution of this paper. In Section V, we
test our method in a collision avoidance scenario wherein the
predictive distribution of pedestrian motion is erroneous. We
further show its benefits as a risk-sensitive optimal controller
that can automatically adjust its risk-sensitivity parameter in
this section. The paper concludes in Section VI with potential
future research directions.

II. RELATED WORK
A. Distributional Robustness and Risk-Sensitivity

Distributionally robust control seeks to optimize control
actions against a worst-case distribution within a given set of
probability distributions, often called the ambiguity set [8], [9].
There exist various formulations to account for distributional
robustness in optimal control. Some works are concerned with
minimizing the worst-case expectation of a cost objective [9],
[10], while others enforce risk-based or chance constraint
satisfaction under a worst-case distribution [11], [8]. The
present work belongs to the former class. Existing methods
also differ in the formulation of the ambiguity set. Moment-
based ambiguity sets require knowledge of moments of the
ground-truth distribution up to a finite order [8], [9], which
is often overly conservative [11]. Statistical distance-based
ambiguity sets are also gaining attention. The authors of [11]
use a Wasserstein metric to define the ambiguity set for motion
planning with collision avoidance, but their MPC formulation
is not suited for nonlinear systems. χ2-divergence and more
general φ-divergences (which KL divergence belongs to) are
employed in [10], similar to the present work. However, the
ambiguity set considered in [10] is restricted to categorical
distributions, while our work requires no assumption on the
class of the ground-truth distributions. Furthermore, we make
use of risk-sensitive optimal control to obtain planned robot
trajectories with feedback, unlike sampling in their implemen-
tation.

Optimization of the entropic risk measure has been an active
research topic in economics and controls literature since 1970s
[12], [13], [3], [14]. The concept of risk-sensitive optimal
control has been successfully applied to robotics in various
domains, including haptic assistance [4], [5], model-based
reinforcement learning (RL) [6], and safe robot navigation [7],
[15], to name a few. In all these works, the risk-sensitivity
parameter is introduced as a user-specified constant, and is
found to significantly affect the behavior of the robot. For

instance, our prior work on safe robot navigation in human
crowds [7] reveals that a robot with higher risk-sensitivity
tends to yield more to oncoming human pedestrians. However,
how to find a desirable risk-sensitivity parameter still remains
an open research question; in the robot navigation problem, the
robot simply freezes if it is too risk-sensitive when the scene
is crowded. As the authors of [5] point out, the robot should
adapt its risk-sensitivity level depending on the situation, yet
there still does not exist an effective algorithmic framework
to automate it due to the issues discussed in Section I.
In this work, we provide such an algorithm for nonlinear,
non-Gaussian stochastic systems. As mentioned earlier, our
approach is built on previously-established theoretical results
that link risk-sensitive and distributionally robust control [1].

B. Approximate Methods for Optimal Feedback Control

The theory of optimal control lets us derive an optimal
feedback control law via dynamic programming (DP) [16].
For linear systems with additive Gaussian white noise and
quadratic cost functions, the exact DP solution is tractable
and is known as Linear-Quadratic-Gaussian (LQG) [17] or
Linear-Exponential-Quadratic-Gaussian (LEQG) [13]. They
are different in that LQG optimizes the expected cost while
LEQG optimizes the entropic risk measure, although both DP
recursions are quite similar.

However, solving general optimal control problems for
nonlinear systems remains a challenge due to lack of analytical
tractability. Hence, approximate local optimization methods
have been developed, including Differential Dynamic Pro-
gramming (DDP) [18], iterative Linear-Quadratic Regulator
(iLQR) [19], and iterative Linear-Quadratic-Gaussian (iLQG)
[20], [21]. While both DDP and iLQR are designed for
deterministic systems with quadratic cost functions, iLQG
can locally optimize the expected cost objective for Gaussian
stochastic systems with non-convex cost functions. Similarly,
the iterative Linear-Exponential-Quadratic-Gaussian (iLEQG)
has been recently proposed to locally optimize the entropic
risk for Gaussian systems with non-convex costs [22], [15],
[23]. Note however that they are not designed to be robust to
model mismatches that we consider in this paper. In fact, it is
known that even LQG does not possess guaranteed robustness
[24].

