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Abstract—We consider controlling a graph-based Markov
decision process (GMDP) with a control capacity constraint
given only uncertain measurements of the underlying state.
We also consider two special structural properties of GMDPs,
called Anonymous Influence and Symmetry. Large-scale spatial
processes such as forest wildfires, disease epidemics, opinion
dynamics, and robot swarms are well-modeled by GMDPs with
these properties. We adopt a certainty-equivalence approach
and derive efficient and scalable algorithms for estimating the
GMDP state given uncertain measurements, and for comput-
ing approximately optimal control policies given a maximum-
likelihood state estimate. We also derive sub-optimality bounds
for our estimation and control algorithms. Unlike prior work, our
methods scale to GMDPs with large state-spaces and explicitly
enforce a control constraint. We demonstrate the effectiveness of
our estimation and control approach in simulations of controlling
a forest wildfire using a model with 101192 total states.

Index Terms—Filtering, Markov processes, network analysis
and control, stochastic optimal control, and variational methods.

I. INTRODUCTION

IN this work, we consider the problem of producing a
control action, subject to a capacity constraint, given noisy

measurements for a class of discrete space and discrete time
graph-coupled Markov decision processes (GMDPs). Many
large-scale, dynamic spatial processes of recent interest are
described by these models, such as user interactions in a
social network [1], the spread of a contagion in a population
[2], and the spread of wildfire in a forest [3]. We consider
controlling such large scale network models by applying local-
ized control effort, for example supplying positive comments
by a subset of users in a social network, supplying medical
treatment to a subset of patients in a disease epidemic, or
supplying fire retardant to a subset of trees to control a forest
wildfire. Furthermore, controlling such natural phenomena is
only meaningful if the total control effort applied at each
instant is limited, which we call a control capacity constraint.
Otherwise, the optimal unconstrained policy is straightforward,
such as giving medicine to every individual at every time step
to prevent a disease outbreak, or applying fire retardant to
every tree at every time step to extinguish a forest wildfire.

In this work, we develop a certainty-equivalence approach
to provide a single framework capable of addressing realistic
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Figure 1: A forest wildfire modeled by a graph-based Markov
decision process (GMDP), where green are healthy trees, red
are trees on fire, and black are burnt trees. We propose a scal-
able framework to produce constrained control actions given
noisy measurements to control large-scale spatial phenomena
such as wildfires.

spreading phenomena which naturally contain state uncer-
tainty. To the best of our knowledge, our approach is the first
framework to consider the control of GMDPs with a control
constraint and measurement uncertainty.

For the graph-based models in this work, each vertex
in the graph corresponds to an MDP and edges between
vertices describe the coupling interactions between MDPs. In
addition, a measurement model is associated with each MDP
and describes the likelihood of observing different states of
the MDP. While the partially observable MDPs (POMDPs)
framework is appropriate for this type of model, it is difficult
to develop approximately-optimal methods that are suitable
for the model sizes we consider in this work using existing
POMDP tools. In addition, any candidate method must also
run in (near) real-time to be useful in the applications we
consider here. Therefore, we adopt a certainty-equivalence
approach and separate the problem into creating a filter to
produce accurate state estimates, and a controller to produce
effective constrained control actions given a state estimate.

We develop a fast online filtering method that is tractable
for GMDPs with large state spaces by leveraging variational
inference (VI) to derive a message-passing algorithm, which
is similar in spirit to belief propagation (BP) methods. Prior
work has proposed many variations of standard VI and BP
methods for a variety of problem formulations and model
assumptions. However, these methods do not scale to the
model sizes we consider in this work without sacrificing real-
time performance, and thus are not appropriate for our problem
formulation. We prove that our filter approximately optimizes
the evidence-based lower bound, and show that it achieves 5%
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to 10% better accuracy in two orders of magnitude less time
than comparable methods.

