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Abstract—In this article, we study the problem of multiple
stochastic agents interacting in a dynamic game scenario with
continuous state and action spaces. We define a new notion of
stochastic Nash equilibrium for boundedly rational agents, which
we call the entropic cost equilibrium (ECE). We show that ECE
is a natural extension to multiple agents of maximum entropy
optimality for a single agent. We solve both the “forward” and
“inverse” problems for the multi-agent ECE game. For the for-
ward problem, we provide a Riccati algorithm to compute closed-
form ECE feedback policies for the agents, which are exact in
the linear-quadratic-gaussian case. We give an iterative variant
to find locally ECE feedback policies for the nonlinear case. For
the inverse problem, we present an algorithm to infer the cost
functions of the multiple interacting agents given noisy, boundedly
rational input and state trajectory examples from agents acting in
an ECE. The effectiveness of our algorithms is demonstrated in a
simulated multi-agent collision avoidance scenario, and with data
from the INTERACTION traffic dataset. In both cases, we show
that, by taking into account the agents’ game theoretic interac-
tions using our algorithm, a more accurate model of agents’ costs
can be learned, compared with standard inverse optimal control
methods.

Index Terms—Game-theoretic interactions, inverse
reinforcement learning (IRL), learning from demonstration,
multi-agent systems.

I. INTRODUCTION

IN THIS article, we seek to learn the cost functions of a
group of interacting dynamic agents from a set of trajectory

demonstrations of those interactions. We call this problem an
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inverse dynamic game (IDG), analogously to inverse reinforce-
ment learning (IRL) and Inverse optimal control (IOC) in the
single-agent setting. To solve the inverse dynamic game, we
first formulate a new notion of stochastic Nash equilibrium to
describe the boundedly rational equilibrium condition found
in natural human demonstrations. We call this equilibrium an
entropic cost equilibrium (ECE). We then present an algorithm
to find feedback policies for agents engaged in an ECE game, i.e.,
we solve the “forward” problem. We then use this forward solu-
tion within an algorithm to infer the cost functions of the multiple
agents given trajectory demonstrations from those agents, i.e.,
we solve the “inverse” problem.

For many robotic applications, it is not trivial to design
a cost function that mimics an expert’s behavior, such as a
human driver’s actions. In such applications, a miss-specified
cost function may lead to undesired behaviors and designing
the correct cost function is notoriously challenging. A common
practice is to infer the cost function from experts’ demonstrations
through the framework of IRL, also sometimes called IOC.
An IRL algorithm infers the cost function by observing an
agent’s behavior assuming that the agent behaves approximately
optimally. However, real-world robotic applications, such as
autonomous driving, usually involve multiple interactive agents
whose behaviors are coupled through the feedback interac-
tions between the agents. Consequently, when learning from
interactive agents’ behaviors, we cannot treat them as acting
in isolation. Instead, we need to take into account the game
theoretic coupling between agent’s behaviors. In this article,
we develop inverse methods for such interactive multi-agent
settings, where we learn each agent’s cost function while consid-
ering their feedback interactions. We call this an inverse dynamic
game (IDG).

One of the main challenges in solving IDGs is that agents no
longer optimize their own cost functions in isolation. Rather,
they reach a notion of game theoretic equilibrium. Hence,
agents’ cost functions must be learned such that the learned cost
functions rationalize the set of demonstrations as game theoretic
equilibrium strategies, rather than optimal strategies. Moreover,
when learning from experts such as humans, we need to ac-
count for the humans’ noisy behavior and bounded rationality.
Reaching exact equilibria requires perfect rationality of agents;
however, in decision-making settings, humans’ rationality is
normally bounded due to the limited information they have,
their cognitive limitations and the finite amount of time available
for decision making. Thus, we need to account for the noise in
humans’ decision making in a multi-agent setting.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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In this article, we address these challenges by defining a
notion of “noisy” equilibrium for capturing the outcome of
interactions between multiple boundedly rational agents. We
call this equilibrium an ECE and show its connections to the
maximum entropy framework common in IRL [1]. We prove that
the ECE concept is indeed an extension of maximum-entropy
optimality to multi-agent settings. Once we formalize the notion
of ECE, to assess the quality of a set of learned agents’ cost
functions, one must find the ECE policies under the learned
costs and compare them to the set of agents’ demonstrations. To
enable such comparisons, we develop an algorithm to find ECE
policies for a given set of agents’ cost functions. We prove how
ECE policies can be obtained in closed-form for a special class of
games, namely linear-quadratic-Gaussian games, using a Riccati
solution reminiscent of the well-known linear-quadratic regu-
lator (LQR) and linear-quadratic game (LQGame) solutions.
Leveraging this result, we provide an iterative algorithm for
approximating ECE policies in general multi-agent games with
general nonlinear dynamics and costs.

Knowing how to approximate ECE policies for a set of given
costs, we propose a multi-agent inverse dynamic game algorithm
for learning agents’ costs. Similar to the common practice in
IRL [1], [2], [3], [4], we assume that each agent’s cost function
is parameterized as a linear combination of a set of known
features. We then propose an iterative algorithm for learning
the weights of the features in each agent’s cost function such
that the feature expectations under the learned costs match the
empirical feature average from the demonstrations. We verify
our algorithm using both synthetic datasets and real-world traffic
data. First, we consider a goal-reaching and collision-avoidance
scenario involving two and three agents. We show that by taking
into account the agents’ feedback interactions, a more accurate
model of agents’ costs can be learned. We then validate the
performance of our algorithm on the INTERACION dataset [5]
which involves highly interactive multi-agent driving scenarios
collected from different countries. We again demonstrate that by
taking into account the agents’ interactions through our inverse
dynamic game framework, more accurate predictions of agents’
behavior can be made. We show that the prediction accuracy
of our framework is very close to the intelligent driver’s model
(IDM) [6], which is a highly accurate human-designed driving
model used for modeling human drivers’ leader-following be-
havior.

We summarize our contributions as follows.
1) We define and formalize the notion of ECE for capturing

the interaction of noisy agents.
2) We develop an algorithm for computing approximate ECE

policies for general nonlinear multi-agent systems (the
forward problem).

3) We propose an iterative algorithm for learning the agents’
costs from a set of interactive demonstrations (the inverse
problem).

4) We validate our proposed IDG algorithm in both synthetic
and real-world driving scenarios.

The rest of this article is organized as follows. Section II
provides an overview of the related work. In Section III, we

introduce our notation and discuss the preliminaries. In Sec-
tion IV, we define the notion of ECE and discuss its connection
to the maximum-entropy framework. We discuss finding ECE
policies for general nonlinear multi-agent systems in Section V.
Section VI provides the description of our inverse dynamic game
algorithm. Simulations and experiments with the analysis of the
resulting performance are incorporated in Section VII. Finally,
Section VIII concludes this article with a discussion on future
directions.

II. RELATED WORK

A. Single-Agent IRL

Inferring and learning cost functions from system trajectories
has been widely studied for single-agent systems. The problem
of inferring an agent’s cost function was first studied by Kalman
in the context of inverse optimal control for linear quadratic
systems with a linear control law [7]. Learning an agent’s cost
was later studied in [8] and [9] where the assumption was that the
demonstrations satisfy optimality conditions. This assumption
was relaxed to take into account the bounded rationality and
human’s noisy demonstrations in the framework of maximum
entropy IRL in [1].

Despite the success of these IRL methods, they were mostly
developed for discrete state and action spaces. In [3], maximum-
entropy cost inference was studied for systems with continu-
ous state and action spaces. The common assumption in these
works is that the agent’s cost function is parameterized as a
weighted sum of a set of known features. This assumption was
further relaxed in [10], where the underlying cost function was
learned as a neural network in a maximum-entropy framework.
In [11], a framework was proposed for directly extracting a
policy from an agent’s demonstrations, as if it were obtained
by reinforcement learning following maximum entropy IRL.
Inferring an agent’s cost function was also studied as a bilevel
optimization where, in the outer loop, the cost parameters were
found such that the estimation error of system trajectories or the
likelihood of demonstrations was optimized [12], [13]. Recent
works have proposed learning cost parameters that minimize
the residual of Karush–Kuhn–Tucker (KKT) conditions at the
demonstrations [14], [15], [16]. Our work draws inspiration from
the maximum entropy IRL framework where the noisy behavior
of the agent is captured.

