
Information-guided persistent monitoring under
temporal logic constraints

Austin Jones, Mac Schwager, and Calin Belta

Abstract—We study the problem of planning the motion

of an agent such that it maintains indefinitely a high-

quality estimate of some a priori unknown feature, such as

traffic levels in an urban environment. Persistent operation

requires that the agent satisfy motion constraints, such as

visiting charging stations infinitely often, which are readily

described by rich linear temporal logic (LTL) specifica-

tions. We propose and evaluate via simulation a two-level

dynamic programming algorithm that is guaranteed to

satisfy given LTL constraints. The low-level path planner

implements a receding horizon algorithm that maximizes

the local information gathering rate. The high-level planner

selects inputs to the low-level planner based on global

performance considerations.

I. MOTIVATION

In this paper, we address the problem of planning the
path of a mobile robot such that it persistently maintains
a high-quality estimate of some unknown feature, i.e.
persistent monitoring. This describes many real-world
applications in which human decision-makers require
real-time information about large environments, such as
forest rangers monitoring wildfires. In order to provide
up-to-date information reliably, the robot has to plan its
motion such that relevant information is gained, e.g. the
agent visits locations that have not recently been visited.
This can be formalized as maximizing the expected
mutual information rate (MIR) between the environment
and the agent’s sensor measurements. In addition, the
agent must continue to function indefinitely, i.e. it must
satisfy constraints such as “Regularly visit a recharging
station and always avoid obstacles”. In this work, we use
linear temporal logic (LTL), an extension of Boolean
logic that is capable of describing how a system may
change over time, to model such constraints. We present
a hierarchal stochastic optimal control algorithm that is
guaranteed to satisfy the given LTL constraints while
attempting to maximize the MIR.

Austin Jones is with the Division of Systems Engineering, Mac
Schwager and Calin Belta are with the Division of Systems Engineer-
ing and the Department of Mechanical Engineering at Boston Univer-
sity, Boston, MA 02115. Email: {austinmj,schwager,cbelta}@bu.edu

This work was partially supported by ONR under grants MURI
N00014-09-1051 and ONR MURI N00014-10-10952, and N00014-
12-1-1000, and by NSF under grant CNS-1035588

Persistent monitoring strategies have recently been
considered in the literature. In [16], the authors demon-
strate how to regulate the speed of an agent moving along
a fixed path such that the uncertainty about the state of
the environment remains below a certain threshold indef-
initely. This work is extended to planning trajectories in
[14]. The problem of multi-agent persistent monitoring is
investigated in [6]. The above works consider a measure-
ment model that is independent of the agent’s location
in the environment and either completely unconstrained
motion or motion along predefined paths. In contrast,
we assume that the agent’s sensing capability depends
on its position in the environment and we incorporate
linear temporal logic (LTL) motion constraints.

Linear temporal logic [2], [17] can be used to formu-
late liveness (“Visit a charging station infinitely often”),
fairness (“Visit a data upload station before visiting a
charging station”), and safety (“Always avoid obstacles”)
properties. Off-the-shelf formal synthesis tools exist that
guarantee a robot’s trajectory will satisfy an LTL formula
[1], [5], [18]. These tools were applied to the prob-
lem of persistent monitoring in [8] in which the goal
was to minimize the amount of time between visiting
pre-specified surveillance regions. This work did not
explicitly represent the agent’s sensing model nor the
environment model.

In [9], [10], we considered planning under syntacti-
cally co-safe linear temporal logic (scLTL) constraints
on the motion of the robot, a finite-time subset of LTL.
scLTL can be used to describe reachability and finite-
time safety properties, among others. By considering full
LTL formulae, the approach in this paper allows us to en-
force infinite-horizon properties such as visiting different
sequences of regions in the environment infinitely often.
The algorithm in this paper extends the receding-horizon
planner developed in [10] to guarantee satisfaction of
LTL constraints. In addition, to avoid myopia inherent
in receding horizon implementations, we develop a high-
level sample-based planner that selects inputs to the
receding horizon algorithm that attempt to maximize the
MIR over the infinite horizon. An implementation of our
procedure is applied to a simulation of a target tracking
case study.