Our control approach, which produces actions that satisfy a
global capacity constraint, is based on approximate linear pro-
gramming (ALP) for MDPs. ALP methods can circumvent the
explicit enumeration of the state space, which is required by
standard value and policy iteration methods, by using a basis
function approximation of the optimal value function for the
underlying MDP problem. We first derive offline approximate
dynamic programming approaches and prove that our method
gives a value function with minimum deviation from the
optimal value function. We then consider a class of capacity-
constrained linear programs that has an efficient solution, so
that constrained actions based on the value approximation can
be produced online quickly.

Our framework is most appropriate for GMDPs with two
properties common in large-scale spatial processes, called
“Anonymous Influence” and “Symmetry.” A GMDP has
Anonymous Influence if the dynamics of a given MDP relies
on the number of influencing MDPs in particular states, and
not the identity of these influencing MDPs. Symmetry refers
to the insight that value approximations for a given MDP can
frequently be reused for other MDPs in the model, which
greatly reduces the complexity of our methods.

Earlier versions of some of the material in this work appear
previously in [3], [4]. In [3], we considered control of GMDPs
with perfect state information and in [4], we considered state
estimation of GMDPs without control. The current work brings
these two methods together to form a closed-loop estimation
and control framework for large-scale GMDPs.

The main contributions of this work are: (1) we propose a
unified framework to address the constrained control of large
GMDP models given only uncertain measurements; (2) we
derive an approximately-optimal filtering method to produce
accurate state estimates online; (3) we drive approximate
dynamic programming approaches to produce a value function
or a state-action function with sub-optimality bounds; (4) we
propose a class of constrained linear programs with straight-
forward solutions to use with our value approximations; and
(5) we show our approach is suitable for real-time online use,
and that other methods are not scalable or appropriate for our
problem formulation, on simulations of a forest wildfire model
with 101192 total states.

The remainder of this paper is organized as follows. Sec-
tion II reviews prior work. Section III describes the GMDP
framework with uncertain measurements, the Anonymous
Influence and Symmetry properties, and a forest wildfire
model. Sections IV and V present our certainty-equivalence
framework and the derivations of our filtering and control
methods. We present numerical results validating our approach
in Section VI and provide concluding remarks in Section VII.

II. PRIOR WORK

POMDPs. POMDPs are the most appropriate framework
for our problem formulation and methods have been proposed
for structured models, based on algebraic decision diagrams
[5], [6], factored value functions [7], [8], and policy graphs

[9]. Notably, the authors of [6] are able to solve models with
approximately 106 states, but this is still much smaller than the
models we wish to address. While prior work suggests some
appealing approximation methods, it is not clear how to adopt
them for online use. Furthermore, while exploration actions
help improve the state belief, they may sacrifice some perfor-
mance in controlling the process. We wish to maximize the
effectiveness of the control since we aim to control large-scale
natural disasters like forest wildfires and disease epidemics.
Contrary to POMDP methods, which are dominated by the
interleaving of filtering and control, we intentionally separate
the two. This leads to our methods being able to scale up
to problems with 101192 possible discrete states, well beyond
existing POMDP methods. We review individual control and
filter methods next.

Control Methods. Traditional MDP methods are inap-
propriate for GMDPs as the state and action spaces of the
aggregate MDP typically grow exponentially in the number of
constituent MDPs. The factored MDP (FMDP) [10] as well as
GMDP [11] frameworks have been formulated to compactly
represent structured MDPs. Nevertheless, the compact repre-
sentation does not translate to tractable exact solution methods
that are analogous to traditional methods [12]. Other work
[13], [14] has proposed structured policy iteration methods,
but do not consider control constraints which are integral to
our problem formulation.

Approximate linear programming (ALP) circumvents the
explicit enumeration of the value function over the state space
by using a basis function approximation. Efficient variable
elimination methods have been proposed [15], [16], [17] so
that all MDPs in the GMDP can be considered when comput-
ing the value function and policy. However, these approaches
are applied to model sizes that are several orders of magnitude
smaller than the ones we consider in this work.

Forsell et al. [11] use a specific basis function form to
derive an approach that results in solving a linear program
for each constituent MDP, which then results in a greedy
policy that is a combination of the individual approximations.
While our approach is similar in spirit, the authors do not
consider control constraints or state-action functions (i.e., Q-
functions), and their proposed basis approximation is not
suitable for our problem formulation, as we show in our
simulation experiments.