III. PROBLEM STATEMENT

A. Distributionally Robust Optimal Control

Consider the following stochastic nonlinear system:

xk+1 = f(xk, uk) + g(xk, uk)wk, (2)

where xk ∈ Rn denotes the state, uk ∈ Rm the control,
and wk ∈ Rr the noise input to the system at time k. For
some finite horizon N , let w0:N , (w0, . . . , wN ) denote
the joint noise vector with probability distribution q(w0:N ).
This distribution is assumed to be a known Gaussian white
noise process, i.e. wi is independent of wj for all i 6= j,
and we call (2) the reference system. Ideally, we would like
the model distribution q to perfectly characterize the noise in
the dynamical system. However, in reality the noise may come
from a different, more complex distribution which we may not
know exactly. Let w̄0:N , (w̄0, . . . , w̄N ) denote a perturbed
noise vector that is distributed according to p(w̄0:N ). We define
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the following perturbed system that characterizes the true but
unknown dynamics:

xk+1 = f(xk, uk) + g(xk, uk)w̄k. (3)

Note that we make no assumptions on Gaussianity or white-
ness of p. One could also attribute it to potentially unmodeled
dynamics. The true, unknown probability distribution p is
contained in the set P of all probability distributions on the
support Rr(N+1). We assume that p is not “too different”
from q. This is encoded as the following constraint on the
KL divergence between p and q:

DKL(p‖q) ≤ d, (4)

where DKL(·‖·) is the KL divergence and d > 0 is a given
constant. Note that DKL(p‖q) ≥ 0 always holds, with equality
if and only if p ≡ q. The set of all possible probability
distributions p ∈ P satisfying (4) is denoted by Ξ, which
we define as our ambiguity set. This set is a convex subset of
P for a fixed q (Lemma 1.4.3, [25]).

We are interested in controlling the perturbed system (3)
with a state feedback controller of the form uk = K(k, xk).
The operator K(k, ·) defines a mapping from Rn into Rm. The
class of all such controllers is denoted Λ.

The cost function considered in this paper is given by

J(x0:N+1, u0:N ) ,
N∑
k=0

c(k, xk, uk) + h(xN+1), (5)

where c is the stage cost function and h is the terminal cost.
We assume that the above objective satisfies the following
non-negativity assumption.

Assumption 1 (Assumption 3.1, [1]). The functions h(·) and
c(k, ·, ·) satisfy h(x) ≥ 0 and c(k, x, u) ≥ 0 for all k ∈
{0, . . . , N}, x ∈ Rn, and u ∈ Rm.

Under the dynamics model (3), the cost model (5), and the
KL divergence constraint (4) on p, we are interested in finding
an admissible controller K ∈ Λ that minimizes the worst-case
expected value of the cost objective (5). In other words, we are
concerned with the following distributionally robust optimal
control problem:

inf
K∈Λ

sup
p∈Ξ

Ep [J(x0:N+1, u0:N )] , (6)

where Ep[·] indicates that the expectation is taken with respect
to the true, unknown distribution p. In this formulation, the
robustness arises from the ability of the controller to plan
against a worst-case distribution p in the ambiguity set Ξ.

Remark 1. If the KL divergence bound d is zero, then p ≡ q is
necessary. In this degenerate case, (6) reduces to the standard
stochastic optimal control problem:

inf
K∈Λ

Eq [J(x0:N+1, u0:N )] . (7)

B. Equivalent Risk-Sensitive Optimal Control
Unfortunately, the distributionally robust optimal control

problem (6) is intractable as it involves maximization with
respect to a probability distribution p. To circumvent this, [1]
proves that problem (6) is equivalent to a bilevel optimization
problem involving risk-sensitive optimal control with respect

to the model distribution q. We refer the reader to [1] for the
derivation and only re-state the main results in this section for
self-containedness. Before doing so, we impose an additional
assumption on the worst-case expected cost.

Assumption 2 (Assumption 3.2, [1]). For any admissible
controller K ∈ Λ, the resulting closed-loop system satisfies

sup
p∈P

Ep [J(x0:N+1, u0:N )] =∞. (8)

This assumption states that, without the KL divergence
constraint, some adversarially-chosen noise could make the
expected cost objective arbitrarily large in the worst case.
It amounts to a controllability-type assumption with respect
to the noise input and an observability-type assumption with
respect to the cost objective [1].

Under Assumptions 1 and 2, the following theorem holds.