2015 American Control Conference
Palmer House Hilton
July 1-3, 2015. Chicago, IL, USA

978-1-4799-8684-2/$31.00 ©2015 AACC 1911

II. MATHEMATICAL PRELIMINARIES

We assume the reader is familiar with standard set
theoretic notation and information-theoretic concepts
such as mutual information and entropy [15]. We use
the shorthand notation x1:t for a time-indexed sequence
x1 . . . xt. The set of all finite and set of all infinite words
over alphabet ⌃ are denoted by ⌃

⇤ and ⌃

1, respectively.
A deterministic transition system [2] is a tuple TS =

(Q, q0, Act, T rans,AP,L), where Q is a set of states,
q0 2 Q is the initial state, Act is a set of actions,
Trans ✓ Q ⇥ Act ⇥ Q is a transition relation, AP
is a set of atomic propositions, and L : Q ! 2

AP is a
labeling function of states to atomic propositions.

A discrete time Markov Chain (MC) is a tuple
MC = (S, s0, P) where S is a discrete set of states,
P : S ⇥ S ! [0, 1] is a probabilistic transition relation
such that the chain moves from state s to state s0

with probability P (s, s0), and s0 is an initial state of
the system. A discrete time Markov decision process
(MDP) is a tuple MDP = (S, s0, P, Act), where S, s0

are as defined for a MC, Act is a set of actions, and
P : S ⇥ Act ⇥ S ! [0, 1] is a probabilistic transition
relation such that taking action a drives MDP from state
s to state s0 with probability P (s, a, s0). In this paper, we
assume that the reader is familiar with stochastic optimal
control over MDPs [4].

A linear temporal logic (LTL) formula is inductively
defined as follows [12]:

� := p|¬�|� _ �|� ^ �|� U �| � �| } �| ⇤ �, (1)

where p is an atomic proposition,¬ (negation), _ (dis-
junction), and ^ (conjunction) are Boolean operators,
and � (“next”), U (“until”), } (“eventually”), and
⇤ (“always”) are temporal operators. LTL allows for
the specification of persistent performance requirements,
such as “Data is uploaded infinitely often”.

A deterministic Buchi automaton (DBA) [2] is a tuple
A = (⌃,⇧, �,�0, F) where ⌃ is a finite set of states, ⇧
is a finite alphabet, � ✓ ⌃ ⇥ ⇧ ⇥ ⌃ is a deterministic
transition relation, �0 2 ⌃ is the initial state of the
automaton, and F ✓ ⌃ is a set of final (accepting) states.
An accepting run on a DBA is a sequence of states in
⌃

1 that intersects with F infinitely often. The language
of a DBA (written L(A)) is the set of all accepting
words in ⌃

1. For a large subset of LTL formulae �,
there exist algorithmic procedures to construct a DBA
A� with alphabet 2

AP such that the language of all
words satisfying �, L(�), is equal to L(A�). [17].

The product automaton of a transition system
TS = (Q, q0, Act, T rans,AP,L) and a DBA A� =

(⌃, 2AP , �,�0, F) is the Buchi automaton P = TS ⇥

A� = (⌃P,�0, Act, FP,�P) [2]. ⌃P ✓ Q ⇥ ⌃ is
the state space of the automaton, �0

= (q0,�0) is the
initial state, and FP ✓ Q ⇥ F is the set of accept-
ing states. The transition relation is defined as �P =

{(q,�), p, (q0,�0
)|(q, p, q0) 2 Trans, (�, L(q),�0

) 2 �}.
The state of the automaton at time k, (qk,�k

) is denoted
as �k for short. If �0:k satisfies the acceptance condition
on P, then the trajectory q0:k satisfies �.

We define the distance to acceptance [1] as a function
W : ⌃P ! Z+ such that W (�) is the minimal number
of actions that can be taken to drive P from � to an
accepting state in FP. The k-step boundary about a
state �, denoted @N(�, k) is the sets of states that can
be reached by applying exactly k inputs to the product
automaton.