The assignment of limited control resources to a set of
coupled or decoupled MDPs has also been considered in liter-
ature. Constrained MDP formulations [18] allow explicit con-
trol constraints but require traditional MDP descriptions. Ap-
proximate methods have been proposed including Lagrangian
relaxation [19], [20], approximate dynamic programming [21],
[22], Monte Carlo tree search [23], and receding horizon
optimization [24]. However, these methods are intractable for
the high-dimensional state and action spaces of GMDPs. We
develop an approximate method for applying and satisfying a
global capacity constraint that is tractable for large GMDPs,
which is similar in spirit to [21].

Filter Methods. We consider graph-based models with
state uncertainty in which the equivalent graphical model
representation contains many cycles. Therefore, methods that
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rely on a tree structure (e.g., belief propagation) or assume
few cycles cannot be directly applied. Furthermore, we are
interested in producing a full posterior distribution over states
to quantify certainty in the state estimate, in contrast to a
maximum-likelihood estimate (e.g., Viterbi algorithm).

Particle filters can address some issues of online inference
for GMDP models [25]. However, the number of particles
required for a given accuracy increases with the state dimen-
sion [26] which is generally intractable for GMDPs. Proposed
approaches that have addressed this issue [27], [28], [29] are
appropriate for continuous dynamical system models and not
the discrete state space models we consider. Other methods
[2], [30], [31] have been applied to relatively large models
but do not scale to the model sizes we consider.

Variational inference (VI) methods have been applied to
relatively large discrete models for inference [32], [33], [34],
[35]. Notably, semi-implicit VI [35] optimizes bounds of the
evidence lower bound (ELBO), but these bounds are not
suitable for our approach and thus we develop our own ap-
proximation. While some methods [36] perform approximate
inference for large datasets, it is unclear how to adapt them for
online use as applications have been limited to relatively small
models [37]. Stochastic gradient methods typically require a
differentiable distribution whereas we estimate arbitrary dis-
crete distributions. Other methods [38] are based on exploiting
distribution structure which we do not require.

Belief propagation (BP) methods can be derived using
variational inference with energy approximations (e.g., Bethe
or Kikuchi). Loopy belief propagation (LBP) has been shown
to be effective in some discrete loopy graphical models [39]
and we use LBP as a benchmark method. Generalized belief
propagation (GBP) improves upon LBP [40] but incurs addi-
tional (worst-case exponential) complexity and is non-trivial
to apply generally. We emphasize that our approach does not
use these energy approximations.

In contrast, our filtering approach uses a logarithm approx-
imation to develop a message-passing scheme that approxi-
mates the Kullback–Leibler divergence typically used in VI
methods. The result of this approach is a combination of the
computational efficiency of message-passing methods with the
theoretical insight and effectiveness of variational inference
approaches.

In the next section, we review the GMDP framework,
discuss our structural assumptions, and introduce a model to
describe a forest wildfire.

III. GRAPH-BASED MARKOV DECISION PROCESSES

We describe the main aspects of the graph-based Markov
decision process (GMDP) framework [2]. Let G = (V, E) be
an undirected graph with vertex set V = {1, . . . , n} containing
n vertices and edge set E ⊆ V × V . Each vertex i ∈ V
corresponds to an MDP with latent state xti ∈ Xi, action
ati ∈ Ai, and measurement yti ∈ Yi at time t. See Fig. 2
for a visualization of the GMDP structure. In a GMDP, the
dynamics of MDP i are influenced by its neighbors, which
are defined as follows.

Figure 2: (top) An example GMDP consisting of three vertices,
each of which represents an MDP, where arrows indicate the
mutual influence between MDPs. (bottom) The underlying
graphical model of the example GMDP, where arrows indicate
influence between time steps.

Definition 1 (Neighbor Set). The neighbor set N (S) : S ⊆
V → T ⊆ V is defined as,

N (S) =
⋃
i∈S
{j | (j, i) ∈ E}.