Theorem 1. Consider the stochastic systems (2), (3) with the
KL divergence constraint (4) and the cost model (5). Under
Assumptions 1 and 2, the following equivalence holds for the
distributionally robust optimal control problem (6):

inf
K∈Λ

sup
p∈Ξ

Ep [J(x0:N+1, u0:N )]

= inf
τ∈Γ̃

inf
K∈Λ

τ logEq
[
exp

(
J(x0:N+1, u0:N )

τ

)]
+ τd, (9)

provided that the set

Γ̃ ,

{
τ > 0 : inf

K∈Λ
τ logEq [exp(J/τ)] is finite

}
(10)

is non-empty.

Proof. See Theorems 3.1 and 3.2 in [1].

Remark 2. Notice that the first term in the right-hand side
of (9) is the entropic risk measure Rq, 1τ (J), where the risk is
computed with respect to the model distribution q and τ > 0
serves as the inverse of the risk-sensitivity parameter. Rewrit-
ing the equation in terms of the risk-sensitivity parameter
θ = 1/τ > 0, we see that the right-hand side of (9) is
equivalent to

inf
θ∈Γ

(
inf
K∈Λ

Rq,θ (J(x0:N+1, u0:N )) +
d

θ

)
, (11)

where Γ , {θ > 0 : infK∈ΛRq,θ(J) is finite}. The non-
emptiness of Γ (and equivalently, Γ̃) is satisfied if there exists
some non-zero risk-sensitivity θ that gives a finite entropic risk
value. This is almost always satisfied in practical situations
where risk-sensitive optimal control can be applied, as other-
wise the problem would be ill-formed. Theorem 1 shows that
the original distributionally robust optimal control problem (6)
is mathematically equivalent to a bilevel optimization problem
(11) involving risk-sensitive optimal control. Note that the new
problem does not involve any optimization with respect to the
unknown distribution p.

IV. RAT ILQR ALGORITHM
Even though the mathematical equivalence shown in [1]

and summarized in Section III-B is general, it does not
immediately lead to a tractable method to efficiently solve (11)
for general nonlinear systems. There are two major challenges
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to be addressed. First, exact optimization of the entropic risk
with a state feedback control law is intractable, except for
linear systems with quadratic costs. Second, the optimal risk-
sensitivity parameter has to be searched efficiently over the
feasible space Γ, which not only is unknown but also varies
dependent on the initial state x0. A novel contribution of
this paper is a tractable algorithm that approximately solves
both of the problems for general nonlinear systems with non-
convex cost functions. In what follows, we detail how we
solve both the inner and the outer loop of (11) to develop
a distributionally-robust, risk-sensitive MPC.

A. Iterative Linear-Exponential-Quadratic-Gaussian
Let us first consider the inner minimization of (11):

inf
K∈Λ

Rq,θ (J(x0:N+1, u0:N )) , (12)

where we omitted the extra term d/θ as it is constant with
respect to the controller K. This amounts to solving a risk-
sensitive optimal control problem for a nonlinear Gaussian
system. Recently, a computationally-efficient, local optimiza-
tion method called iterative Linear-Exponential-Quadratic-
Gaussian (iLEQG) has been proposed for both continuous-
time systems [22] and the discrete-time counterpart [23], [15].
Both versions locally optimize the entropic risk measure with
respect to a receding horizon, affine feedback control law for
general nonlinear systems with non-convex costs.

We adopt a variant of the discrete-time iLEQG algorithm
[15] to obtain a locally optimal solution to (12). In what fol-
lows, we assume that the noise coefficient function g(xk, uk)
in (2) is the identity mapping for simplicity, but it is straight-
forward to handle nonlinear functions in a similar manner as
discussed in [20]. The algorithm starts by applying a given
nominal control sequence l0:N to the noiseless dynamics to
obtain the corresponding nominal state trajectory x̄0:N+1. In
each iteration, the algorithm maintains and updates a locally
optimal controller K of the form:

K(k, xk) = Lk(xk − x̄k) + lk, (13)

where Lk ∈ Rm×n denotes the feedback gain matrix. The
i-th iteration of our iLEQG implementation consists of the
following four steps:

1) Local Approximation: Given the nominal trajectory
{l(i)0:N , x̄

(i)
0:N+1}, we compute the following linear ap-

proximation of the dynamics as well as the quadratic
approximation of the cost functions:

Ak = Dxf(x̄
(i)
k , l

(i)
k ), Bk = Duf(x̄

(i)
k , l

(i)
k ) (14)

qk = c(k, x̄
(i)
k , l

(i)
k ) (15)

qk = Dxc(k, x̄
(i)
k , l

(i)
k ), Qk = Dxxc(k, x̄

(i)
k , l

(i)
k ) (16)

rk = Duc(k, x̄
(i)
k , l

(i)
k ) (17)

Rk = Duuc(k, x̄
(i)
k , l

(i)
k ), Pk = Duxc(k, x̄

(i)
k , l

(i)
k ) (18)

for k = 0 to N , where D is the differentiation operator.
We also let qN+1 = h(x̄

(i)
N+1), qN+1 = Dxh(x̄

(i)
N+1), and

QN+1 = Dxxh(x̄
(i)
N+1).

