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State Estimation and Belief Space Planning Under
Epistemic Uncertainty for Learning-Based

Perception Systems
Keiko Nagami and Mac Schwager , Member, IEEE

Abstract—Learning-based models for robot perception are
known to suffer from two distinct sources of error: aleatoric
and epistemic. Aleatoric uncertainty arises from inherently noisy
training data and is easily quantified from residual errors during
training. Conversely, epistemic uncertainty arises from a lack of
training data, appearing in out-of-distribution operating regimes,
and is difficult to quantify. Most existing state estimation methods
handle aleatoric uncertainty through a learned noise model, but
ignore epistemic uncertainty. In this work, we propose: (i) an epis-
temic Kalman filter (EpiKF) to incorporate epistemic uncertainty
into state estimation with learned perception models, and (ii) an
epistemic belief space planner (EpiBSP) that builds on the EpiKF
to plan trajectories to avoid areas of high epistemic and aleatoric
uncertainty. Our key insight is to train a generative model that
predicts measurements from states, “inverting” the learned percep-
tion model that predicts states from measurements. We compose
these two models in a sampling scheme to give a well-calibrated
online estimate of combined epistemic and aleatoric uncertainty.
We demonstrate our method in a vision-based drone racing sce-
nario, and show superior performance to existing methods that
treat measurement noise covariance as a learned output of the
perception model.

Index Terms—Aerial systems: Perception and autonomy,
planning under uncertainty, deep learning for visual perception.

I. INTRODUCTION

W E CONSIDER a common architecture for vision based
navigation in which a learning-based perception model

ingests raw RGB images and outputs pseudo-measurements of
the robot’s state vector [1], [2], [3]. Such perception models
can be trained with an error covariance output head to quantify
their own uncertainty. The pseudo-measurement and covariance
estimate are then fed into a filtering module to give a state
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estimate for downstream planning and control as done in [1]. Our
research is motivated by two key shortcomings in this architec-
ture: (i) learning covariance as an output of a perception model
fails to quantify epistemic uncertainty, and (ii) learning-based
perception models do not allow for projecting uncertainty into
the future, posing a significant challenge to planners that reason
about future uncertainty, risk, or the belief space.

Quantifying the epistemic uncertainty of learned perception
models is challenging, as the behavior of the learned model on
out of distribution (OOD) data is generally difficult to predict or
analyze. Furthermore, it is unclear how to incorporate a learned
perception module into a trajectory planner, since images at
future states in the plan are not yet available to pass through
the perception model. To overcome these problems, we train
a generative model in conjunction with the perception model.
The generator takes as input the robot’s state vector and outputs
a predicted image of what the robot would see at that state. This is
the inverse of the perception model, which takes in an image, and
outputs a predicted state of where the agent took the image from.
We find that the more dissimilar the test data are from the training
data, the farther the composition of the two models departs from
the identity map. This signal is helpful in quantifying epistemic
uncertainty in the learned perception model, without requiring
access to the training data, the training residuals, or any other
information inherent to the training process that is typically not
available at runtime.

We use the composition of the image generator and perception
module in a sampling scheme to obtain an online covariance
estimate for the pseudo-measurement, and apply this to the
update step of a Gaussian belief filter, which we call the Epis-
temic Kalman Filter (EpiKF). We then incorporate this filter
within an optimization-based belief space planning algorithm
to plan trajectories that balance efficiency with state estimation
uncertainty, which we call the Epistemic Belief Space Planner
(EpiBSP). The EpiBSP naturally avoids areas of high sensor
noise (aleatoric uncertainty), as well as areas with sparse train-
ing data (epistemic uncertainty), without having access to the
training data itself. Fig. 1 demonstrates the use of our generative
model denoted gφ(·) and perception model pθ(·) to give a mea-
surement uncertainty signal for both the current and predicted
future states. Throughout this work we illustrate concepts of
uncertainty using the prototypical “light-dark” problem found
in belief space planning and POMDPs [4]. Regions of the state
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Fig. 1. In both the EpiKF and EpiBSP, N measurements are sampled from the predicted distribution, and passed through the neural network generator gφ(·).
This produces N predicted images that are forwarded to the neural network perception model pθ(·). The resulting output of predicted pseudo-measurements are
used to compute the measurement covariance matrix, Rk . In the EpiKF, we use the real image taken from the robot for both the measurement covariance and for
the innovation in the belief update. To calculate Rk , we use a weighting factor a = 1 in the EpiBSP, since there is no access to the real image, while we use a = 1