In the case that S = {i}, this is the typical neighbor
set of vertex i. However, our notion of a neighbor set also
expresses the notion of neighbors of a set of vertices S ⊆ V .
For the neighbor set of MDP i, we let N ({i}) = N (i).
Subscripts indicate the latent states or measurements of a
subset of MDPs, for example xti for MDP i and xtN (i) =

{xtj | j ∈ N (i)} for the neighbors of MDP i. We likewise use
subscripts for the domain of variables, e.g., xtN (i) ∈ XN (i) =∏
j∈N (i) Xj . We omit the subscript for the combination of

all MDP states or measurements, xt = {xt1, . . . , xtn} ∈ X
and yt = {yt1, . . . , ytn} ∈ Y . Summing out (i.e., marginal-
izing) all MDP latent states from a distribution is denoted
by
∑
xt =

∑
xt
1
· · ·
∑
xt
n

. The marginalization of a subset of
variables is specified in the summation, e.g., marginalizing out
a neighbor set is

∑
xt
N(i)

.

The probability of transitioning from a state xti to xt+1
i for

an MDP in the GMDP model only depends on the current
state of the MDP xti, the state of its neighbors xtj in the graph,
and the MDP action ati. Hence the dynamics can be written
compactly as,

pi(x
t+1
i | xti, xtN (i), a

t
i). (1)

The dynamics for the aggregate state xt describing the com-
bination of all MDP states is then,

p(xt+1 | xt, at) =

n∏
i=1

pi(x
t+1
i | xti, xtN (i), a

t
i). (2)
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Measurements for each MDP are conditionally independent
given the state of the underlying MDP,

pi(y
t
i | xti),

and the measurement likelihood for the aggregate state is
described by the distribution,

p(yt | xt) =

n∏
i=1

pi(y
t
i | xti). (3)

Arbitrary measurement models, with pi(y
t
i | xti, xtM(i)) and

M(i) ⊆ V , can be used in our framework. However, for clarity
of exposition we consider each MDP measurement condition-
ally independent given the MDP state (i.e., M(i) = ∅), and
provide an additional case in the Appendix in which the MDP
measurement is conditionally independent given the states of
the MDP and its neighbors (i.e., M(i) = N (i)).

Finally, the reward function for the GMDP is additively
composed of individual reward functions ri which are associ-
ated with each MDP i,

R(xt, at, xt+1) =

n∑
i=1

ri(x
t
O(i)∪N (O(i)), a

t
O(i), x

t+1
O(i)). (4)

Each MDP reward function is defined over a subset of vari-
ables, O(i) ⊆ V ∀i ∈ V , and typically |O(i)| � |V|. Our
goal in controlling the GMDP is to find a control policy to
maximize the infinite-horizon discounted reward. Formally, we
seek a policy π(xt) which maximizes,

Jπ = E
[ ∞∑
t=1

γt−1R(xt, π(xt), xt+1) | x1, y1:t
]
,

where the expectation is conditioned on the the history of
measurements y1:t and the initial state x1, and is with respect
to the dynamics distribution (2) and the measurement distri-
bution (3). A capacity constraint is enforced on the action
at = π(xt), and γ is the discount factor. We emphasize that
maximizing this objective requires solving a high dimensional
POMDP which is intractable with typical methods, as we
cannot directly observe the underlying state xt. Therefore, we
separate the problem into two stages. First, we approximate the
Bayesian posterior p(xt | y1:t) and determine the maximum-
likelihood state x̂t of the posterior. Second, we solve the
control problem assuming perfect state knowledge using the
estimate x̂t in place of the unknown state xt to generate an
action at = π(x̂t).

A. Anonymous Influence

We consider the case where (1) is based on the number of
neighbors in particular states rather than the identity of these
neighbors. This property is called “Anonymous Influence” and
we summarize the relevant ideas [1], [17].