III. MODELS

A. Robot motion model
We consider a single robot with perfect localiza-

tion and known dynamics operating in a continu-
ous, partitioned environment. We abstract the mo-
tion of the robot to a transition system Robot =

(Q, q0, Act, T rans,AP,L) where Q is a partition of
the environment, q0 is the region in which the agent is
initially located, Act is a set of control policies, AP is a
set of known regional properties of the environment, and
(q, a, q0) 2 Trans if a can drive the robot from q to q0.
Tools have been developed for low-level control synthe-
sis in partitioned systems with linear [11] and piecewise
affine [18] dynamics. With some conservativism, these
can be extended to more realistic dynamics such as the
ones modeling unicycles and car-like vehicles [3].

Example 1. Consider a robot Rp operating in a
grid environment as shown in Figure 1(a) to track
a target robot Rt. In this case, Q = {1, . . . 4}2 ⇥
{N,S,E,W} (north, south, east, west) where a state
q = (i, j, dir) means that Rp is in grid cell (i, j)
and facing direction dir. The set of actions is Act =

{straight, CW,CCW} which mean go straight, ro-
tate 90

� clockwise, and rotate 90

� counterclockwise,
respectively. AP = {⇡recharge(green),⇡data(magenta),
⇡alarm(cyan),⇡reset(blue),⇡obs(red)}. A subset of the
transition system is shown in Figure 1(b).

B. Robot sensing model
We associate with the environment a feature that

evolves in time synchronously with the robot according
to the Markov chain Env = (S, s0, P). We denote
the state of Env at time k as sk. The initial state
s0 is a priori unknown.At each time k, when the
robot moves to state qk, it measures sk according

2

1912

1 2 3 4

1

2

3

4

East �

N
or
th

�

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

East �

N
or
th

�

(a) (b) (c) (d)

Fig. 1. (a) Environment used in Example 1. (b) Part of transition system corresponding to (a). (c) Part of the measurement likelihood function.
Numbers in blue, black, and red text indicate the probability of l, c, or r being measured by Rp if Rt is in the indicated cell. (d) Example of
a prefix (blue) and a suffix cycle (orange) from formula 5.

to a noisy measurement yk 2 RY . yk is a realiza-
tion of a discrete random variable Y k. We denote the
conditional measurement distribution as h(y, s, q) =

Pr[measurement is y|Env in s,Robot in q].

Example 1 (continued). In the above scenario, S =

{1, . . . , 4}2 is the set of possible locations of RT . s0

is chosen randomly. Env can transition to an adjacent
state with probability pmove. Rp has a noisy camera
that can produce measurements in RY = {0, l, c, r}
which correspond to Rt not being observed and Rt being
observed in the left, center, or right portion of Rp’s field
of view. Part of the measurement likelihood function is
summarized in Figure 1(c).

The robot’s estimate of sk is given via the estimate
pmf bk, called the belief , where bk(s) = Pr[sk =

s|y1:k, q0:k]. The initial belief b0 reflects prior knowledge
about s0. bk is maintained via the recursive Bayes filter

bk(s) =
h(yk, s, qk)

P
s02S P (s0, s)bk�1

(s0)P
�2S h(yk,�, qk)

P
s02S P (s0,�)bk�1

(s0)
.

(2)
The belief bk evolves over time according to the MDP
Est = (B, b0, Pest, Q). Q and b0 are as defined pre-
viously. Pest is the probabilistic transition relation such
that if b0 is the result of applying (2) with measurement y
collected in state q, then Pest(b, q, b0) is the probability
of observing y. B is the countably infinite set of all
possible beliefs that can be outputs of computing the
Bayes filter with initial belief b0 with an infinite run
of Robot along with the resulting measurements. The
MDP Est is referred to as the belief tree in the partially
observable MDP (POMDP) literature [13].