2
in the EpiKF to distribute the weighting evenly across the two terms in the equation.

space that have high measurement uncertainty are shown as
dark, while those with low measurement uncertainty appear as
light. Agents planning under uncertainty have to choose longer
trajectories that move through the light region in order to obtain
a sharper state estimate before proceeding to the goal in the
dark region. In this letter we delineate two distinct types of
“light-dark” that arise in problems with learning-based percep-
tion modules. Aleatoric uncertainty corresponds to the classical
notion of sensor noise found in “light-dark” problems, while
epistemic uncertainty arises from a lack of training data in some
operating regimes, and therefore represents a different kind of
“light-dark” uncertainty in planning with learned models.

In summary, our main contributions are:
1) We obtain an epistemic uncertainty signal by composing

a learned measurement generator with a learned robot
perception model.

2) We introduce the EpiKF, a Gaussian belief filter that uses
the uncertainty signal to quantify aleatoric and epistemic
uncertainty in the robot’s state estimate.

3) We embed the EpiKF within a belief space plan-
ner (the EpiBSP) to plan robot trajectories to avoid
both high measurement noise and out-of-distribution
regimes.

4) We demonstrate superior performance to models with
learned covariance estimates in a high-fidelity 6DoF drone
racing simulation study.

II. RELATED WORK

A. Neural Network OOD Detection and Quantification

A common approach to anticipating both aleatoric and
epistemic uncertainty from neural networks is using ensemble
methods. These methods use multiple neural network models,
where the disagreement across the ensemble of models is used
to determine the level of uncertainty. Applications of ensembles
are seen in [5], where they are used to estimate uncertainty in
dynamics models, as well as in [6], [7], and [2], where ensembles
are used for vision-based tasks. However, ensemble methods
require training of multiple neural networks. Alternative ap-
proaches include the methods in [3], [8], [9], and [10]. In [8]

the authors use a matrix sketching technique offline to identify
the directions in the weight space that most impact the training
predictions, and use this information online by measuring how
much perturbations to these directions affect the predictions for
new data. In [3] the authors focus on real-time out of distribution
detection for new image samples by training a classifier, which
is used in a Martingale to detect distribution shifts with high
confidence. In [9] and [10], the authors use conformal inference
to produce prediction sets to describe the output probability
distributions of black-box models like neural networks. While
these methods, as well as the ensemble methods, are helpful
in determining the reliability of a single measurement taken at
the current time, they are unsuitable for our problem, since they
cannot anticipate measurement uncertainty at future states as
required in a belief space planner. This motivates our approach
of training an image generator in conjunction with the perception
model.

B. Active Perception

Active perception or perception-aware planning methods gen-
erally require a metric to define the quality of the perception
system’s performance at future states. In using Visual-Inertial
Odometry for perception, this can be done by using the posi-
tions of feature points. Methods that use this approach focus
largely on aleatoric uncertainty, where the perception system’s
performance is tied to the amount of features in frame, as done
in [11], [12], and [13], as well as their velocities or errors, as is
done in [14], and [15]. Similarly, [16] uses a method that itera-
tively improves paths to acquire visibility of unknown regions
in the environment. Other methods in active perception have
also used neural networks as part of the planning and control
pipelines [17], [18]. In [17], the authors use imitation learning
and reinforcement learning to train a policy with a reward on
perception quality. In [18], the authors use imitation learning to
train a network that produces collision free trajectories. How-
ever, these methods of active-perception and perception aware
planning, do not handle epistemic uncertainty, which is crucial
in learned perception systems.
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C. Belief Space Planning