We use 1j(xi) to represent the indicator function which
equals one when xi = j and zero otherwise. For a set of
n discrete variables xi ∈ {0, 1, . . . ,D ∈ Z≥0}, the count
aggregator (CA) is a vector z ∈ ZD≥0 where each element
describes the number of variables taking on a particular value,
[z]j =

∑n
i=1 1j(xi) and j ∈ {0, 1, . . . ,D}. A mixed-mode

function (MMF) uses a CA, as well as other discrete arguments
not part of a CA, and maps to the real numbers R.

For a GMDP where all MDPs have the same discrete
domain xti ∈ {0, 1, . . . ,D}, the dynamics (1) for each MDP
requires specifying (D + 1)|N (i)|+1 values. If a CA zt−1i is
used to represent the influence of other MDPs, then (1) can
be represented by a MMF,

pi(x
t
i | xt−1i , xt−1N (i), a

t−1
i ) = pi(x

t
i | xt−1i , zt−1i , at−1i ), (5)

which requires specifying (D + 1) ·
(|N (i)|+D
|N (i)|

)
values, where(

n
j

)
is the binomial coefficient, a potentially significant re-

duction. We illustrate this property in the discussion of our
wildfire model in Section III-C.

B. Symmetry

If a GMDP consists of a comparatively small number of
unique “classes” of MDPs, we say it has symmetry. Two MDPs
i and j are in the same class k, denoted by i, j ∈ Ck, if
both MDPs have the same reward and dynamics functions.
We describe how these quantities define a class in Section V.

The n MDPs in a GMDP are partitioned into s ≤ n
unique classes, Ci ∩ Cj = ∅ ∀i 6= j, and

∑s
k=1|Ck| = n.

Many domains contain a graph topology with many MDPs but
few classes. Methods that require enumerating the state space
scale exponentially with the number of MDPs and quickly
become intractable. In contrast, our control approach exploits
Symmetry to instead scale with the number of classes.

C. Example GMDP: Forest Wildfires

We now introduce a model that describes the spread of a
wildfire in a forest, to illustrate the GMDP modeling frame-
work and our structural assumptions. The forest is modeled
as a finite 2D lattice of dimensions L × W with LW total
nodes; see Fig. 1. Each node i ∈ {1, . . . , LW} on the lattice
represents a tree and the tree state xti is one of three values,
Xi = {H,F,B} = {healthy, on fire, burnt}. An undirected
graph is used to represent the trees and influence between
trees, with the vertex set V = {1, . . . , LW}. Edges exist
between trees if they are neighbors on the lattice. Table I
summarizes the dynamics where f ti =

∑
j∈N (i) 1F (xtj) is the

number of neighboring trees on fire.
A tree that is healthy transitions to on fire only if at least

one tree in its neighbor set is on fire where α describes the
likelihood of fire spreading from a tree on fire to a healthy
tree. A tree on fire will either remain on fire or transition to
burnt in a single time step. The parameters β and ∆β describe
the average number of time steps a fire will persist and the
effectiveness of control actions, respectively. Control actions
are binary and reflect the choice of whether or not to apply
fire retardant on a tree, ati = {0, 1}. Finally, a tree that is burnt
will remain burnt for all time.

The measurement model for each tree is parameterized by
the probability pc, which is the probability of the ground
truth tree state being observed. The other two tree states are



HAKSAR AND SCHWAGER: LARGE GRAPH-BASED MDPS 5

Table I: Tree transition probabilities for wildfire model. Blank
entries are zero.

xt+1
i

H F B

xti

H 1 − αf ti αf ti
F β − ∆ati 1 − β + ∆βati
B 1

observed with probability 1
2 (1− pc). The measurement model

is thus,

p(yti | xti) =

{
pc if yti = xti,
1
2 (1− pc) if yti 6= xti.

(6)

Without mixed-mode functions (MMFs), the domain of the
MDP dynamics pi contains |Xi||XN (i)||Ai| = 6 · 3|N (i)|

elements and is exponential in the number of neighbors |N (i)|.
Since the probability for a healthy tree to transition to on
fire depends on whether or not its neighboring trees are on
fire and not the identity of these trees, a MMF reduces the
representation size. With a MMF, the domain of pi is reduced
to (|N (i)|+ 1)|Xi||Ai| = 6(|N (i)|+ 1) values, which is now
linear in |N (i)|.