IV. PROBLEM STATEMENT

Our goal is to plan an infinite horizon trajectory q0:1

for Robot that maximizes the quality of the estimate pmf

over time while satisfying a linear temporal logic spec-
ification. In [9], [10], we used the expected conditional
entropy EY 1:t

[H(bt)] to quantify the expected quality of
the estimate that would result from the robot traveling
along the finite path q0:t. Here, we use a related quantity
called the mutual information rate [7], [15]

MIR = lim

t!1

I(s0:t;Y 0:t
)

t
. (3)

MIR is the average rate of information gain about the
state of Env when a new measurement is taken. We
wish to maximize this quantity, as we want to increase
the rate at which measurements help to identify the state
of Env. Maximizing (3) over the set of actions Robot
can take is equivalent to minimizing the entropy rate

ER = lim

t!1

H(bt)

t
. (4)

Any trajectory that satisfies an LTL formula can be
segmented into a finite length prefix path and an infinite
sequence of finite length suffix cycles.

Definition 1 (Prefix Path and Suffix Cycle). Let q0:1

be an infinite horizon trajectory over a transition system
TS and � be an LTL formula over the properties AP
in TS. Let P = TS ⇥ A� and let �0:1 be the infinite
run over P induced by q0:1. Let ln be the nth time at
which �0:1 intersects FP . The prefix path is the finite
sequence q0:l1 . A suffix cycle is a finite sequence of states
qln+1:l

n+1 .

Example 1 (continued). The constraints on Rp can be
given as the LTL formula

� = ⇤ } ⇡recharge ^ ⇤ } ⇡data ^ ⇤ (¬⇡obs)

^ ⇤ (⇡alarm) (¬⇡recharge U ⇡reset)),
(5)

which in plain English is “Visit recharging and data
upload stations infinitely often while avoiding obstacles.

3

1913

If an alarm is triggered, visit the shutdown switch before
visiting the recharging station.” Figure 1(d) shows a
prefix cycle and a suffix cycle for �.

We wish to minimize the average entropy rate per
cycle, given as

AERPC = lim

n!1

Pn
i=0

H(bln)�H(bln�1)
l
n

�l
n�1

n
(6)

This formulation is similar to the average cost-per-stage
problem [8], [4]. With this new objective, we define the
constrained persistent monitoring problem as

Problem 1. Consider an agent that is estimating the
state of the environment. Solve

min

a0...2Act1
EY 0:l1 [AERPC]

s.t. �, ln+1 � ln  `max8n,
(7)

where � is an LTL formula and `max is a per-cycle
budget.

The budget `max describes energy constraints on the
agent’s motion, e.g. the maximum amount of time that
the agent can be active between recharging.

V. SOLUTION

In [10], we defined a Markov decision process that en-
capsulated the effect of the robot’s action on it’s location
in the environment, progress towards satisfying the given
specification, and it’s expected gain in information.

Definition 2. Full Model MDP The MDP FullModel =
(⌃P⇥B,Ptot, Act, (�0, b0)), where P = Robot⇥A� and
B, b0 are derived from Est, describes the synchronous
evolution of the robot’s position and belief state. The
probabilistic transition relationship Ptot is defined as

Ptot((�, b), a, (�0, b0)) =

Pest(b, q0, b0)I((�, a,�0
) 2 �P)I(W (�0

) < 1)

(8)
where I is the indicator function (I(x 2 X) is 1 if x 2 X
and 0 if x 62 X) and �0

= (q0,�0
).

We map Problem 1 to the constrained stochastic
optimal control problem

min

a0...2Act1
EY 0:l1 [AERPC]

subject to
ln+1 � ln  `max8n 2 N,

(�i+1, bi+1
) ⇠ Ptot(·, ai, (�i, bi)) 8i 2 N.

(9)

We propose a hybrid dynamic programming-based
method to circumvent these difficulties. A local receding-
horizon algorithm (Section V-A) chooses actions that

locally improve the entropy rate and drive the agent to
an accepting state in P. The budget of actions given to
the receding horizon algorithm is selected according to
a policy that is calculated off-line via value iteration [4]
to optimize the infinite-horizon AERPC (Section V-B).