B. Multi-Agent IRL

Extension of single-agent IRL algorithms to the multi-agent
settings have been studied in the past. Multi-agent IRL was
studied for discrete state and action spaces in [17]. The in-
verse equilibrium problem was further considered in [18] where
the maximum entropy principle and the notion of regret were
employed for solving the inverse equilibrium problem. How-
ever, no systems dynamics were considered in [18], and the
inverse equilibrium problem was considered in matrix games.
IRL was considered in [19] for two-person zero-sum stochastic
games with discrete state and action spaces where the cost
learning problem was formulated as an optimization problem.
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This framework was later extended to general-sum games with
discrete state and action spaces in [20]. Modeling agents with
different hierarchical levels of rationality was considered [21].
In [22], a new framework for multi-agent IRL utilizing ad-
versarial machine learning was proposed for high-dimensional
state and action spaces with unknown dynamics. In [23], the
generative adversarial imitation learning of [11] in the single
agent case was extended to the multi-agent setting. The current
work is distinct in that it focuses on multi-agent IRL in general-
sum games with known system dynamics and continuous state
and action spaces. In [24], entropy regularized games were
considered for two interacting agents. Entropy regularization
was further considered for zero-sum games in [25]. However,
both [24] and [25] were developed for finite state and action
spaces and are not directly applicable to systems with continuous
state and actions spaces.

Multi-agent IRL has been studied as an estimation problem
too. In [26], a particle filtering algorithm was utilized for online
estimation of human behavior parameters where the critical
role of accurate human motion prediction was demonstrated.
In [27], a filtering technique based on an unscented Kalman
filter was developed for online estimation of cost parameters in
multi-agent settings. In [28], IRL was considered for the class of
linear quadratic games where the equilibrium strategies of all but
one agent were known. This assumption simplified the problem
and reduced it to effectively an instance of a single-agent cost
inference problem. This framework was extended in [29] by
proposing to minimize the residuals of the first-order necessary
conditions for open-loop Nash equilibria. In [30], residual errors
of optimality conditions for open-loop Nash equilibria were
minimized in a maximum-entropy framework. In [31], state and
input constraints were also considered in a maximum-entropy
residual-minimization framework. In [32], agents’ cost func-
tions were estimated under partial observability.

In this work, we focus on cost learning for general nonlinear
games, and find cost parameters which rationalize interactions
under feedback information structure. We further capture the
noisy behavior of humans with our ECE concept. In [30],
maximum-entropy multi-agent inverse reinforcement learning
(MA-IRL) was considered as a maximum likelihood problem.
However, when computing the probability distribution over
agents’ trajectories, the coupling between the agents was not
considered. Moreover, in this work, it was assumed that agents’
feedback policies were known a-priori which is a restrictive
assumption. In this article, we show how the maximum-entropy
framework can be formalized in a multi-agent game theoretic
setting to account for agents’ feedback interactions. We further
provide an algorithm which does not require prior knowledge
of the agents’ policies and verify it on a real-world dataset.
We assume that we know the system dynamics, and we can
model the agents’ cost functions as a linear combination of a
set of known features. These assumptions result in better data
efficiency compared to methods that utilize general function
approximators, such as neural networks, but require us to have
access to a set of hand-tuned features that make sense for the
domain in hand.

III. PRELIMINARIES

Consider N ≥ 1 agents interacting in an environment. We
use [N ] = {1, . . . , N} to refer to the set of all agents’ indices.
Let st ∈ S denote the vector of joint states of all agents at each
time t, where the set S ⊆ R

n is the joint state space observed
by all agents, and n is the dimension of the state space. Each
agent i ∈ [N ] decides on its action ait ∈ Ai at time step t, where
Ai ⊆ R

mi
is the action space of agent i, andmi is the dimension

of the action space of agent i. Throughout this article, we use
bold letters to refer to the concatenation of variables for all
agents. For a given time step t, we use at = (a1t , . . . , a

N
t ) to

denote the vector of all agents’ actions at time t. Following
the conventional notation used in the game theory literature,
we utilize the superscript −i to indicate all agents expect
agent i. For example, a−it represents the vector of all agents’
actions excluding the action of agent i at time t. We define
A = {Ai}Ni=1 to denote the collection of the action spaces of all
the agents.

We assume that agents choose their actions through a stochas-
tic Markovian policy. For each agent i, we use πi

t(.|st) to denote
such a policy for agent iwhere πi

t(a
i
t|st) encodes the probability

of agent i taking the action ait at time t given that the system
is in state st. Note that we are assuming that each agent selects
its action independently, i.e., πi

t(a
i
t|st,a−it ) = πi

t(a
i
t|st). For a

finite horizon T , we use πi = {πi
t}Tt=1 to refer to the agent i’s

policy for the entire horizon T . Moreover, we use π = {πi}Ni=1

to refer to the set of all agents’ time-dependent policies. The
discrete-time dynamics of the system are represented by state
updates of the following form:

st+1 = f(t, st,at) + g(st)wt

s1 ∼ p(s1), wt ∼ pw (1)

where p1 and pw are the distributions of the system initial
state and system noise, respectively, f captures the impact of
the current state and action on the future state, and g is the
state-dependent multiplier of the process noise. We assume
that each agent i has a bounded per-stage cost function ci :
S ×A1 · · · × AN → R. We further let c = {ci}Ni=1 represent
the vector of all agents’ per-stage costs. We assume that each
agent i is seeking to minimize its own expected cumulative cost
Eπ

∑T
t=1 c

i(st,at).
We model the agents’ interaction as a dynamic game. We use

the notation G = (S,A, f, g, c, T ) to refer to a game with a
time horizon of length T among N agents whose action spaces
and costs are defined via A and c on the state space S with the
prespecified dynamics (1).

It is well known that the outcome of interaction between
perfectly rational agents is best represented via Nash equilibria
of the underlying game. Given a game G = (S,A, f, g, c, T ),
a set of (mixed strategy) Nash equilibrium policies are defined
through the following.

Definition 1: Given a game G = (S,A, f, g, c, T ), a set of
agents’ policiesπ∗ is a (mixed-strategy) Nash equilibrium if and
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only if for each agent i ∈ [N ], we have

Eπi∗,π−i∗

T∑
k=1

ci(sk, a
i
k,a

−i
k )

≤ Eπi,π−i∗

T∑
k=1

ci(sk, a
i
k,a

−i
k ), ∀πi. (2)

Definition 1 implies that, at a Nash equilibrium, no agent will
reduce its accumulated cost by unilaterally changing its policy
from the equilibrium policy πi∗ to another policy πi.

Although Nash equilibrium is a powerful concept for mod-
eling the interaction of agents, achieving Nash equilibria re-
quires perfect rationality of agents. Moreover, it is well known
that computing Nash equilibria is in general intractable even
in normal-form games [33]. Thus, when learning from a set
of demonstrations that are collected from experts such as hu-
mans, assuming that humans have achieved a Nash equilibrium
may be unreasonable. Not only are humans computationally
bounded, but they also may act under noisy information, or
produce actions that are different than what they intend, making
them appear to act irrationally to some degree. This concept
is known in game theory as bounded rationality. Instead of
making the “best” choices, humans often make choices that
are “satisfactory on average” [34], [35]. In the next section,
we generalize the notion of Nash equilibrium to capture the
bounded rationality of experts such as humans during their
interactions.