Belief space planning considers the evolution of the whole
belief (represented as a Gaussian, a histogram, or a set of
samples) along future trajectories, and optimizes plans to bal-
ance trajectory efficiency with information richness. A common
approach is to formulate the problem as a Partially Observable
Markov Decision Process (POMDP) [19] and to precompute
a value function across the belief space that is used to make
decisions for planning. However, with continuous belief states,
actions, and observations, the problem is typically intractable.
An alternative solution is to use sampling based approaches, as
done in [13], [20], [21], [22], and [23], where potential trajecto-
ries are sampled, and the total cost of the trajectories are calcu-
lated and compared. Another method is to use local trajectory
optimization approaches, as used in [24], [25], and [26] where
gradient based methods are used to optimize for trajectories that
are able to reach a goal while also maintaining high confidence in
the state estimates. The authors of [4] do this online with a Linear
Quadratic Regulator using belief states and belief dynamics.
However, since the measurements to be taken at future states are
not yet known, [4] assumes known measurement uncertainties
and maximum likelihood observations. Still other methods to
perform belief space planning exist. In [27], the authors model
continuous time controls and discrete time observations as a
hybrid system to formulate an optimal control problem that is
solved using Sequential Action Control (SAC) [28]. In [29], the
authors generate a set of open loop trajectories and compute fun-
nels for these trajectories using sum-of-squares programming.
The funnels are then used at run-time by sequentially composing
them. None of these methods consider the epistemic uncertainty
that arises with learned perception models.

Our work differs significantly from all of these methods in
the way we quantify measurement noise at future states in the
plan. We use two neural networks to define our measurement
uncertainty. The first is a generative neural network, similar to
those in [30] and [31]. This network is trained to produce an
image given a state vector. We then train a separate neural net-
work perception model that maps from image to state using the
same dataset or a dataset from the same distribution. When we
compose these models, we find that the error between the input
state to the generator and the output state from the perception
model gives a signal that is well-correlated with epistemic un-
certainty. A similar pipeline is used in [32], however the authors
in that paper apply a generator for neural network verification
of a controller, not for estimating epistemic uncertainty. The
use of this anticipated measurement uncertainty enables us to
formulate an epistemic belief space planner (EpiBSP) built on
an epistemic Kalman filter (EpiKF), to account for degraded
state estimation performance in the regions of high epistemic
and aleatoric uncertainty.

III. MODEL FORMULATION

We consider a problem where a robot collects image mea-
surements taken by an onboard camera as it navigates through
its environment. A pretrained neural network perception model
is used to map the input images to a learned pseudo-measurement

Fig. 2. Heat maps comparing the ground truth perception error and generated
image perception error. The predicted error tends to over-estimate the true
perception error, giving conservative filter and planner performance.

ẑ. This vector is used in a Gaussian belief filter to produce an
estimate of the mean and covariance of the state, which is passed
to a belief space planner that is applied in a model-predictive
control (MPC) loop. We assume that the system has known
dynamics with Gaussian distributed process noise. We define
s as the ground truth state vector, z as the ground truth pseudo-
measurement, f(·) as the known dynamics function, and h(·)
as the known measurement function that maps s to z. Since the
underlying ground truth states are unknown, the belief states are
modeled as Gaussian distributions, parameterized by a mean, μ,
and covariance Σ. Our approach is visualized in Fig. 1.

A. Perception System

In our approach, we require two neural network models,
trained in a supervised fashion on the same dataset (or data of
the same distribution) of image and pseudo-measurement pairs.
The first maps from ground truth image inputs I to learned
pseudo-measurements ẑ, and the second maps from ground truth
pseudo-measurements z to learned images Î as follows

ẑ = pθ(I) (1)

Î = gφ(z). (2)

The neural network model parameters for the perception and
generator are defined by θ and φ, respectively. We compose the
two networks together in the estimation and planning stages as

pθ(gφ(z)) = z̃, (3)

where z̃ is the generated pseudo-measurement. We find the
pseudo-measurement reconstruction error (z̃− z) is highly pre-
dictive of combined epistemic and aleatoric uncertainty in both
of these learned models. This captures epistemic uncertainty
because the two learned models become less accurate at pre-
dicting their outputs as their respective inputs stray farther from
the training data. A toy example of this is shown in Fig. 2. We
train both networks in a 2D map environment created from a
satellite image from [33], where the pseudo-measurement z is a
pixel coordinate in the 2D map image, and the training images
are pixel patches of the map centered at the corresponding
pseudo-measurement. We compute the error between the pixel
coordinates of the ground truth labels, and the associated output
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Fig. 3. Generator and Perception neural networks. Kernel size, number of
channels, and stride length are shown for each convolutional layer and transposed
convolutional layer. Sample RGB images from the environment are included.

of the perception model when the ground truth image is used as
input to the network. The resulting errors are shown in Fig. 2(a).
We then use the ground truth pixel coordinates as input to the
generator, produce a generated image, and pass through the
perception model. The resulting errors are shown in Fig. 2(b).