The aggregate state space of the wildfire model has 3LW

state configurations. A 100 tree forest has more states than
there are grains of sand on Earth and a 250 tree forest has
more states than atoms in the universe [41]. Therefore, using
MMFs to represent tree dynamics and exploiting Symmetry is
essential to building a tractable online framework, which we
describe next.

IV. EFFICIENT ONLINE FILTER FOR GMDPS

We adopt a certainty-equivalence approach and decompose
the problem into two parts: a process filter to produce accurate
maximum-likelihood estimates of the underlying state, and
a process controller to produce effective constrained actions
given a state estimate. Algorithm 1 provides a high-level
overview of our framework. First, a value function approx-
imation is produced offline by solving linear programs to
determine the weights of the chosen basis functions. Second, a
fast filter produces online estimates of the process state, which
is used in a linear program to determine a control action that
satisfies a capacity constraint. In the remainder of this section,
we describe our filtering approach.

Given the previous control action at−1, the GMDP can be
considered a graph-based hidden Markov model (GHMM),
where each node in the graph refers to a HMM (previously, an
MDP). A HMM can be considered an MDP that has no action
input and only noisy state information is available. Therefore,
for the following discussion, we use HMM terminology in our
derivation of a scalable approximate filter. The objective of a
filter at a single time step is to produce the posterior distribu-
tion p(xt | y1:t) where y1:t is the history of measurements up

Algorithm 1 Certainty-equivalent Framework

1: Offline
2: Solve linear program(s) for basis functions weights of

approximate function Vw(xt) or Qw(xt).
3:
4: Online
5: for each time step t do
6: Get measurement.
7: Update state estimate using filter with measurement.
8: Solve linear program to get constrained control

action for the state estimate.
9: Apply control action.

to time t, y1:t = {y1, . . . , yt}. The exact filter is derived via
Bayes’ rule and is a recursive relationship,

p(xt | y1:t)

∝ p(yt | xt)
∑
xt−1

p(xt | xt−1, at−1)p(xt−1 | y1:t−1),

which is initialized by a prior at the initial time step, p(x1).
Expanding with (2) and (3), the recursive Bayesian filter (RBF)
[42] for the models considered in this work is,

p(xt | y1:t) ∝
( n∏
i=1

pi(y
t
i | xti)

)
(∑
xt−1

p(xt−1 | y1:t−1)

n∏
i=1

pi(x
t
i | xt−1i , xt−1N (i), a

t−1
i )

)
.

(7)

The above expression does not simplify to a tractable form
as we allow for arbitrary graph structure. In particular, the
graphical model representation of the graph G may contain
many cycles (or loops), as is the case for the lattice-based
graph in our wildfire model. See Fig. 2 for a graphical model
representation of a simple GMDP as well as its equivalent
Dynamic Bayesian Network representation.

Variational inference (VI) methods formulate an optimiza-
tion problem to approximate an intractable posterior distri-
bution [43]. The RBF (7) requires (

∏n
i=1|Xi|) − 1 values to

specify p(xt−1 | yt−1) and is intractable to compute for even
a single time step despite the graph structure. For example,
our wildfire model with 250 total trees has 10119 total states.
Therefore, we use VI to introduce a family of distributions
q(xt) ∈ Q to approximate the posterior p(xt | y1:t) which
ideally minimizes the Kullback-Leibler (KL) divergence be-
tween the two distributions. However, directly minimizing the
KL divergence is infeasible due to requiring knowledge of the
posterior. Instead, a tractable optimization is maximizing the
evidence lower bound (ELBO) which indirectly minimizes the
KL divergence. The ELBO is,

ELBO = Eq(xt)

[
log p(xt, yt | y1:t−1)− log q(xt)

]
, (8)

where Eq(xt) indicates the expectation is taken with respect
to the distribution q(xt). Choosing an appropriate form for
the approximating distribution q(xt) results in an optimization
problem with a tractable solution, as we explain next.