IV. ENTROPIC COST EQUILIBRIUM

In the seminal work of [36] and [37], it was shown that to take
into account the bounded rationality of humans, their interaction
can be modeled via the notion of quantal response equilibrium in
normal form and extended games. It was demonstrated that the
quantal response equilibrium can successfully model humans’
choices in a set of lab experiments, while the predictions made
by the Nash equilibrium deviated largely from the lab experi-
ments. At quantal response equilibrium, every agent maintains
a probability distribution over its actions. At quantal response
equilibrium, the noisy behavior of humans is captured, where the
probability of an action taken by a human is related to the cost
associated to that action for the human. In [38], a continuous
version of the notion of quantal response equilibrium, called
logit equilibrium, was developed for repeated continuous games
from the perspective of evolutionary game theory. In this setup,
at logit equilibrium, every agent computes its expected cost with
respect to the probability distribution over actions of all agents.
Each agent takes actions that are exponentially proportional to
the negative of this expectation. In the following, we extend
this notion of logit equilibrium to dynamic games with contin-
uous state and action spaces. We use the multi-agent extension
of Q functions and prove certain properties of this notion of
equilibrium.

Given a game G = (S,A, f, g, c, T ), at every time step t <
T , for each agent i ∈ [N ], we define the quality of a state st
and a vector of agents’ actions at under a given set of agents’

policies π via the following:

Qi
t,π(st,at)

= ci(st,at) + Est+1:T ,π

T∑
k=t+1

[
ci(sk,ak)|st,at

]
. (3)

For the final time step T , the cost associated with a state sT
and a vector of actions aT for an agent i is

Qi
T,π(sT ,aT ) = ci(sT ,aT ). (4)

Equations (3) and (4) are the extensions of the definition of the Q
function to multi-agent game theoretic settings. Following [38],
for each agent i ∈ [N ] and every time step t ≤ T , we define

Q̄i
t,π(st, a

i
t) = Ea−i∼π−iQi

t,π(st,at). (5)

In (5), the expectation of the Q function is computed with respect
to the actions of all the other agents a−i.

Note that Q̄i
π(st, a

i
t) depends only on the action of agent

i and the state, not the actions of the other agents. In fact,
Q̄i

π(st, a
i
t) determines the quality of a pair of the system state

and an agent’s action given the set of other agents’ policies π−i.
Ideally, if agents were perfectly rational, given knowledge of the
other agents’ policies, at every time step, each agent would have
taken actions that minimize Q̄i

π(st, a
i
t) at equilibrium. However,

when agents are boundedly rational, we propose that agents’
noisy behavior can be modeled through the following notion of
equilibrium.

Definition 2: For a given game G = (S,A, f, g, c, T ), a set
of agents’ policies π∗ = {πi∗}Ni=1 is an ECE if and only if for
every agent i ∈ [N ] and every action ait, the following holds at
every time step t ≤ T :

πi∗
t (ait|st) =

e−Q̄
i
t,π∗ (st,a

i
t)∫

e−Q̄
i
t,π∗ (st,ã

i
t)dãit

. (6)

We require the above conditions to hold starting from any time
step 1 ≤ t ≤ T using the Q function that captures the optimal
cost to go from time t to T , i.e., this notion of equilibrium
is a subgame perfect equilibrium. Note that (6) must hold for
all agents. An equilibrium policy π∗ is indeed the fixed point
of (6), and Q̄i

π∗(st, a
i
t) depends on the policy of all agents. It is

important to note that in ECE, at every time step t, the agents’
actions ait are independent. No agent needs to know the action
choice of any other agent to choose its own action. However,
the probability of taking an action is implicitly dependent on
the policies of other agents π−i

∗
through the expectation with

respect to the agents’ policies in Q̄i
π∗(st, a

i
t). In other words,

at every time step, agents’ actions, i.e., the particular value
of the control input that they choose are independent, but the
agent’s policies are not independent and they should reach
an equilibrium in the sense of Definition 2. This implies that
the probability of taking an action by one agent is implicitly
dependent on the policies of other agents. In fact, what our
notion of equilibrium captures is that the strategies (policies)
of agents are dependent upon one another but the probability
of taking an action is independent of the particular action that
another agent has chosen in a given state. Therefore, although
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the agents’ instantaneous actions are independent, their policies,
i.e., the probability distribution over their actions, are related in
ECE through (6), and the ECE policies π∗ are indeed the fixed
points of (6) for all agents. This is in contrast to the definition
of equilibrium in [22] where a stochastic version of correlated
equilibrium was developed, and the actions were assumed to be
correlated.

We would like to highlight the connection between (6) and
the maximum entropy framework. If there exists only one sin-
gle agent in the environment, (6) reverts to the well-known
maximum entropy formulation, which is widely used in the
development of both reinforcement learning and IRL algo-
rithms [3], [39], [40], [41], [42]. In fact our notion of entropic
cost equilibrium can be viewed as an extension of energy-based
policies to multi-agent settings. If there is only one agent, the
probability of taking an action at given a state st is proportional
to the exponential of the negative accumulated cost from that
state (st, at). Now that we have defined ECE as our equilibrium
notion for capturing humans’ noisy interactions, we will prove
a property of ECE which demonstrates its applicability and
relevance to modeling the interaction of multiple agents with
bounded rationality.

Theorem 1: For a game G = (S,A, f, g, c, T ), a set of
agents’ policies π∗ = {πi∗}Ni=1 is an ECE if and only if π∗

is a (mixed-strategy) feedback Nash equilibrium for the maxi-
mum entropy game G̃ = (S,A, f, g, c̃, T ) where c̃ = {c̃i}Ni=1

is defined as

c̃i(st,at) = ci(st,at)−H(πi(·|st)) (7)

whereH(πi
t(·|st)) is the entropy of policy πi(·|st).

Proof: First, we show that if π∗ is a feedback Nash equilib-
rium for the game G̃, then, π∗ is an ECE for the game G. Let
π∗ be a feedback Nash equilibrium of game G̃. Fix an agent
i ∈ [N ] and the policy of all the other agents π−i∗. Then, at
Nash equilibrium of game G̃, the agent’s policy πi∗ optimizes
the following:

min
πi

E

T∑
k=1

(
ci(sk, a

i
k,a

−i∗
k )−H(πi

k(·|sk))
)

(8)

where the expectation is with respect to a−i∗k ∼ π−i∗k , and
aik ∼ πi

k. We can solve the above for finding Nash equilibrium
policies πi∗ using dynamic programming. Starting from the final
time step T , for each state sT , we have

min
πi
T

E
(
ci(sT , a

i
T ,a

−i∗
T )−H(πi

T (·|sT ))
)

(9)

where the expectation is with respect to a−i∗T ∼ π−i∗T , and
aiT ∼ πi

T . Equation (9) can be rewritten as

min
πi
T

E
(
E
[
ci(sT , a

i
T ,a

−i∗
T )

]−H(πi
T (·|sT ))

)
(10)

where the inner expectation is with respect to a−i∗T ∼ π−i∗T , and
the outer expectation is with respect to aiT ∼ πi

T . Define the
following:

c̄i(sT , a
i
T ) = Ea−i∗

T∼π−i∗T

(
ci(sT , a

i
T ,a

−i∗
T )

)
. (11)

Then, (10) can be rewritten as minimizing the following:

Eπi
T

[
c̄i(sT , a

i
T )−H(πi

T (·|sT ))
]

= Eπi
T

[
c̄i(sT , a

i
T ) + log(πi

T (·|sT )).
]

(12)

Now, following the results in [43], (12) can be rewritten as

DKL

(
πi
T (.|sT )

∥∥ 1

exp
(
V i
T (sT )

) exp (−c̄i(sT , aiT ))
)

+ V i
T (sT ) (13)

where DKL denotes the Kullback-Leibler (KL) divergence, and
V i
T (sT ) is defined as

V i
T (sT ) = log

∫
e−c̄

i(sT ,ãi
T )dãiT . (14)

Now, to minimize (13), note that exp(V i
T (sT )) is a constant for

a given state sT . Since the KL divergence is minimum when the
two arguments are the same, the policy which minimizes (13) is

πi∗
T (aiT |sT ) =

e−c̄
i(sT ,ai

T )

eV
i
T (sT )

. (15)

For every state sT , V i(sT ) is indeed the soft cost-to-go (or value
function) of agent i at timeT . We can use dynamic programming
to propagate this cost-to-go backwards in time and find the
equilibrium policy for agent i at time T − 1. At time T − 1,
we need to solve for

min
πi
T−1

E
[
ci(sT−1, aiT−1,a

−i∗
T−1)