These errors compound in the composition of the models,
leading to a conservative estimate of the perception error. When
z is close to the training data, any reconstruction error is due to
inherent randomness in the training data (aleatoric uncertainty),
which makes an exact reconstruction impossible. Far from the
training data, the predicted error incorporates both epistemic
and aleatoric sources of uncertainty. Crucially, this combined
uncertainty signal is obtained without having access to an image
I. All existing OOD detection/epistemic uncertainty quantifica-
tion methods (neural network ensembles, matrix sketching, and
martingale techniques, etc.) to our knowledge require access to
an image I, rendering them unsuitable for predictive planning.

Fig. 3 shows the architectures of our two models. Specifically,
for the generator model we use a Fourier Encoding technique
similar to that of [34], which we find to be crucial to obtain-
ing suitable generated images. For all networks, a Huber loss
function is used to train with the labeled data.

IV. EPISTEMIC KALMAN FILTER

As detailed in the previous sections, the perception system
takes an image input and outputs a learned pseudo-measurement
of the state, ẑ. With this vector, we filter the state with an
Extended Kalman Filter (EKF), using the standard predict and
update steps,

Predict: μk+1|k = f(μk|k,uk) (4)

Σk+1|k = FkΣk|kFTk +Q (5)

Update: yk+1 = ẑk+1 − h(μk+1|k) (6)

Sk+1 = Hk+1Σk+1|kHT
k+1 +Rk+1 (7)

Kk+1 = Σk+1|kHT
k+1S

−1
k+1 (8)

μk+1|k+1 = μk+1|k +Kk+1yk+1 (9)

Σk+1|k+1 = (I−Kk+1Hk+1)Σk+1|k, (10)

where subscript k indicates the time index, μ and Σ are the
mean and covariance of the estimated state, u is the control
input, H is the Jacobian of the measurement function, F is the
Jacobian of the dynamics equation, I is an identity matrix, Q is
the process noise covariance matrix, and R is the measurement
noise covariance matrix.

In our problem setup, we assume that the dynamics equa-
tion, process noise, and measurement equation are known, and
that we receive the learned pseudo-measurement from a neural
network perception model. This necessitates a definition of the
measurement noise covariance R in (7). We propose to obtain
R by first sampling pseudo-measurements from the prediction
distribution, passing these sampled vectors through the generator
network to produce learned images, and then passing these
through the perception network to obtain sampled generated
pseudo-measurement vectors,

zk,i ∼ N (h(μk|k−1),HkΣk|k−1H
T
k ), ∀i = 1 : N (11)

z̃k,i = pθ(gφ(zk,i)). (12)

This sampling procedure is done for N samples, where i is
the index of the sample. With the sampled generated pseudo-
measurements z̃k,i, we compute their empirical covariance ma-
trix, and combine it with the learned pseudo-measurement of the
true image from the predicted mean,

Rk =
1

2N

N∑
i=1

(z̃k,i − h(μk|k−1))(z̃k,i − h(μk|k−1))
T

+
1

2
(ẑk − h(μk|k−1))(ẑk − h(μk|k−1))

T . (13)

This matrixRk is then used as the measurement noise covariance
matrix in the EKF equations. This overall pipeline is shown in
Fig. 1. With this formulation we are able to get a measurement
uncertainty matrix that reflects the predicted performance of the
neural network perception model at the estimated state in the
state space, incorporating both aleatoric and epistemic sources
of uncertainty.

V. EPISTEMIC BELIEF SPACE PLANNING

In this section we formulate a belief space planner as a
trajectory optimization problem, informed by the measurement
uncertainty at future states from the EpiKF described above.
The trajectory optimization problem we seek to solve takes the
following form,

minimize
uk=1:K−1

c1tr(ΣK) + c2μ̄
T
KCsμ̄K + c3U

TCuU (14)

s.t. μk+1|k = f(μk|k,uk), ∀k = 1 : K − 1 (15)

Σk+1|k = FkΣk|kFTk +Q (16)

yk+1 = z̃k+1 − h(μk+1|k) (17)

Sk+1 = Hk+1Σk+1|kHT
k+1 +Rk+1 (18)