2) Backward Pass: We perform approximate DP using
the current feedback gain matrices L

(i)
0:N as well as

the approximated model obtained in the previous step.
Suppose that the noise vector wk is Gaussian-distributed

according to N (0,Wk) with Wk � 0. Let sN+1 , qN+1,
sN+1 , qN+1, and SN+1 , QN+1. Given these terminal
conditions, we recursively compute the following quanti-
ties:

Mk = W−1
k − θSk+1 (19)

gk = rk +BT
k (I + θSk+1M

−1
k )sk+1 (20)

Gk = Pk +BT
k (I + θSk+1M

−1
k )Sk+1Ak (21)

Hk = Rk +BT
k (I + θSk+1M

−1
k )Sk+1Bk, (22)

and

sk = qk + sk+1 −
1

2θ
log det(I − θWkSk+1)

+
θ

2
sT
k+1M

−1
k sk+1 +

1

2
l
(i)T
k Hkl

(i)
k + l

(i)T
k gk (23)

sk = qk +AT
k (I + θSk+1M

−1
k )sk+1

+ L
(i)T
k Hkl

(i)
k + L

(i)T
k gk +GT

k l
(i)
k (24)

Sk = Qk +AT
k (I + θSk+1M

−1
k )Sk+1Ak

+ L
(i)T
k HkL

(i)
k + L

(i)T
k Gk +GT

kL
(i)
k , (25)

from k = N down to 0. Note that Mk � 0 is necessary so
it is invertible, which may not hold if θ is too large. This
is called “neurotic breakdown,” when the optimizer is
so pessimistic that the cost-to-go approximation becomes
infinity [3]. Otherwise, the approximated cost-to-go for
this optimal control (under the controller {L(i)

0:N , l
(i)
0:N})

is given by s0.
3) Regularization and Control Computation: Having de-

rived the DP solution, we compute new control gains
L

(i+1)
0:N and offset updates dl0:N as follows:

L
(i+1)
k = −(Hk + µI)−1Gk (26)
dlk = −(Hk + µI)−1gk, (27)

where µ ≥ 0 is a regularization parameter to prevent
(Hk + µI) from having negative eigenvalues. We adap-
tively change µ across multiple iterations as suggested
in [21], so the algorithm enjoys fast convergence near a
local minimum while ensuring the positive-definiteness
of (Hk + µI) at all times.

4) Line Search for Ensuring Convergence: It is known
that the update could lead to increased cost or even
divergence if a new trajectory strays too far from the
region where the local approximation is valid [21]. Thus,
the new nominal control trajectory l

(i+1)
0:N is computed

by backtracking line search with line search parameter ε.
Initially, ε = 1 and we derive a new candidate nominal
trajectory as follows:

l̂k = L
(i+1)
k (x̂k − x̄(i)

k ) + l
(i)
k + εdlk (28)

x̂k+1 = f(x̂k, l̂k). (29)

If this candidate trajectory {l̂0:N , x̂0:N+1} results in a
lower cost-to-go than the current nominal trajectory,
then the candidate trajectory is accepted and returned as
{l(i+1)

0:N , x̄
(i+1)
0:N+1}. Otherwise, the trajectory is rejected and

re-derived with ε← ε/2 until it is accepted. More details
on this line search can be found in [26].
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The above procedure is iterated until the nominal con-
trol lk does not change beyond some threshold in a norm.
Once converged, the algorithm returns the nominal trajectory
{l0:N , x̄0:N+1} as well as the feedback gains L0:N and the
approximate cost-to-go s0.