−H(πi
T−1(·|sT−1)) + EsT (V

i
T (sT ))

]
(16)

where the first expectation is with respect to aiT−1 ∼ πi
T−1 and

a−i∗T−1 ∼ π−i∗T−1. Again, we can separate the expectations in (16)
as

min
πi
T−1

Eπi
T−1

(
Eπ−i∗T−1

[
ci(sT−1, aiT−1,a

−i∗
T−1) + EsT V

i
T (sT )

]
−H(πi

T−1(·|sT−1))
)
. (17)

Then, using (5) we see that (17) can be rewritten as

min
πi
T−1

Eπi
T−1

[
Q̄i

T−1(sT−1, a
i
T−1)−H(πi

T−1(·|sT−1))
]
. (18)

Thus, similar to minimizing (12), to minimize (18), the equilib-
rium policy for agent i at time step T − 1 is

πi∗
T−1(a

i
T−1|sT−1) =

e−Q̄
i
T−1(sT−1,a

i
T−1)

eV
i
T−1(sT−1)

(19)

where the cost-to-go V i
T−1(sT−1) is defined as

V i
T−1(sT−1) = log

∫
e−Q̄

i
T−1(sT−1,ã

i
T−1)dãiT−1.

Repeating this procedure, we can solve for the mixed-strategy
Nash equilibrium policies backwards in time. Thus, we show via
induction that mixed-strategy Nash equilibrium policies of the
game G̃ = (S,A, f, g, c̃, T ) are in fact the ECE policies of the



1806 IEEE TRANSACTIONS ON ROBOTICS, VOL. 39, NO. 3, JUNE 2023

original game G = (S,A, f, g, c, T ). To prove the reverse, i.e.,
every ECE of the game G is a mixed strategy Nash equilibrium
for G̃ = (S,A, f, g, c̃, T ), we follow the same reasoning. Start-
ing from the final time step, one can show that ECE policies
optimize the cost-to-go in the game G̃, and use induction to
prove that ECE policies of G are indeed Nash equilibria of
G̃. �

Theorem 1 connects ECE to the Nash equilibria of a game
among agents who aim to maximize the entropy of their policy
while minimizing their accumulated cost. The entropic game can
be viewed as an auxiliary game to compute the ECE equilibria.
Intuitively, it models the equilibrium that will be attained if
exploratory agents (agents who want to have a policy that has
a nonzero entropy) interact with each other. This in fact has a
connection to the notion of bounded rationality. If agents were
perfectly rational, they should have always played the Nash
equilibrium strategy of game G with probability 1, i.e., the
entropy of their policy must have been zero. But in the game
G̃ that agents are exploratory, they play strategies which have a
nonzero entropy, i.e., they exhibit a noisy behavior around the
exact Nash equilibria of the game G.

ECE is in fact an extension of the maximum entropy-
framework in the single-agent setting to the setting of multiple
interactive agents. It is well known that when it comes to learning
from demonstrations in the single-agent scenarios, to capture
the bounded rationality and noisiness of the demonstrator, the
demonstrator is best modeled via the maximum-entropy frame-
work [1], [2]. Theorem 1 extends this notion to multi-agent
games. We will use Theorem 1 in the remainder of this article
for computing the ECE policies in general dynamic games.

Remark 1: The notion of ECE can incorporate a tem-
perature parameter γi for each agent such that p(ai|st) ∝
exp (−Q̄

i
π(st,a

i
t)

γi ). This in turn will lead to an additional weight

γi on the entropy of each agent’s policy in (7). The temperature
weight γi captures each agent’s rationality. The higher γi is,
the noisier the agent acts. If for each agent i ∈ [N ], γi →∞,
then in the limit, all agents act completely randomly with a
uniform probability distribution over actions. On the other hand,
when γi → 0 for all agents, the Nash equilibrium policies are
recovered. Therefore, the temperature coefficient γi reflects
the rationality of each agent. For simplicity, in this article, we
assume that γi = 1 for all agents.

V. FINDING ECE POLICIES

So far, we have defined ECE for capturing the interaction of
boundedly rational and noisy agents. In this section, we give
an algorithm for computing ECE policies for a given game
G = (S,A, f, g, c, T ) using Theorem 1. To solve the maximum
entropy dynamic game, first, we prove that ECE policies can be
computed in closed form for the class of linear quadratic Gaus-
sian games using a Riccati solution similar to the classic LQR [7]
and LQGames [44] solutions. Then, we extend this algorithm
to general nonlinear dynamic games through iterative linear-
quadratic approximations, similar to differential dynamic pro-
gramming [45], iterative linear quadratic regulator (iLQR) [46],
and iterative linear quadratic games (iLQGames) [47].

A. Quadratic Gaussian Games

Consider a class of games G = (S,A, f, g, c, T ) where the
system dynamics are linear, and the system noise is normally
distributed, i.e., the state update (1) is of the following form:

st+1 = Ast +
∑
j∈[N ]

Bjajt + wt

s1 ∼ N (ŝ1,Σ1), wt ∼ N (0, I) (20)

where A ∈ R
n×n and Bj ∈ R

n×mj
are known time-invariant

matrices of appropriate dimensions, the initial state s1 is nor-
mally distributed with known mean and covariance ŝ1 and Σ1,
and wt is a zero-mean normally distributed random variable
with covariance matrix being identity. Note that in general,
the dynamics matrices can be time-variant, and the process
noise can be any normal distribution. Here, for the ease of
description, we assume that the system dynamics are linear
time-invariant subject to process noise with covariance matrix
being identity. Moreover, consider the class of cost functions
where at every time step t ≤ T , every agent i ∈ [N ] minimizes
a convex quadratic cost function

ci(st, a
1
t , . . . , a

N
t ) =

1

2

⎛
⎝sTt Q

ist + li
T
st

+
∑
j∈[N ]

ajt
T
Rijajt

⎞
⎠ (21)

where Qi ∈ R
n×n is a positive semidefinite matrix, and li is a

vector capturing the affine penalty of agent i for the system state.
Moreover, for every agent j ∈ [N ], j �= i, Rij ∈ R

mj×mj
is a

positive semidefinite matrix while Rii is a positive definite ma-
trix. Equations (20) and (21) define the class of linear quadratic
games where the dynamics are linear and the stage costs are
quadratic in the states and actions.

Definition 3: A given game G = (S,A, f, g, c, T ) is a linear
quadratic Gaussian game if its dynamics are of the form (20),
and further, for each agent i ∈ [N ], the cost function ci is of the
form (21).

Note that for a linear quadratic Gaussian gameG, in the result-
ing maximum entropy game G̃, every agent i ∈ [N ] minimizes
the following accumulated cost when we fix the policy of all the
other agents to be π−i:

min
πi

EπiEπ−i

T∑
k=1

1

2

(
sTkQ

isk + li
T
sk

+
∑
j∈[N ]

ajk
T
Rijajk

)
−

T∑
k=1

H(πi(.|sk)). (22)

Now that we have defined the class of linear-quadratic games,
using (22) and Theorem 1, we will prove how ECE policies can
be obtained in closed form for this class of games.