Kk+1 = Σk+1|kHT
k+1S

−1
k+1 (19)

μk+1|k+1 = μk+1|k +Kk+1yk+1 (20)
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Σk+1|k+1 = (I−Kk+1Hk+1)Σk+1|k, (21)

whereK is the terminal time index, μ̄K is the difference between
the mean of the estimate μK and the goal state sg , Cs is a
cost matrix on the goal state, U is the sequence of control

inputs, U =
[
uT
1 ,u

T
2 , . . . ,u

T
K−1

]T
, Cu is a cost matrix on the

control action, c1, c2, and c3 are constants, z̃ is the generated
pseudo-measurement, and R is the predicted measurement un-
certainty. We use the trace of the covariance of the final belief
state to quantify the uncertainty cost as a simplification of the
uncertainty cost used in [4].

For the predicted measurement uncertainty, we follow a sim-
ilar procedure to the measurement uncertainty in the EpiKF
described in Section IV, where we sample from the predicted
distribution, and pass predicted measurement vectors through
the generator and perception networks to reproduce the mea-
surement vector (11) and (12). However, the key challenge in
the belief space planner is the lack of access to the collected
image measurements from the robot. As such, we use only the
first term in (13) to define the measurement uncertainty in the
belief space planner:

Rk =
1

N

N∑
i=1

(z̃k,i − h(μk|k−1))(z̃k,i − h(μk|k−1))
T . (22)

Since there is no real image collected for the planner, we must
also define z̃ in (17). One option is to use a Maximum Likelihood
Observation (MLO), where z̃k = h(μk|k−1). This is the assump-
tion that is used for the planning procedure through the rest of the
paper. However, an alternative approach can be used to generate a
pseudo-measurement using the sampled pseudo-measurements
from the predicted mean.

With this formulation, our belief state dynamics are a func-
tion of the neural network generator and perception model. To
initialize our trajectories, we use IPOPT to generate a trajectory
toward the goal state. From here, we use Pytorch [35] to define
the sequence of control inputs as optimization variables, and use
a gradient descent approach to minimize the cost function shown
in (14)–(21). We use Pytorch so that we can compute the cost
with respect to the control inputs through the neural network
model queries.

VI. SIMULATION EXPERIMENTS

We demonstrate this approach on an environment where a
quadrotor flies through gates. We use Airsim Drone Racing
Lab [36] as the simulation environment where all computation
is run on an Ubuntu 20.04 OS desktop with an AMD Ryzen
9 5900X 12-Core Processor, 32 GB of RAM, and an NVIDIA
GeForce RTX 3090 GPU. Our state dimension includes position
p, orientation θ, and velocity v, relative to the gate center, the
pseudo-measurement includes the position and orientation, and
the control is a scalar thrust uT and body rate input uω:

s =
[
x y z φ θ ψ vx vy vz

]T
=

[
pT θT vT

]T
(23)

z =
[
x y z φ θ ψ

]T
=

[
pT θT

]T
(24)

u =
[
ut up uq ur

]T
=

[
ut uTω

]T
, (25)

where the control inputs are limited by minimum and maximum
values. All data was collected by the authors in the simulation
environment with first-person view image and pose pairs. The
state of the quadrotor evolves with dynamics:

ṗ = v (26)

v̇ =
uT
m

zb − gzw (27)

θ̇ = Tuω, (28)

where m is the mass of the quadrotor, zb is the z unit vector in
the body frame, g is the acceleration due to gravity, zw is the z
unit vector in the world frame, and uω is a vector of the body
rate control inputs. T is a matrix to map the body rates to rates
of the euler angles,

T =

⎡
⎢⎣
1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ sec θ cosφ sec θ

⎤
⎥⎦ . (29)

We use this simplified 9 dimensional quadrotor model to main-
tain a state vector of position, orientation, and velocity as done
in [15] and [37], instead of the full 12 dimensional state vector
often found in quadrotor planning and control [38]. This is con-
venient in interfacing with a fast low-level feedback controller
that regulates the body rotation rates to follow those commanded
by this higher-level model. In belief space planning approaches,
the dimensionality of the state-space grows as we must also
account for the uncertainty of the state to represent the belief.
Using this lower dimensional representation allows us to reduce
the size of the state space for the computation in the trajectory
optimization.