A. Optimization of a single cycle

In [10], we presented a receding horizon algorithm
that locally minimized entropy and was guaranteed to
satisfy the given scLTL constraint within the budget.
Algorithm 1 extends that procedure to handle LTL
constraints.

Algorithm 1 Receding horizon planner.
function RHP((�, b), `,m, n)
k = 0; �[k] = �;
while �[k] 62 FP do

⌃p := PossibleStates(�[k],m,`� k)
(Xp,Ptot,Actp) := ConstructMDP(�[k],b,⌃p)
µl :=BellmanIteration(Xp,Ptot,Actp)
if k � `�m then

n := `� k
for i := 1 to n do

(�[k + 1], b) := result from applying µ(i, (�, b))
k ++

return (�[k], b, k)

At the kth time-step after the invocation of Algo-
rithm 1, the procedure PossibleStates constructs m sets
⌃p[i] ✓ ⌃P where that contains all states reachable from
�k in i actions and from which an accepting state can
be reached under the remaining budget. From the sets
⌃p, the procedure ConstructMDP constructs a subset of
the full-model MDP such that at the ith level, only pairs
(�, b) such that � 2 ⌃p[i] appear. Next, the algorithm
BellmanIteration performs standard Bellman iteration
over the constructed MDP where the terminal cost is
given as H(b[m])�H(b[0])

m ,where b[m] is the terminal state
and b[0] was the initial belief state input to Algorithm 1.
The algorithm is executed in a receding horizon fashion
until an accepting state is reached. Applying Algorithm 1
infinitely often provably satisfies the given specification
and a single application of Algorithm 1 is tractable.

Theorem 1. Let `0 = max

�2FP

min

�02@N(�,1)
W (�0

)+1. If `0 
`max, then sequentially applying Algorithm 1 infinitely
often with budget at least `0 is guaranteed to drive the
robot to satisfy the given LTL specification.

Proof. Applying Algorithm 1 one time is guaranteed to
drive the system to an accepting state [10]. Applying Al-
gorithm 1 infinitely often guarantees that the system will

4

1914

!"#"$%&'()*+%,*&(
-./&&"+

Fig. 2. A block diagram illustrating the hierarchal algorithm.

be in an accepting state infinitely often, thus satisfying
the Buchi acceptance condition and therefore satisfying
the given LTL specification.

Proposition 1. The time complexity of Algorithm 1 is
O(|Act |m |RY |m |S|! !

n ").

B. Choosing cycle budgets

Although applying Algorithm 1 infinitely often with
a fixed budget ! is guaranteed to satisfy the LTL speci-
fication, there is no guarantee that the local information
gathering performs well over an infinite time horizon. We
propose to pair the local information gathering with long-
term planning by finding a policy µg : FP # { " 0} $ B %
N that maps an initial or accepting state in the automaton
and a belief state, e.g. the configuration of the robot
at the end of a cycle, to the budget ! that should be
given to the receding horizon planner in the next cycle.
The hierarchal structure of the algorithm is illustrated in
Figure 2. The policy construction is performed off-line
before the agent is deployed.

Algorithm 2 details how µg is calculated. We use
simulation to characterize the per-cycle performance of
the receding horizon algorithm. We consider a finite set
of states T & FP $ B in our optimization. Algorithm
2 begins by performing j max simulations of Algorithm
1 from the initial state (" 0, b0) for each value of !
from min

" 002#N (" 0 ,1)
W (" 00) + 1 to ! max . The result of

each simulation is a state (" 0, b0) that is reachable from
the initial state. In our algorithm, if two states are #
close in the 1-norm, we consider them identical. The
cost of going from (" , b) to (" 0, b0) under budget ! ,
denoted g((" , b), ! , (" 0, b0)) = H (b0)�H (b)

! , is calculated
and recorded. Similarly, the frequency of transitioning
from state (" , b) to (" 0, b0), under budget ! , denoted
P((" , b), ! , (" 0, b0)) , is calculated from the set of simu-
lations and recorded. The reachable state (" 0, b0) is then
added to the set the set of states still to be checked C.