We leverage the mean-field approximation where the ap-
proximating distribution is factored, q(xt) =

∏n
i=1 qi(x

t
i), and
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a discrete distribution (or variational factor) is associated with
each HMM in the GHMM. This approximation reduces the
representation size of the posterior and leads to,

ELBO =
∑
xt

( n∏
i=1

qi(x
t
i)
)

log p(xt, yt | y1:t−1)−

n∑
i=1

∑
xt
i

qi(x
t
i) log qi(x

t
i),

after substitution of q(xt) and algebraic simplification. A
common approach, known as coordinate ascent VI, finds a
local optimum by iteratively optimizing each factor qi(xti)
while holding others fixed. The update expression for each
factor is derived by collecting the terms in the ELBO which
involve factor qi(xti),

ELBO =
∑
xt
i

qi(x
t
i)E−i

[
log p(xt, yt | y1:t−1)

]
−

∑
xt
i

qi(x
t
i) log qi(x

t
i) + other terms,

(9)

where E−i refers to the expectation taken with respect
to the distribution q(xt) excluding factor qi(x

t
i), i.e.,∏n

j=1,j 6=i qj(x
t
j). For the optimization of (9) over a single

factor, the “other terms” are dropped as they are constant with
respect to factor qi(xti). As a result, the expression in (9) can
be rewritten as the following objective function,

Li = −DKL(qi(x
t
i) || expE−i

[
log p(xt, yt | y1:t−1)

]
),
(10)

where DKL is the KL divergence. Since the KL divergence is
non-negative and equals zero when the argument distributions
are identical, maximizing Li leads to the closed-form update
expression,

qi(x
t
i) ∝ expE−i

[
log p(xt, yt | y1:t−1)

]
. (11)

We emphasize that arbitrary graph structure prevents sim-
plification of the previous expression through structure in
log p(xt, yt | y1:t−1).

A. Approximating the ELBO

For GHMMs with the mean-field assumption, the coordinate
ascent update (11) for a single time step requires computing
the joint probability,

p(xt, yt | y1:t−1)

∝ p(yt | xt)
∑
xt−1

p(xt | xt−1, at−1)p(xt−1 | y1:t−1)

∝
n∏
i=1

pi(y
t
i | xti)

∑
xt−1

n∏
i=1

pi(x
t
i | xt−1i , xt−1N (i), a

t−1
i )ui(x

t−1
i ),

(12)
where r(xt−1) =

∏n
i=1 ui(x

t−1
i ) ≈ p(xt−1 | yt−1) is the ap-

proximate factored prior distribution. Computing this quantity
is typically intractable due to the required marginalization of
all n HMMs.

Instead, a tractable computation of E−i
[
p(yt, xt | y1:t−1)

]
is possible using a message-passing scheme. We first discuss

necessary approximations to the ELBO (8) and then describe
the scheme . We assume the joint probability satisfies a lower
bound, p(yt, xt | y1:t−1) ≥ ε for some 0 < ε < 1. Given
a bound ε, an under-approximation to the logarithm function
over the interval [ε, 1] is the line,

g(θ) =
log ε

1− ε
(1− θ) , (13)

and g(θ) ≤ log θ for θ ∈ [ε, 1]. Using (13) to approximate
log p(xt, yt | y1:t−1) in (8) results in a surrogate ELBO,

ELBO = Eq(xt)

[
g
(
p(xt, yt | y1:t−1)

)
− log q(xt)

]
. (14)

Theorem 1. Given ε > 0 such that ε ≤ p(xt, yt | y1:t−1) ≤ 1,
the surrogate ELBO (14) is a lower bound to the original
ELBO (14).