A. Perception Models

To demonstrate the performance of our method in the presence
of epistemic and aleatoric uncertainty, we train a generator and
perception network pair for two different sets of data. In the first,
we hold out data in the negative x dimension of the gate, creating
a region of epistemic uncertainty. In the second, we corrupt the
quality of the image data by adding random Gaussian noise to the
images in the negativex dimension, creating a region of aleatoric
uncertainty. For both of these datasets, this creates a “dark”
region of the state space where the measurement uncertainty
should be higher than the regions where the models are trained
on higher quality data. With these trained networks, we expect
our planner to be able to compensate for both types of uncertainty
by navigating through regions of higher certainty on the right
side of the gate entrance. For ease of training, we compress and
grayscale the images to 64 x 64 pixel images.

B. Learned Measurement Uncertainty Baseline

We compare our method to an alternative approach of learning
the measurement uncertainty of images by training a neural
network to output the diagonal of a covariance matrix associated
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Fig. 4. EpiKF and baseline covariance statistics. Each filter is run on open
loop trajectories 1000 times initialized in high uncertainty regions in aleatoric
and epistemic uncertainty. We plot the average mean-squared error and mean
covariance of the rollouts for each time step in the trajectory.

with the image input. The baseline we compare to is inspired
by [1], where the uncertainty associated with a collected mea-
surement is learned by the same neural network that predicts the
pose for the image,

(ẑ, R̂) = pψ(I) (30)

(z̃, R̃) = pψ(gφ(z)). (31)

We use this baseline network to compare against our approach
in both the EpiKF and the EpiBSP.

C. Epistemic Kalman Filter

To isolate the performance of the EpiKF, we roll forward the
quadrotor dynamics with process noise and collect images along
a trajectory where the quadrotor flies toward a gate located at
the origin. We then run our EpiKF on this trajectory from an
uncertain mean state estimate, using the collected images. We
run the filter 1000 times from initial mean state estimates drawn
randomly from a Gaussian distribution, and apply this in the
aleatoric and epistemic uncertainty cases, initialized in “dark”
and “light” regions.

We apply the same 1000 rollouts using a baseline filtering
approach, where we use the baseline network, pψ(·) described
in Section VI-B. The measurement uncertainty is an output
of this model, R̂ in (30), using the real image collected as
input. Resulting sample belief trajectories are shown in Fig. 5.
When the trajectories are initialized in the “light” regions of
the state space, the mean of the estimates for both the baseline
and our method are close to the ground truth trajectory. The
main differences are seen when the trajectories are initialized
in the “dark” region of the state space. Our method is able to
maintain an estimate with a mean that is closer to the ground
truth trajectory, while the baseline deviates significantly.

We additionally demonstrate how our method is able to better
approximate the uncertainty in the estimate. To do this, we take
the average across the 1000 filtering rollouts of the trace of the
covariance of the predicted belief states along the trajectory. We
then compare this to the mean squared error of the estimated

TABLE I
EPISTEMIC BELIEF SPACE PLANNER VS. BASELINE

mean from the ground truth trajectory for the 1000 rollouts.
These comparisons are shown in Fig. 4, where our method is
able to more accurately represent the actual deviation from the
ground truth. Averaged over 100 steps, our method runs with
0.00382± 0.0007 seconds.

D. Epistemic Belief Space Planner

In this section, we demonstrate the use of the EpiBSP. We
first initialize trajectories in aleatoric and epistemic uncertainty
cases, where the starting pose is in the higher uncertainty region,
and the goal pose is 2 meters in front of the gate. To initialize
these trajectories we use the Interior Point optimization (IPOPT)
solver in the Casadi library [39] including the control limits and
dynamics in (26)–(28). We construct a cost function described
in (14)–(21) as a function of the control sequence uk=1:K−1,
and use gradient descent using automatic differentiation tools
in Pytorch to iteratively optimize the trajectory [35]. The initial
and optimized trajectories are shown in Fig. 6.

In both cases, our method optimizes the trajectory to reach
the “light” region of state space before reaching the goal. We
additionally compare our method to a baseline, where we use the
neural network described in Section VI-B. Because real images
are unavailable in the planning stage, we use the image generator
to pass through sampled pseudo-measurements to generated
learned images that are passed through the neural network
baseline. This results in N generated pseudo-measurements for
each point in the trajectory, z̃, and their associated predicted
covariances, R̃ from (31). The average of these N covariance
outputs are used as the measurement uncertainty at that belief
state.