It may seem that the longer the budget ` handed to the receding
horizon planner, the better we expect the performance to be. As `
increases, on average more states are included in the MDPs constructed
by Algorithm 1. However, the agent can take an action that locally
performs better but which may cause the long-term performance to
deviate far from optimal behavior.

After this set of simulations is completed, the states of
C are iterated through and more simulations occur.

T, P, and g are populated until |T | ' N and all of the
accepting states in FP have been visited or there are no
states left to be checked We invoke a procedure called
MakeRecurrent to ensure every state in T is connected
via P to another state in T . Finally, Algorithm 2 uses
value iteration to find the optimal policy

µg(" , b) = arg min
!

!
(" 0,b0)2T P((" , b), ! (" 0, b0))

[g((" , b), ! (" 0, b0) + J1((" 0, b0))] ,
(10)

for all (" , b) (T where J1 : T % R is the infinite-
horizon cost-to-go function. [4] This optimization min-
imizes the sum of the expected entropy rates per cycle
rather than directly minimize the AERPC. However,
since we are minimizing the entropy rate on a cycle-
by-cycle basis, the average rate will also be minimized.
Algorithm 3 summarizes our approach.

Algorithm 2 Constructs optimal budget policy.
1: function OptimalBudget(" 0,b0,! max ,m,n)
2: T = { (" 0, b0)} ; C = { (" 0, b0)} ; Acc = FP

3: while |T |) N and C *= + do
4: (" , b) = C.pop()
5: for ! = min

" 002#Nin
W (" 00) + 1 to ! max do

6: for j = 1 to j max do
7: (" 0, b0, k) = RHP((" , b), ! , m, n)
8: if , (" 0, b00) (T s.t. ||b00 - b0||1 < # then
9: b0 = b00

10: else
11: T .add((" 0, b0)); C.add((" 0, b0))
12: g((" , b), ! , (" 0, b0)) = H (b0)�H (b)

k
13: P((" , b), ! , (" 0, b0)) += 1

j max

14: Acc = Acc \ { " 0}
15: if |T | = N and Acc *= + then
16: N = N + 1
17: (P, g, T) = MakeRecurrent(P, g, T)
18: µg = ValueIteration(P, g, T)
19: return µg, T

Algorithm 3 Constrained Persistent Monitoring.
µg, T = OptimalBudget(" 0,b0,! max ,m,n);
" = " 0; b = b0;
while TRUE do

(" , b, k) = RHP((" , b), µg((" , b)) , m, n)

VI. CASE STUDY

We implemented Algorithm 3 in software and applied
it to a simulation of the scenario described in the running

5

!"!#

Fig. 3. (a) random walk policy (b) Algorithm 3.

example Example 1. The probability that the tracked
target Rt moves to an adjacent cell is pmove = 0 .15.
The optimal policy µg was computed with parameters
! = 0 .01, N = 1500, jmax = 100, "max = 15, m = 2 ,
and n = 1 . The computation required approximately 6
hrs. of processor time. We performed 500 Monte Carlo
trials of the system in which the system was simulated
until 5 suffix cycles were completed and compared the
results to 500 “random walk” simulations which were
guaranteed to satisfy the constraints. The results from the
simulations are summarized in the histograms in Figure
3. The random walk policy resulted in an average entropy
rate of 0.0420 bits/action, while the average entropy rate
when using Algorithm 3 was -0.0090 bits/action. A two-
sample t-test confirmed that this difference in means
is statistically significant with p-value less than 10! 95.
Further, 3.5 % of the random walk trials resulted in
negative entropy rates while 64.8% of the trials with
Algorithm 3 had negative rates, i.e. on average gain
information about the location of Rt with each action
taken, i.e. Algorithm 3 has better performance more
often.

VII. CONCLUSIONS

We have extended our receding horizon planner for
constrained informative planning to handle infinite-
horizon constraints modeled as LTL formulae. In order to
mitigate myopia, we developed and implemented an off-
line algorithm to select the number of actions that the
receding horizon planner can take between subsequent
cycles of the robot’s trajectory. Initial results indicate
the receding horizon implementation significantly out-
performs a random walk simulation. We will investigate
more sophisticated reinforcement learning algorithms
and extend these results to multi-agent systems.