B. Cross-Entropy Method
Having implemented the iLEQG algorithm as a local ap-

proximation method1 for the inner-loop optimization of (11),
it remains to solve the outer-loop optimization for the optimal
risk-sensitivity parameter θ∗. This is a one-dimensional opti-
mization problem in which the function evaluation is done by
solving the corresponding risk-sensitive optimal control (12).
In this work we choose to adapt the cross entropy method [27],
[28] to derive the approximately optimal value for θ∗. This
method is favorable for online optimization due to its any-time
nature and high parallelizability of the Monte Carlo sampling.
As a byproduct, it is also effective in approximately finding
the maximum feasible θ ∈ Γ within a few iterations, which is
detailed later in this section. We note however that it is possible
to use other methods for the outer-loop optimization as well.
The cross entropy method is a stochastic method that maintains
an explicit probability distribution over the design space. At
each step, a set of ms Monte Carlo samples is drawn from
the distribution, out of which a subset of me “elite samples”
that achieve the best performance is retained. The parameters
of the distribution is then updated according to the maximum
likelihood estimate on the elite samples. The algorithm stops
after a desired number of steps M .

In our implementation we model the distribution2 as univari-
ate Gaussian N (µ, σ2). A remaining issue is that the iLEQG
may return the cost-to-go of infinity if a sampled θ is too large,
due to neurotic breakdown. Since our search space is limited
to Γ where θ yields a finite cost-to-go, we have to ensure that
each iteration has enough samples in Γ.

To address this problem, we augment the cross entropy
method with rejection and re-sampling. Out of the ms samples
drawn from the univariate Gaussian, we first discard all non-
positive samples. For each of the remaining samples, we eval-
uate the objective (11) by a call to iLEQG, and then count the
number of samples that obtained a finite cost-to-go. Let mv be
the number of such valid samples. If mv ≥ max(me,ms/2),
we proceed and fit the distribution. Otherwise, we redo the
sampling procedure as there are not sufficiently many valid
samples to choose the elites from.

In practice, re-sampling is not likely to occur after the
first iteration of the cross entropy method. At the same time,
we empirically found that the first iteration has a risk of
re-sampling multiple times, hence degrading the efficiency.
We therefore also perform an adaptive initialization of the
Gaussian parameters µinit and σinit in the first iteration as
follows. If the first iteration with N (µinit, σ

2
init) results in re-

sampling, we not only re-sample but also divide µinit and σinit
by half. If all of the ms samples are valid, on the other hand,
we accept them but double µinit and σinit, since it implies that
the initial set of samples is not wide-spread enough to cover

1Although the solutions obtained by iLEQG are local optima and different
for varied risk-sensitivity θ, we have empirically observed that they are not
changing drastically as a function of θ. This indicates that iLEQG is a sensible
choice for the inner-loop optimization problem, since the solutions do not hop
around local optima that are too different as we vary θ.

2Note that this distribution is defined in the space of θ and has nothing to
do with p or q that define stochastic noise in the dynamical system.

Algorithm 1 RAT iLQR Algorithm

INPUT: Initial state x0, controls l0:N , L0:N (can be zero),
KL divergence bound d

OUTPUT: New nominal trajectory {l0:N , x̄0:N+1}, control
gains L0:N , risk-sensitivity parameter θ∗

1: Compute initial nominal trajectory x̄0:N+1 using l0:N

2: i← 1
3: while i ≤M do /* outer-loop optimization */
4: while True do
5: if i = 1 then
6: θsampled ← drawSamples(ms, µinit, σinit)
7: else
8: θsampled ← drawSamples(ms, µ, σ)
9: end if

10: array r . Empty array of size ms
11: for j ← 1 : ms do /* inner-loop optimization */
12: Solve iLEQG with {l0:N , x̄0:N+1, θsampled[j]}
13: Obtain approximate cost-to-go s0

14: r[j]← s0 + d/θsampled[j]
15: end for
16: mv ← countV alidSamples(θsampled, r)
17: if i = 1 and mv < max(me,ms/2) then
18: µinit ← µinit/2, σinit ← σinit/2
19: else if i = 1 and mv = ms then
20: µinit ← 2µinit, σinit ← 2σinit
21: break
22: else if mv ≥ max(me,ms/2) then
23: break
24: end if
25: end while
26: θelite ← selectElite(me, θsampled, r)
27: {µ, σ} ← fitGaussian(θelite)
28: i← i+ 1
29: end while
30: θ∗ ← µ
31: Solve iLEQG with {l0:N , x̄0:N+1, θ

∗}
32: return new {l0:N , x̄0:N+1} with L0:N and θ∗

the whole feasible set Γ. The parameters µinit and σinit are
stored internally in the cross entropy solver and carried over
to the next call to the algorithm. We have empirically found
that this adaptive initialization is also useful for approximately
finding the maximum feasible θ, which we exploited in a
comparative study in Section V-C.