Theorem 2: Consider a linear quadratic Gaussian game
G = (S,A, f, g, c, T ). For every agent i ∈ [N ], at every time
step t < T , the ECE policy πi∗

t is a normal distribution πi∗
t ∼
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N (μi
t,Σ

i
t) where the mean μi

t and the covariance Σi
t are com-

puted by

μi
t = −P i

t st − αi
t (23)

Σi
t = (Rii +BiTZi

t+1B
i)−1. (24)

The matrices P i
t and the vectors αi

t satisfy the following sets of
linear equations:[
Rii +BiTZi

t+1B
i
]
P i
t +BiTZi

t+1

∑
j∈[N ],j �=i

BjP j
t

= BiTZi
t+1A
(25)[

Rii +BiTZi
t+1B

i
]
αi
t +BiTZi

t+1

∑
j∈[N ],j �=i

Bjαj
t

= BiTξit+1

(26)

where Zi
t and ξit are recursively computed from the following:

Zi
t = FT

t Z
i
t+1Ft +

∑
j∈[N ]

P j
t

T
RijP j

t +Qi (27)

ξit = FT
t (ξ

i
t+1 + Zi

t+1βt) +
∑
j∈[N ]

P j
t

T
Rijαj

t (28)

where

Ft = At −
∑
j∈[N ]

BjP j
t (29)

βt = −
∑
j∈[N ]

Bjαj
t . (30)

The terminal conditions for (27) and (28) are

ξiT = li, ZT = Qi. (31)

Proof: The proof can be found in Appendix (A). �
Note that for the linear quadratic Gaussian case, the closed-

form policies are subgame perfect equilibria as the policies are
indeed found by dynamic programming backwards in time. The-
orem 2 is in fact an extension of maximum entropy LQR derived
in [2] to the multi-agent setting. Equations (25), (26), (27),
and (28) are the extensions of the Riccati backward recursion to
the multi-agent setup. Indeed, these equations are similar to the
backward recursions for deterministic LQGames derived in [44].
Theorem 2 suggests that for maximum entropy LQGames, the
optimal policy is obtained by a normal distribution whose mean
is found by solving LQgames. Then, the variance of the normal
policies at every time step is found via (24).

Remark 2: In Equation (22), if we have a weight γi on the en-
tropy of agent i’s policy, then only the variance of the closed-loop
policies will change. More precisely, for every agent i ∈ [N ], at
every time step t < T , the ECE policyπi∗

t is a normal distribution
πi∗
t ∼ N (μi

t,Σ
i
t) where the mean μi

t and the covariance Σi
t are

computed by

μi
t = −P i

t st − αi
t (32)

Fig. 1. Demonstrations of ECE equilibria for two-agent setup as we decrease
the value of γi for the two agents. The variance of trajectories decreases as we
decrease γi.

Σi
t = γi(R

ii +BiTZi
t+1B

i)−1 (33)

where matrices P i
t and the vectors αi

t are found similar to
Theorem 2. Note than when γi = 0, the variance of the distri-
bution shrinks to zero and the Nash equilibria of the underlying
LQGame are recovered. In the limit, when γ →∞, the variance
of the distribution goes to infinity. See Fig. 1 for examples of
trajectories under various weights on the entropy term.

B. General Nonlinear Games

Theorem 2 provides a closed-loop expression for computing
ECE policies of linear quadratic Gaussian games over a finite
horizon of timeT . Inspired by [47] and [48], we will leverage this
result for approximating the ECE trajectories in general games
with nonlinear dynamics and nonquadratic cost functions. Note
that in the general nonlinear setting, we operate at a trajectory
level, i.e., we start with an initial trajectory guess and refine that
iteratively. We will run this method in a receding horizon fashion
to hopefully mimic the feedback nature of a subgame perfect
ECE. We assume that each agent i can minimize a possibly
nonlinear cost function of the form

ci(st,at) = vis,t(st) +
∑
j∈[N ]

aj
T

t Rijajt (34)

where vis,t(st) is a nonlinear state cost. Note that in general,
we could have nonquadratic nonlinear costs on the actions as
well, and our algorithm will still be applicable. For simplicity of
description, and since (34) captures a wide range of applications,
we consider cost functions of the form (34) in this section.

To approximate ECE policies, we propose an iterative al-
gorithm where we start by a nominal trajectory. Then, we
linearize the dynamics, find a quadratic approximation of the
cost function for every agent, and solve the resulting maximum
entropy linear quadratic Gaussian game. We then update our
reference trajectory and repeat this process until convergence
(see Algorithm 1). Consequently, our algorithm shares a similar
structure with differential dynamic programming (DDP) [45],
[46] and iLQR methods [49]. More precisely, we start with
a nominal sequence of the gain matrices and offset vectors
{P i

t , α
i
t} for every time step t ∈ T, and every agent i ∈ [N ]. If

such a nominal sequence of control matrices is not available,
a trivial initialization is initializing all matrices to be zeros.
We choose the mean value found by (23) as our reference
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controller. Then, at every iteration, a sequence of states and
actions η = {s̄, ā1 = (μ1

1, . . . , μ
1
T ), . . . , ā

N = (μN
1 , . . . , μN

T )}
is found by forward simulating the system dynamics using the
nominal control inputs (which are chosen to be μi

t for each agent
i at time t). We then linearize the system dynamics (1) around
the nominal trajectory η to obtain

δst+1 ≈ Atδst +
∑
j∈[N ]

Bj
t δa

j
t (35)

where δst = st − s̄t, δait = ait − āit, and At = Dsf(·) and
Bj

t = Daj
t
f(·) are the Jacobians of the system dynamics (1)

with respect to the state st, and actions ajt , respectively. We
further acquire a quadratic approximation of the cost function
for each agent. For each agent i ∈ [N ], we let

vis,t(s̄t + δst) ≈ vis,t(s̄t) +
1

2
δsTt H

i
tδst + liTt δst (36)

denote such an approximation where Hi
t = Dststv

i
s,t(·) and

lit = Dstv
i
s,t(·) are the Hessian and the gradient of the cost

function vis,t(·) with respect to st. Note that our formulation
only considers nonlinear costs on state variables, and the de-
pendence on agents’ actions is quadratic. For a more general
case, where the cost function is nonlinear in control actions too,
a similar approximation could be used to derive the quadratic
terms and linear terms in ait. Note that all the approximations
At, B

j
t , H

j
t , l

j
t are evaluated at η.

For the linearized system dynamics (35) and quadratized
cost (36), we reach a new approximated linear quadratic Gaus-
sian game with new variable sequences δs, δa1, . . . , δaN . These
approximations result in a new game that can be solved using
Theorem 2. Once the approximated game is solved, we obtain a
new sequence of mean control actions

{āit + δai∗t , t = 0, . . . , T − 1} (37)

where δai∗t is the mean value of the action distribution found by
solving for the ECE policies of the approximated linear quadratic
Gaussian game. A new s̄t is attained from the forward simulation
of the original system dynamics (1) using the newly obtained
nominal control actions. We repeat the above process until
convergence, i.e., the deviation of the new state trajectory from
the state trajectory in the previous iteration lies within a desired
tolerance. Note that in our iterative process, we always forward
simulate the mean value of the distribution of agents’ action.
Once the mean trajectories converge, we sample ECE policies
by sampling control actions from (23) and (24) computed around
the converged mean trajectory.

Remark 3: Applying ait directly from (37) may lead to non-
convergence since the resulting trajectory could deviate too
much from the original nonlinear system which we approxi-
mated around η. As in other iterative linear quadratic meth-
ods [47], [50], [51], we only take a small step in the proposed
direction. At each iteration, rather than (37), we apply the
following control input:

āit − P i
t δst − εαi

t (38)

Algorithm 1: Approximating ECE Trajectories.
1: Inputs
2: system dynamics (1), agents’ cost functions (34)
3: Initialization
4: initialize the control policy using P i

t = 0, and αi
t = 0,

∀i ∈ [N ]
5: forward simulate and obtain (s̄0, s̄1, . . . , s̄T ), āi,
· · · , āN

6: while not converged do
7: linear approximation of (1)
8: quadratic approximation of (34)
9: solve the backward recursion with (23-31)

10: forward simulation using μj’s and obtain the new
trajectories

11: end while
13: return P i

t , αi
t, and Zi

t+1

where ε is the step size for improving our control strategy.
Initially, we set ε = 1. Drawing inspiration from line search
method in optimization problems, we decrease ε by half until
the new trajectory’s deviation from the nominal trajectory is
within a threshold.

VI. LEARNING AGENTS’ COSTS

So far, we have discussed the concept of noisy equilibria that
we adopt in this article and how we can solve for approximate
equilibrium policies under this model. Now, we are ready to
discuss how to learn agents’ cost functions ci from a set of
interaction demonstrations from humans or other experts. The
main intuition behind our algorithm is similar to the single-agent
maximum entropy IRL [1]. The common assumption in single-
agent IRL is that the agent’s cost function is parameterized as
a linear combination of a set of features, and the weight of
features is learned such that the expectation of the features under
the learned cost function matches the empirical feature means
under the demonstrations. This is achieved through an iterative
algorithm where at every iteration, the difference between the
feature expectations under the demonstrations and the feature
expectations under the learned cost functions is utilized for
updating the cost parameters.