REFERENCES

[1] Ebru Aydin Gol, Mircea Lazar, and Calin Belta. Language-
guided controller synthesis for discrete-time linear systems. In
Proceedings of the 15th ACM international conference on Hybrid
Systems: Computation and Control, pages 95–104, New York,
NY, USA, 2012.

[2] Christel Baier and Joost-Pieter Katoen. Principles of Model
Checking (Representation and Mind Series). The MIT Press,
2008.

[3] C. Belta, V. Isler, and G. J. Pappas. Discrete abstractions for robot
planning and control in polygonal environments. IEEE Trans. on
Robotics, 21(5):864–874, 2005.

[4] Dimitri P. Bertsekas. Dynamic Programming and Optimal Con-
trol. Athena Scientific, 2nd edition, 2000.

[5] A. Bhatia, L.E. Kavraki, and M.Y. Vardi. Motion planning with
hybrid dynamics and temporal goals. In Decision and Control
(CDC), 2010 49th IEEE Conference on, pages 1108 –1115, Dec.
2010.

[6] Christos G. Cassandras and Xuchao Lin. Optimal control
of multi-agent persistent monitoring systems with performance
constraints. In Danielle C. Tarraf, editor, Control of Cyber-
Physical Systems, volume 449 of Lecture Notes in Control
and Information Sciences, pages 281–299. Springer International
Publishing, 2013.

[7] Thomas M. Cover and Joy A. Thomas. Elements of Information
Theory. Wiley-Interscience, 2nd edition, 2006.

[8] Xu Chu Ding, C. Belta, and C.G. Cassandras. Receding horizon
surveillance with temporal logic specifications. In Decision and
Control (CDC), 2010 49th IEEE Conference on, pages 256 –261,
Dec. 2010.

[9] Austin Jones, Mac Schwager, and Calin Belta. A receding
horizon algorithm for informative path planning with temporal
logic constraints. In International Conference on Robotics and
Automation (ICRA), 2013.

[10] Austin Jones, Mac Schwager, and Calin Belta. Formal synthesis
of optimal information-gathering policies. IEEE Trans. on
Robotics, Submitted.

[11] M. Kloetzer and C. Belta. A fully automated framework for
control of linear systems from temporal logic specifications.
Automatic Control, IEEE Transactions on, 53(1):287 –297, feb.
2008.

[12] Orna Kupferman and Moshe Y. Vardi. Model checking of safety
properties. Formal Methods in System Design, 2001. volume 19,
pages 291-314.

[13] Hanna Kurniawati, Yanzhu Du, David Hsu, and Wee Sun Lee.
Motion planning under uncertainty for robotic tasks with long
time horizons. The International Journal of Robotics Research,
2010.

[14] Xiaodong Lan and M. Schwager. Planning periodic persistent
monitoring trajectories for sensing robots in gaussian random
fields. In Robotics and Automation (ICRA), 2013 IEEE Interna-
tional Conference on, pages 2415–2420, May 2013.

[15] C. E. Shannon. A mathematical theory of communication. Bell
System Technical Journal, 27:379–423,623–656, 1948.

[16] S. L. Smith, M. Schwager, and D. Rus. Persistent robotic
tasks: Monitoring and sweeping in changing environments. IEEE
Transactions on Robotics, 28(2):410–426, April 2012.

[17] Moshe Y. Vardi. An automata-theoretic approach to linear
temporal logic. In Logics for Concurrency: Structure versus
Automata, volume 1043 of Lecture Notes in Computer Science,
pages 238–266. Springer-Verlag, 1996.

[18] Boyan Yordanov, Jana Tumova, Ivana Cerna, Jiri Barnat, and
Calin Belta. Temporal logic control of discrete-time piece-
wise affine systems. IEEE Transactions on Automatic Control,
57:1491–1504, 2012.

6

!"!#