C. RAT iLQR as MPC
We name the proposed bilevel optimization algorithm RAT

iLQR. The pseudo-code is given in Algorithm 1. At run time,
it is executed as an MPC in a receding-horizon fashion; the
control is re-computed after executing the first control input
u0 = l0 and transitioning to a new state. A previously-
computed control trajectory l0:N is reused for the initial
nominal control trajectory at the next time step to warm-start
the computation.

V. RESULTS
This section presents qualitative and quantitative results of

the simulation study that we conducted to show the effective-
ness of the RAT iLQR algorithm. We provide the problem
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setup as well as implementation details in Section V-A. The
goals of this study are two-fold. First, we demonstrate that the
robot controlled by RAT iLQR can successfully accomplish
its task under the presence of stochastic disturbance, without
access to the ground-truth distribution but the knowledge of
the KL divergence bound. This is presented in Section V-B
with comparisons to (non-robust) iLQG and a model-based
MPC with sampling from the true generative model. Second,
Section V-C focuses on the nonlinear risk-sensitive optimal
control aspect of RAT iLQR to show its value as an algorithm
that can optimally adjust the risk-sensitivity parameter online,
which itself is a novel contribution.

A. Problem Setup

We consider a dynamic collision avoidance problem where a
unicycle robot has to avoid a pedestrian in a collision course as
illustrated in Figure 2. Collision avoidance problems are often
modeled by stochastic optimal control in the autonomous sys-
tems literature [29] and the human-robot interaction literature
[30], [31], including our prior work [7].

The state of the robot is defined by (rx, ry, v, θ) ∈ R4,
where (rx, ry) [m] denotes the position, v [m/s] the velocity,
and θ [rad] the heading angle. The robot’s control input is
u = (a, b) ∈ R2, where a [m/s2] is the acceleration and b
[rad/s] is the angular velocity. The pedestrian is modeled as
a single integrator, whose position is given by (px, py) [m].
We assume that the position of the pedestrian is known to the
robot through onboard sensing. We also employ a constant
nominal velocity model (ux, uy) = (0.0, 1.0) [m/s] for the
pedestrian. The joint system x ∈ R6 consists of the state
of the robot and the position of the pedestrian. The dynam-
ics are propagated by Euler integration with time interval
dt = 0.1 [s] and additive noise wk to the joint state. The
model distribution for wk is a zero-mean Gaussian N (0,W )
with W = diag([1e−10, 1e−10, 1e−3, 1e−4, 0.02, 0.02]) × dt.
This covariance matrix W is chosen to encode our modeling
assumption that the pedestrian motion is the main source of
uncertainty in this joint system, and that the magnitude of
the slip is almost negligible for the robot. The ground-truth
distribution for the robot is the same Gaussian as in the model,
but the pedestrian’s distribution is a mixture of Gaussians that
is independent of the robot’s noise. Both the model and the
true distributions for the pedestrian are illustrated in Figure
1. Gaussian mixtures are favored by many recent papers in
machine learning to account for multi-modality in human’s
decision making [32], [33], [34].

RAT iLQR requires an upper-bound on the KL divergence
between the model and the true distribution. For the sake of
this paper we assume that there is a separate module that
provides an estimate. In this specific simulation study, we
performed Monte Carlo integration with samples drawn from
the true distribution offline. During the simulation, however,
we did not reveal any information on the true distribution to
RAT iLQR but the estimated KL value3 of 32.02. This offline
computation was possible due to our time-invariant assumption
on the Gaussian mixture. If one is to use more realistic
data-driven prediction instead, it is necessary to estimate the

3One could test RAT iLQR under a distribution that has stronger multi-
modality with a much larger KL bound than the one used in this simulation
study, but it could introduce over-conservatism and lead to poor mean
performance as the ambiguity set becomes too large. This is a common
property of distributionally robust optimization [35].

Fig. 2: A unicycle robot avoiding collision with a road-crossing pedestrian.
(Left) When the KL bound is set to d = 0, RAT iLQR ignores this model
error and reduces to iLQG. (Right) With the correct information on the KL,
RAT iLQR is aware of the prediction error and optimally adjusts the risk-
sensitivity parameter for iLEQG, planning a trajectory that stays farther away
from the pedestrian. The figures are overlaid with predictions drawn from the
model distribution and closed-loop motion plans of the robot. Note that the
prediction for the pedestrian is erroneous since the actual pedestrian motion
follows the Gaussian mixture distribution. The model distribution and the true
Gaussian mixture are both illustrated in Figure 1.