In Table I we show that the final optimized trajectory in our
method is able to produce a lower uncertainty cost. We calculate
this uncertainty cost by running the EpiKF on each trajectory
100 times with initial mean estimates randomly sampled from
a Gaussian distribution, and compute the mean squared error
between the final trajectory state and the final state estimate at
time step K. This metric is meant to represent the first cost
term in (14), where the trace of the covariance of the state
estimate at time stepK is penalized. Run for 2000 iterations, our
method takes 55.66 minutes to compute in the epistemic case.
While these times for the belief space planner are long, these
trajectories would be computed offboard before flight, while
onboard compute would be reserved for trajectory tracking and
the EpiKF.

E. Full Track Simulation

To showcase both the EpiKF and EpiBSP working together,
we apply both to a case where a drone is flying through a race-
track with multiple gates. We use the generator and perception
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Fig. 5. Top-down view of sample rollout trajectories applying the EpiKF (blue) and baseline approach (pink) in which the model is trained to output an approximate
measurement covariance. The left two figures show the performance of both methods in the presence of epistemic uncertainty while the right two show aleatoric
uncertainty. In all cases, the heat map for x absolute error is computed by querying poses in the environment, passing them through the generator and perception
models, and plotting the magnitude of the x-component of the absolute error |z− z̃|. The first and third demonstrate the performance of the filter in “dark” regions,
and the second and fourth show performance in “light” regions. In all cases, the EpiKF has lower estimation errors, and better-calibrated estimate covariance.

Fig. 6. Top-down view of trajectories after optimizing for 2000 iterations from
the initial trajectory using the EpiBSP (blue) and the baseline (pink). The plot
on the left showcases both methods in the epistemic uncertainty case, and on the
right the aleatoric uncertainty case. In both cases the EpiBSP bends the trajectory
into the low uncertainty region, while still finding an efficient trajectory to the
goal. The baseline planner fails to bend the trajectory in to the light region under
aleatoric uncertainty (right), and bends too far under epistemic uncertainty (left).
The heat maps of x absolute error are computed in the same way as those in
Fig. 5.

neural networks trained with epistemic uncertainty, where data
from one side of the gate is withheld. We apply our methods
when the drone is within 7 meters and 2 meters in they dimension
of the local frame of the next oncoming gate. Outside of this
band, we provide noisy GPS and orientation measurements. This
is to prevent poor measurements that arise from seeing the next
gate, and losing vision of the current gate. For planning, we apply
the EpiBSP by solving for a trajectory at each gate transition.
Once the trajectory is optimized, we track this trajectory in a
model-predictive control (MPC) loop. The racetrack consists of
12 gates, and we loop through the track three times. The resulting
trajectory is shown in Fig. 7.

We additionally compare our method to a baseline similar to
that of [1], where we use the neural network baseline described in
Section VI-B for estimation. For planning, we use the initialized
trajectory from the IPOPT solver. The trajectory for three laps
is also shown in Fig. 7. To quantify the performance of our
method, we compare the number of gate collisions, error of the
state estimate mean to the ground truth, and the total number

Fig. 7. Trajectories of our method and the baseline comparison method
through the Airsim racetrack for three laps.

TABLE II
COMPARISON RESULTS FOR FULL RACETRACK

of time step taken to reach the goal. These metrics are shown
for our method and the baseline in Table II. We find that our
method is able to complete three laps with fewer collisions, and
maintain a lower error from the ground truth than the baseline
approach.

VII. CONCLUSION

In this letter we demonstrate a novel approach to quantifying
neural network uncertainty, and use this metric to anticipate re-
gions of high uncertainty with belief space planning and Kalman
filtering. We found that our method is able to avoid regions of
both aleatoric and epistemic uncertainty to produce trajectories
where the perception model is more likely to succeed. In future
work, real-time belief space planning trajectories can be priori-
tized by applying a sampling based planning approach to reduce
computation time that is induced by the automatic differentiation
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through the perception networks required for the presented
local optimization approach, which would enable real-world
experiments. Additionally, improved generator models could be
applied, so that predicted images closer represent the training
distribution. This could be done by using tools to generate neural
radiance fields (NeRF) [40].
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