We extend such an iterative cost learning framework to the
multi-agent game setting. We assume that agents’ dynamics are
known, and each agent’s cost function ci(·) is parameterized as
a weighted sum of features, i.e., for each agent i ∈ [N ], we have

ci(st,at) = wiTφi(st,at) (39)

where wi is the vector of weight parameters for agent i and
φi(st,at) is the vector of features for agent i. Note that for
each agent i, the vector of features φi(st,at) depends on the
entire state vector and the actions of all agents. We define w =
(w1, . . . , wN ) to be the collection of cost weights for all agents.

Note that although the cost is parameterized as a linear com-
bination of features, the features themselves can be nonlinear
functions of states and control inputs. For example, the classical
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LQR cost function is a linearly parameterized function in terms
of the features that are quadratic functions of state and inputs.
Hence, similar to the classical notion of function approximation
which is built on linearly parameterized function spaces, in
theory, this is not a limiting factor. But in practice, feature-based
methods require hand-tuned features that make sense for the
domain.

Our goal is to find the weight parameters w such that the
feature expectation under the learned cost weights matches the
empirical feature mean under the demonstrations. LetDw be the
probability distribution over equilibrium trajectories induced by
the cost parametersw. We further let D̄ be the empirical distribu-
tion of equilibrium trajectories in the interaction demonstrations.
Moreover, we define a trajectory (s,a) = (st,at)

T
t=1 to be the

vector of agents’ states and actions over a trajectory of length
T . We assume that agents maintain an entropic cost equilibrium
in their demonstrations.

With a slight abuse of notation, for each agent i, we denote the
empirical mean of the features under the interaction demonstra-
tions by E(s,a)∼D̄ φi(s,a). Likewise, we let E(s,a)∼Dw

φi(s,a)
be the expected value of the features under the equilibrium
trajectories induced by the weight vector w.

We want to find weight parameters w to induce a probability
distribution Dw over equilibrium trajectories such that feature
expectation under the learned cost weights matches the empirical
feature mean under demonstrations, i.e., E(s,a)∼D̄ φi(s,a) =

E(s,a)∼Dw
φi(s,a) for all agents i ∈ [N ]. To this end, we pro-

pose an iterative algorithm. We initialize the cost weights w
for all agents. At each iteration of the algorithm, we iterate
over all the agents. For agent i, we compute the difference
between the feature expectations under the demonstrations and
the current model E(s,a)∼D̄ φi(s,a)− E(s,a)∼Dw

φi(s,a) and
use this difference for updating the weight parameters

wi ← wi − β
(
E(s,a)∼D̄ φ

i(s,a)− E(s,a)∼Dw
φi(s,a)

)
(40)

where β is the learning rate. Note that once wi is updated,
the entire vector of cost weights w is in fact updated. In the
single-agent setting where an agent is noisily optimizing a cost
function, the update rule (40) is the gradient of the likelihood of
trajectories under weight parameters w. In other words, in the
single-agent setting, (40) solves a maximum likelihood problem
for finding weight parameters w that maximize the likelihood of
demonstrations. If we fix all agents except agent i, similar to the
single-agent setting, we can interpret (40) as a gradient-descent
update rule. Once the cost parameters of agent i are updated,
we compute the feature expectations under the new set of cost
parameters and update the cost parameters for the next agent. We
iterate over all agents i and repeat this process until convergence.
This can be interpreted as a block coordinate descent method
for solving the coupled parameter estimation problem for the
multi-agent game.

Algorithm 2 summarizes our method. Note that in a multi-
agent setting, once the cost parameters of one agent are updated,
we need to recompute the feature expectation for updating the
next agent’s cost since agents’ cost parameters and feature
expectations are interdependent, i.e., a change in one agent’s

Algorithm 2: Multi-Agent Inverse Reinforcement Leaning.
1: Inputs
2: system dynamics (1), agents’ cost features φi(·), and

the set of interaction demonstrations.
3: Initialization
4: for each agent i ∈ [N ], compute the empirical feature

mean under demonstrations E(s,a)∼D̄ φi(s,a)
5: initialize the cost weights w
6: while not converged do
7: for each agent i ∈ [N ] do
8: Compute E(s,a)∼Dw

φi(s,a)
9: Compute the difference

E(s,a)∼D̄ φ
i(s,a)− E(s,a)∼Dw

φi(s,a)

10: Update cost weight for agent i:

wi ← wi−β(E(s,a)∼D̄ φ
i(s,a)−E(s,a)∼Dw

φi(s,a)
)

11: end for
12: end while
14: returncost parameters wi for all agents i ∈ [N ]

Algorithm 3: Approximating Feature Expectations.
1: Inputs
2: system dynamics (1), agents’ cost features φi(·),

agents’ cost wights wi, number of samples p
3: for 1 ≤ j ≤ p do
4: Sample an ECE trajectory (sj ,aj)
5: end for
7: return 1

p

∑
j φ

i(sj ,aj)

cost parameters affects the expectation of features for other
agents. This is due to the coupling among agents at entropic
cost equilibrium.

Each iteration of Algorithm 2 at line 8 requires comput-
ing agents’ feature expectations E(s,a)∼Dw

φi(s,a) under ECE
policies. However, computing E(s,a)∼Dw

φi(s,a) for general
nonlinear games is not tractable. We propose to approximate
this by sampling ECE policies through Algorithm 1 under the
current cost parameter estimates. In each iteration, we sample
p ECE equilibrium trajectories (s1,a1), . . . , (sp,ap) using Al-
gorithm 1, and approximate these through the following:

E(s,a)∼Dw
φi(s,a) ≈ 1

p

p∑
j=1

φi(sj ,aj). (41)

Thus, with known system dynamics, Algorithm 1 lets us com-
pare equilibrium trajectories under the learned cost parameters
with the demonstration trajectories and update the cost param-
eters if needed. Algorithm 3 summarizes the computation of
feature expectations.

VII. EXPERIMENTS

In this section, we evaluate the performance of our MA-IRL
algorithm in two different scenarios. In the first scenario, we
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Fig. 2. Demonstrations for two-player and three-player collision avoidance
motion planning. Trajectories of different players are shown in green, yellow, and
blue, respectively. Players have different cost functions. Due to the stochasticity
of the equilibrium policies, we observe different modes of interactions. (a) Two-
player case. (b) Three-player case.

consider a motion planning task with multiple agents that navi-
gate to goal locations while avoiding collisions with each other.
This is a synthetic dataset which enables us to compare the
learned cost functions with ground truth cost parameters. In
the second scenario, we use the INTERACTION dataset [5]
which contains trajectories in interactive traffic scenes, such as
intersection, roundabouts, and highway merging, collected from
different locations in different countries.

We compare our algorithm with a baseline method, continu-
ous inverse optimal control (CIOC) [3], [52], which is an IOC
algorithm for large continuous domains and does not assume
any feedback interaction among the observed agents. We further
compare the performance of our method with [32] which is
a recent work on inferring objectives in continuous dynamic
games (IOCD). In addition, for the INTERACTION dataset, we
also compare with the IDM [6], [53] as our reference model.
IDM is a widely used expert-designed model to simulate traffic
flow that is known to yield accurate predictions of drivers’
trajectories.

A. Motion Planning With Collision Avoidance

We first consider a synthetic environment where two or three
agents move to their goal locations and try to avoid collisions
with each other. Demonstrations for all scenarios are gener-
ated by solving an approximate entropic cost equilibrium as
described in Section V. Fig. 2 illustrates the demonstration
trajectories for the scenarios with two and three agents. Each
agent wants to minimize a cost function which is linear in the
set of features: Distance to the goal position, distance to other
agents, and control effort. Plots of different features are shown in
Fig. 3. The reference trajectory is a straight line between initial
location and goal location. Each agent has different weightings
on the features, which leads to different interactive behaviors as
shown in Fig. 2.