KL divergence online since the predictive distribution may
change over time as the human-robot interaction evolves.
Even though RAT iLQR works with time-varying KL bounds
owing to its MPC formulation, we limit our attention to a
static KL bound in this work as real-time computation of
KL divergence can be challenging. Note that efficient and
accurate estimation of information measures (including KL
divergence) is still an active area of research in information
theory and machine learning [36], [37], which is one of our
future research directions.

The cost functions for this problem are given by

c(k, xk, uk) = ctrack(k, rx,k, ry,k, vk, θk)

+ ccoll(rx,k, ry,k, px,k, py,k) + cctrl(ak, bk), (30)

where ctrack denotes a quadratic cost that penalizes the de-
viation from a given target robot trajectory, ccoll a collision
penalty that incurs high cost when the robot is too close to
the pedestrian, and cctrl a small quadratic cost on the control
input. Mirroring the formulation in [15], we used the following
collision cost:

ccoll =
10(

0.2
√

(rx − px)2 + (ry − py)2 + 0.9
)10 . (31)

RAT iLQR was implemented in Julia and the Monte Carlo
sampling of the cross entropy method was distributed across
multiple CPU cores. Our implementation with N = 19, M =
5, ms = 10, and me = 3 yielded the average computation
time of 0.27 [s]. This is 2.7 times slower than real time, with
dt = 0.1 [s] used to measure the real-time property. We expect
to achieve improved efficiency by further parameter tuning as
well as more careful parallelization.

B. Comparison with Baseline MPC Algorithms
We compared the performance of RAT iLQR against two

baseline MPC algorithms, iLQG [20] and PETS [38]. iLQG
corresponds to RAT iLQR with the KL bound of d = 0,
i.e. no distributional robustness is considered. Instead it is
more computationally efficient than RAT iLQR, taking only
0.01 [s]. PETS is a state-of-the-art, model-based stochastic
MPC algorithm with sampling and is originally proposed in a
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Fig. 3: Histograms of the minimum separation distance between the robot and
the pedestrian. A negative value indicates that a collision has occurred in that
run. For each control algorithm, we performed 30 runs of the simulation with
randomized pedestrian start positions. RAT iLQR consistently maintained a
sufficient safety margin to avoid collision, while iLQG and PETS both failed.
See Table I for the summary statistics of these data.

Method Min. Sep. Dist. [m] Total Collision Count
RAT iLQR (Ours) 1.26± 0.51 0
iLQG [20] 0.94± 0.62 1
PETS [38] 0.87± 0.69 4

TABLE I: Statistics summarizing histogram plots presented in Figure 3.
RAT iLQR achieved the largest average value for the minimum separation
distance with the smallest standard deviation, which contributed to safe robot
navigation without a single collision. Note that PETS had multiple collisions
despite its access to the true Gaussian mixture distribution.

model-based reinforcement learning (RL) context. We chose
PETS as our baseline since it also relies on the cross entropy
method for online control optimization and is not limited to
Gaussian distributions, similar to RAT iLQR. However, there
are three major differences between PETS and RAT iLQR.
First, PETS performs the cross entropy optimization directly
in the high-dimensional control sequence space, which is far
less sample efficient than RAT iLQR which uses the cross
entropy method to only optimize the scalar risk-sensitivity
parameter. Second, PETS does not consider feedback during
planning as opposed to RAT iLQR. Third, PETS requires
access to the exact ground-truth Gaussian mixture distribution
to perform sampling, while RAT iLQR only relies on the KL
divergence bound and the Gaussian distribution that we have
modeled. We let PETS perform M = 5 iterations of the cross
entropy optimization, each with 25 samples for the control
sequence coupled with 50 samples for the joint state trajectory
prediction, which resulted in the average computation time of
0.67 [s].

We performed 30 runs of the simulation for each algorithm,
with randomized pedestrian start positions and stochastic tran-
sitions. To measure the performance, we computed the mini-
mum separation distance between the robot and the pedestrian
in each run, assuming that the both agents are circular with
the same diameter. The histogram plots presented in Figure 3
clearly indicates the failure of iLQG and PETS as well as RAT
iLQR’s capability to maintain a sufficient safety margin for
collision avoidance despite the distributional model mismatch.
As summarized in Table I, RAT iLQR achieved the largest
minimum separation distance on average with the smallest
standard deviation, which contributed to safe robot navigation.

Fig. 4: Time-averaged ratio of the optimal θ∗ found by RAT iLQR to the
maximum feasible θ before the neurotic breakdown occurs, plotted for three
distinct KL divergence values. As the KL bound increases from 1.34 to 32.02,
the ratio also consistently increased from 0.66 to 0.93. Note also that the
standard deviation decreased from 0.29 to 0.10. This suggests that the robot
becomes more risk-sensitive as the KL bound increases, and yet it does not
choose the maximum θ value all the time.

KL Bound: d = 1.34
Method Total Collision Count Tracking Error [m]
RAT iLQR (Ours) 0 0.22± 0.29
iLEQG with θmax 0 0.36± 0.45

KL Bound: d = 7.78
Method Total Collision Count Tracking Error [m]
RAT iLQR (Ours) 0 0.25± 0.35
iLEQG with θmax 0 0.38± 0.52

KL Bound: d = 32.02
Method Total Collision Count Tracking Error [m]
RAT iLQR (Ours) 0 0.32± 0.40
iLEQG with θmax 0 0.38± 0.46

TABLE II: Our comparative study between RAT iLQR with θ∗ and iLEQG
with θmax (i.e. maximum feasible risk-sensitivity) reveals that RAT iLQR’s
optimal choice of the risk-sensitivity parameter θ∗ results in a more efficient
robot navigation with smaller trajectory tracking errors, while still achieving
collision avoidance under the model mismatch. With RAT iLQR, the average
tracking error was reduced by 39%, 34%, and 16%, for 3 true distributions
with different KL divergences of 1.34, 7.78, and 32.02, respectively.

Note that even iLQG had one collision under this large model
mismatch. Figure 2 provides a qualitative explanation of this
failure; the planned trajectories by iLQG tend to be much
closer to the passing pedestrian than those by the risk-sensitive
RAT iLQR. This difference is congruous with our earlier
observations in prior work [7] where risk-sensitivity is shown
to affect the global behavior of the robot.

C. Benefits of Risk-Sensitivity Parameter Optimization

We also performed two additional sets of 30 simulations
for RAT iLQR, with two different ground-truth distributions
that are closer to the model distribution having the estimated
KL divergence of 7.78 and 1.34, respectively. This is to study
how different KL bounds affect the optimal choice of the risk-
sensitivity parameter θ∗. The results are shown in Figure 4. As
the KL bound increases from 1.34 to 32.02, the ratio between
the optimal θ∗ found by RAT iLQR to the maximum feasible
θ also increases. This matches our intuition that the larger the
model mismatch, the more risk-sensitive the robot becomes.
However, we also note that the robot does not saturate θ all the
time even under the largest KL bound of 32.02. This raises
a fundamental question on the benefits of RAT iLQR as a
risk-sensitive optimal control algorithm: how favorable is RAT
iLQR with optimal θ∗ compared to iLEQG with the highest
risk-sensitivity?

To answer this question, we performed a comparative study
between RAT iLQR with θ∗ and iLEQG with θmax (i.e.
maximum feasible θ found during the cross entropy sampling
of RAT iLQR) under the same simulation setup as before. The
results are reported in Table II. In terms of collision avoidance,
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both algorithms were equally safe with collision count of
0. However, RAT iLQR achieved significantly more efficient
robot navigation compared to iLEQG with θmax, reducing the
average tracking error by 39%, 34%, and 16% for the KL
values of 1.34, 7.78, and 32.02, respectively. The efficiency
and the safety of robot navigation are often in conflict in
dynamic collision avoidance, and prior work [7] struggles to
find the right balance by manually tuning a fixed θ. With RAT
iLQR, such need for manual tuning is eliminated since the
algorithm dynamically adjusts θ so it is the most desirable
to handle the potential model mismatch specified by the KL
bound.

VI. CONCLUSIONS

In this work we propose RAT iLQR, a novel nonlinear
MPC algorithm for distributionally robust control under a KL
divergence bound. Our method is based on the mathematical
equivalence between distributionally robust control and risk-
sensitive optimal control. A locally optimal solution to the
resulting bilevel optimization problem is derived with iLEQG
and the cross entropy method. The simulation study shows that
RAT iLQR successfully accounts for the distributional mis-
match during collision avoidance. It also shows the effective-
ness of dynamic adjustment of the risk-sensitivity parameter
by RAT iLQR, which overcomes a limitation of conventional
risk-sensitive optimal control methods. Future work will focus
on accurate online estimation of the KL divergence from a
stream of data. We are also interested in exploring applications
of RAT iLQR, including control of learned dynamical systems
and perception-aware control.
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