The demonstration dataset contains 200 trajectories. We use
MA-IRL to learn the cost function coefficients for all agents
jointly. To apply CIOC method, we learn the cost coefficients
of each agent individually and treat all other agents as obsta-
cles. In our implementation of the CIOC method, we use a
generic optimization solver. The computation time of CIOC
scales cubically with the planning horizon. Hence, for compu-
tational tractability, we partition the demonstration trajectories

Fig. 3. Cost features for the motion planning with collision avoidance task.
Costs are higher close to other agents and away from the goal location. (a)
Feature associated with distance to other agents. (b) Feature associated with
distance to the goal location.

into sections of shorter trajectories. For the implementation
of the IOCD method, we input the demonstration trajectories
as noisy observations to the full observation solver which has
access to all the states of all the agents in the demonstration
trajectories.

We evaluate the performance of all algorithms in test scenarios
where the initial configurations are generated randomly and
are different from the demonstration dataset. To evaluate the
performance of the algorithms, we solve the ECE solutions
with the learned cost functions using our MA-IRL approach,
the CIOC approach, the IOCD method, as well as with the true
cost functions in the test scenarios. We simulate the stochastic
equilibrium policies for 200 trials in each case and compute the
feature expectations. If the feature distribution from the learned
cost functions is similar to the feature distribution under the true
cost parameters, it means that our learned costs are close to the
true costs. The simulation results are shown in Tables I and II.

We compute the Kullback–Leibler divergence, which cap-
tures the difference between two distributions. Lower values
of KL divergence between the two distributions means that
the distribution of trajectories under learned cost parameters
is closer to the ground truth distribution. As demonstrated by
Tables I and II, in the two different test tasks with different and
randomized initial configurations, MA-IRL algorithm achieves
closer similarity to the true feature distribution, which means
that the MA-IRL learned cost parameters generalize to different
tasks better than CIOC and IOCD.

In addition, we follow prior work and also compute task-
relevant statistics to evaluate how much the recovered costs and
the corresponding stochastic policies resemble the demonstra-
tions. We compute the distance to goal location at the end of
the simulation horizon (6 s) and demonstrate the statistic of this
feature for the two-player setup in Table III. We can see that
MA-IRL better resembles the true cost functions.

In our simulations, the forward planning problem takes on
average 9.51ms to solve at each iteration for the two-agent
scenario and 63.28ms for the three-agent scenario. For the
inverse problem, it takes around 2 h for the two-agent case
and 26 h for three-agent case on a laptop with Intel 2.7Ghz
CPU. The CIOC algorithm takes about 24 h to converge with
shorter trajectory horizon as the full length trajectory becomes
computationally infeasible. Note that when running our method
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TABLE I
THREE-AGENT COLLISION AVOIDANCE SIMULATIONS

TABLE II
TWO-AGENT COLLISION AVOIDANCE SIMULATIONS

TABLE III
TASK-RELEVANT STATISTICS FOR THE TWO-PLAYER COLLISION

AVOIDANCE CASE

using Algorithm 2, changing the order of agents does not affect
the empirical convergence as shown in Fig. 4.

B. Interaction Dataset

We further apply our MA-IRL algorithm on a real world
traffic dataset, the INTERACTION dataset [5], which has highly
interactive driving scenarios collected from different countries.
Scenarios such as roundabouts, highway merging, and intersec-
tions are included in the data.

1) Data Processing: We pick a highway merging scenario as
it involves vehicles negotiating their merging actions, leading to
challenging game-theoretic planning for all vehicles. Among all
the merging trajectories, each data point consists of the following
three vehicles: 1) a merging vehicle whose trajectory starts from

Fig. 4. We randomize the order of agents during inverse learning problem and
the cost parameters converge consistently regardless of the order of iterations
and the initial conditions. Each plot corresponds to one learnt parameter and
different colors represent a different initial condition or the order of iteration.
X-axis is the number of iterations and Y-axis is the parameter value.

the onramp and ends on a main highway lane, a leader vehicle
that is ahead of the merging vehicle, and a follower vehicle that
is behind the merging vehicle in the highway. Leader vehicles
are treated as obstacles which do not interact with the other
two vehicles, and we assume that the merging vehicle and
the follower vehicle follow an ECE solution. We discard the
trajectories that are too long or too short (longer than 9 s or
shorter than 5 s) and end up with 87 trajectories in total. All 87
data points are recorded in the same highway onramp in China
from different recordings. The average time to finish merging is
6.3 s in the dataset. Fig. 5 shows an example snapshot, where
car 8 is merging onto highway after car 13.

2) Features: For this challenging and complex driving task,
we propose features that capture efficiency (driving forward and
achieving the lane merge for the merging vehicle), comfort and
energy efficiency (penalizing large accelerations), and safety
(penalizing relative speed and a Gaussian-cost on close prox-
imity with other cars). In total, we learn the cost coefficients for
nine features for both merging and follower vehicles.

To evaluate the learning results on the INTERACTION
dataset, since we do not know the true cost function, we cannot
compute the corresponding cost distribution. Instead, we com-
pute the root-mean -squared error (rmse) on trajectories that are
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Fig. 5. Snapshot of highway merging scenario in the INTERACTION dataset. Vehicle 8 is a merging vehicle between cars 13 and 6.

TABLE IV
TASK STATISTICS FOR THE GENERATED SIMULATIONS USING LEARNED COST

FUNCTION/POLICY COMPARED TO HUMAN DEMONSTRATIONS FROM THE SAME

INITIAL CONFIGURATION

generated from the learned cost functions. For each trajectory
tuple in the dataset, we run ten trials using the ECE policy with
the learned cost function from both MA-IRL and CIOC. Then,
we compute the average deviation from the true trajectories
over 5 s. For position errors, MA-IRL achieves significantly
better prediction accuracy than the CIOC model due to the
interactive nature of this scenario. IDM’s performance is roughly
on par with MA-IRL. We note that IDM is a popular expert
designed and empirically validated driving model for traffic
simulation and is only applicable for car following scenarios.
Hence, IDM acts as a proxy for the unknown ground truth policy
in this scenario. Moreover, we learn the parameters of IDM to
specifically fit this dataset, thereby directly approximating the
control policy of the vehicles in the dataset.

For MA-IRL, the forward problem takes 8.62 ms and the
inverse problem consistently converges after 100 iterations.
IDM fits the parameters using least squares method. The total
computation time is 3 h with an initial parameter sweep to avoid
local optima. CIOC takes around 24 h.

In addition, we follow previous work and evaluate the learned
policy by computing task-related statistics from demonstrations
and generated samples. We measure average speed of both
merging and following cars, the average Euclidean distance
between the leader and merging cars, and average Euclidean
distance between the merging and following cars. The results are
summarized in Table IV. From Table IV, we can see that MA-
IRL achieves good approximation results in average speed of the
merging vehicle and the follower vehicle, which is on par with
IDM’s performance and better than CIOC. For average distance
between merging vehicle and other vehicles, the performance of
all three algorithms are similar and have larger deviation than
speed statistics. We think the reason is that average distance is

Fig. 6. rmse for the predicted trajectories using the INTERACTION dataset.

Fig. 7. Trajectories that are predicted under IOCD in the merging scenario
using the INTERACTION dataset are nonsmooth trajectories which are not
realistic.

subject to more uncertainty. In Fig. 6, we plotted the rmse of the
predicted trajectories for all methods. As Fig. 6 demonstrates,
the position rmse of MA-IRL is similar to that of IDM and better
than CIOC.

We would like to point out that on the INTERACTION
dataset, IOCD resulted in nonsmooth trajectories that were far
from realistic. We found that IOCD overfitted to the training data
and could not generalize well to the test data which resulted in
nonsmooth trajectories as shown in Fig. 7. Consequently, the
underlying generated trajectories are not smooth and realistic;
and, hence we did not discuss its performance in detail.

VIII. CONCLUSION

In this article, we presented an algorithm for maximum
entropy IRL in multi-agent settings. To enable learning from
boundedly rational agents such as humans, we defined a notion
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of noisy equilibrium called ECE. We proved that this noisy
equilibrium is indeed an extension of the maximum entropy
principle to the multi-agent setting. We then proved that ECE
policies can be obtained in closed form for the special class
of linear quadratic Gaussian games. We further presented an
algorithm for approximating ECE policies for general nonlinear
games. Finally, knowing how to find maximum-entropy multi-
agent policies, we provided an iterative algorithm for learning
agents’ costs from a set of demonstrations when cost functions
are represented as a linear combination of a set of features. We
verified and validated our algorithm using both synthetic and
real-world data demonstrating that our MA-IRL algorithm can
successfully capture the interactions between agents and learn
accurate models of agents’ costs.

Limitations and Future Work: While our simulations and
experiments show the effectiveness of our MA-IRL algorithm, a
key future direction is to enable learning general nonlinear costs.
In this article, we assumed that agents’ costs can be represented
as a weighted sum of a set of features. An important future direc-
tion is to relax this assumption. Moreover, to avoid handpicking
the set of relevant features a-priori, we would like to study the
extensions of this work to enable learning cost functions that
are represented in the form of function approximators such as
neural networks. Finally, the current work can be extended to
the case of unknown system dynamics as well. We assumed that
the system dynamics were known and fixed. We believe that
our method can be further extended to systems with unknown
dynamics.

APPENDIX A
PROOF OF THEOREM 2

We provide the proof for Theorem 2. We know from Theo-
rem 1 that to find the ECE policies of a linear quadratic game
G = (S,A, f, g, c, T ), we can equivalently find the Nash equi-
librium policies of the auxiliary game G̃ = (S,A, f, g, c̃, T ).
The key idea is that at Nash equilibria of the game G̃, the cost-
to-go or the value function for each agent at any given state can be
represented in closed form via a quadratic function of the system
state. Using dynamic programming, the closed-form solution of
the cost-to-go function can be propagated backwards in time to
find both the Nash equilibrium policy and the cost-to-go of agent
i.

More precisely, let π∗ denote a set of Nash equilibrium
policies of the game G̃. Consider an agent i ∈ [N ]. Fix the
policies of all the other agents π−i

∗
. Then, using Definition 1,

for the game G̃, the (Nash) equilibrium policy of the agent πi∗

optimizes

min
πi

Eπi,π−i∗

T∑
k=1

1

2

(
sTkQ

isk + lTi sk +
∑
j∈[N ]

ajk
T
Rijajk

)

−
T∑

k=1

H(πi
k(.|st)). (42)

First, note that for any policy πi(.|st), since the dynamics
are linear and the cost is quadratic, the expectation of the terms
inside the parenthesis in (42) depends only the first and second

order moments of the policy πi. Therefore, for any fixed first and
second order moments of the policy πi, the optimal policy πi∗

will be the distribution with maximum entropy subject to fixed
first and second order moments. Leveraging the fact that with
fixed first and second order moments, the maximum entropy
distribution is a normal distribution (see for instance [54, Th.
8.6.5]), we can conclude that the optimal policy for each agent
i at any time step πi∗

t is normally distributed. Hence, it remains
to find the mean and covariance of the optimal policy at any
given time step. For every agent i, let the mean and covariance
of agent i’s policy be represented by μi

t and Σi
t at every time

step t. The optimal solution to (42) can be found using dynamic
programming. Let V i∗

t (st) denote the cost-to-go of agent i at
Nash equilibrium at a given time step t

V i∗
t (st) := min

πi
Eπi,π−i∗

T∑
k=t

1

2

(
sTkQ

isk + li
T
sk

+
∑
j∈[N ]

ajk
T
Rijajk

)
−

T∑
k=t

H(πi
k(.|sk)). (43)

We prove via induction that the cost-to-go for each agent at
a given time step t is a quadratic function of the state st. We
assume for time t+ 1, we have

V i∗
t+1(st+1) =

1

2
sTt+1Z

i
t+1st+1 + ξi

T
t+1st+1 + ni

t+1 (44)

where Zi
t+1, ξit+1, and ni

t+1 are the coefficients of the quadratic
cost-to-go at time t+ 1. We will propagate the cost-to-go struc-
ture (44) backwards in time to prove that

V i∗
t (st) =

1

2
sTt Z

i
tst + ξit

T
st + ni

t. (45)

We prove this via dynamic programming. For time step t, we
have

V i∗
t (st) = min

πi
t

Eπi
t,π

−i∗
t

1

2

(
sTt Q

ist +
∑
j∈[N ]

ajt
T
Rijajt

)

−H(πi
t(.|st)) + Est+1

V i∗
t+1(st+1). (46)

Using dynamics (20), the structure of cost-to-go function for
time t+ 1 from (44), and the fact that the policies for every time
step are normally distributed, one can verify that

EV i∗
t+1(st+1) =

1

2

⎡
⎣sTt ATZi

t+1Ast +
∑
j∈[N ]

μj
t

T
BjTZi

t+1Ast

+ sTt A
TZi

t+1

∑
j∈[N ]

Bjμj
t

+
∑
j∈[N ]

(
Bjμj

t

)T
Zi
t+1 + ni

t+1

+ tr

⎛
⎝Zi

t+1

∑
j∈[N ]

BjΣj
tB

jT + Zi
t+1

⎞
⎠
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+ξi
T
t+1

⎛
⎝Ast +

∑
j∈[N ]

Bjμj
t

⎞
⎠
⎤
⎦ . (47)

Moreover, we know that for a normal policy πi
t with mean μi

t

and covariance Σi
t, the entropy of the policy is

H(πi
t(.|st)) =

mi

2
log(2πe) +

1

2
log det(Σi

t) (48)

where mi is the dimension of the action space of agent i, and
e is the Euler’s number. Using (47) and (48), (46), which is the
cost-to-go at time t, can be rewritten as a minimization with
respect to μi

t and Σi
t when we fix the mean and covariance of

other agents’ policies

V i∗
t (st) = min

μi,Σi
Eπi,π−i∗

1

2

⎡
⎣sTt Qist +

∑
j∈[N ]

μjT

t Rijμj
t

+ sTt A
TZi

t+1Ast +
∑
j∈[N ]

μj
tB

jTZi
t+1Ast

+ sTt A
TZi

t+1

∑
j

Bjμj +

⎛
⎝∑

j∈[N ]

Bjμj
t

⎞
⎠

T

×Zi
t+1

⎛
⎝∑

j∈[N ]

Bjμj
t

⎞
⎠
⎤
⎦

+ ξi
T

t+1

⎛
⎝Ast +

∑
j∈[N ]

Bjμj

⎞
⎠+ ni

t+1

− 1

2
log det(Σi

t)−
1

2
mi2πe

+
1

2

∑
j∈[N ]

tr(RijΣj
t+Zi

t+1

⎛
⎝∑

j∈[N ]

BjΣj
tB

jT

⎞
⎠+Zi

t+1).

(49)

The objective function of (49) is a convex quadratic function
of μi

t and a convex function of Σi
t. Taking the derivative of the

objective function in (49) with respect to μi
t and Σi

t and setting
the derivatives equal to zero, one can verify that μi∗

t and Σi∗
t

have the structure of (23) and (24). By replacing μi∗
t and Σi∗

t

in (49) and rearranging the terms, one can see that V i∗
t (st) is

also a quadratic function of the state st. This proves that at every
time step t, V i∗

t (st) =
1
2s

T
t Z

i
tst + ξit

T
st + ni

t. By matching the
coefficients of this quadratic function, recursions (27), (28), (29),
and (30) are obtained. Note that we also need to verify the base
case for our induction, i.e, the cost-to-go at the final time step
V i∗
T (sT ) is also quadratic. At the final time step T , the optimal

policy πi∗
T is a zero-mean normal distribution with covariance

matrix Σi
T = (Ri)

−1. Plugging in this policy, we verify that in
the final time step the cost-to-go is also quadratic in the state sT .
This proves the base case for our induction, which completes our
proof that the optimal cost-to-go at any time step t is quadratic
in the state st. Now that we have proved that at every time step,

V i∗
t (st) is of the form (45), we can obtain the recursions (25)

and (26) on the matrix P i
t and the vector αi

t by replacing (23)
and (24) in (46) and matching the coefficients.
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