Proof. The difference between the surrogate ELBO (14) and
the ELBO (8) is,

ELBO− ELBO

= Eq(xt)

[
log p(xt, yt | y1:t−1)− log q(xt)

]
−

Eq(xt)

[
g
(
p(xt, yt | y1:t−1)

)
− log q(xt)

]
= Eq(xt)

[
log p(xt, yt | y1:t−1)

]
−

Eq(xt)

[
g
(
p(xt, yt | y1:t−1)

)]
≥ 0

⇒ ELBO ≥ ELBO ∀xt, yt.
The expectation operator is linear and thus preserves the lower
bound relationship of the approximation (13) to the logarithm
function. The lower bound is valid for any combination of
states xt and measurements yt as the joint probability is
bounded below by ε.

Maximizing the surrogate ELBO (14) over the factors qi(xti)
therefore indirectly maximizes the ELBO (9). Following the
same derivation for the ELBO, the factor objective (10) for
the surrogate ELBO is,

L̂i = −DKL(qi(x
t
i) || expE−i

[
g
(
p(xt, yt | y1:t−1)

)]
).

The coordinate update (11) changes to,

qi(x
t
i) ∝ expE−i

[
g
(
p(xt, yt | y1:t−1)

)]
∝ exp g

(
E−i

[
p(xt, yt | y1:t−1)

])
,

(15)

and the factors are now a function of the expectation of the
joint probability, as desired, due to the linear approximation.

Remark. Imposing a lower bound on the joint probability
(12) precludes combinations of states and observations that
have zero probability of occurring. In practice, we round
estimates of (12) lower than ε up to ε, which has the effect of
introducing noise into the joint probability. For large GHMM
models, probabilities naturally tend to zero, e.g., the aggregate
state distribution (2) and observation distribution (3), since
the product of probabilities less than one will approach zero.
This approximation can therefore be seen as preventing the
expectation in (15) from being zero for all states xti prior to
updating the posterior factor qi(xti). In addition, after updating
a posterior factor with (15), state probabilities lower than ε
are rounded to zero before normalizing the distribution. This
is used to preserve the idea that some state transitions must
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be considered impossible, e.g., a healthy tree transitioning to
on fire without any neighboring trees being on fire. We show
through numerical simulations in Section VI that this approach
is effective. Finally, ε is a tuning parameter and is chosen to
be a small positive value to avoid excessively influencing the
posterior factors.

B. Message-passing Scheme

We now build a tractable message-passing scheme to esti-
mate the quantity E−i

[
p(xt, yt | y1:t−1)

]
required in (15) for

each coordinate update. Substituting (12) leads to,

E−i
[
p(xt, yt | y1:t−1)

]
∝∑

{xt
j |j∈V,j 6=i}

( n∏
j=1
j 6=i

qj(x
t
j)
)( n∏

i=1

pi(y
t
i | xti)

)
(∑
xt−1

n∏
i=1

pi(x
t
i | xt−1i , xt−1N (i), a

t−1
i )ui(x

t−1
i )

)
.

(16)

The message-passing scheme works as follows. Each HMM
in the GHMM maintains an estimate of its posterior factor,
qki (xti), and an estimate of (16), Eki (xti); the superscript k
on these quantities, and other quantities below, refers to the
kth estimate. For each iteration k of the scheme, each HMM
i receives messages from the neighbor HMMs j ∈ N (i)
and generates estimate Eki (xti). This estimate then updates
the posterior factor using (15). Lastly, an updated message
is calculated for the next iteration k + 1.

The development of a message-passing scheme requires
recognizing a recursive structure in the information that must
be shared for each HMM to compute (12). We illustrate this
structure and derive the required messages by describing the
first two iterations of the scheme for a given HMM i.

The first iteration E1
i considers information from the neigh-

bor HMMs j ∈ N (i),

E1
i (xti) ∝

[
pi(y

t
i | xti)

]∑
xt−1
i

ui(x
t−1
i )

[ ∑
xt−1
N(i)

pi(x
t
i | xt−1i , xt−1N (i), a

t−1
i )

∏
j∈N (i)

uj(x
t−1
j )

]
.

(17)

The second iteration E2
i considers information from the neigh-

bors N (i) and the neighbors of neighbors
⋃
j∈N (i)N (j),

E2
i (xti) ∝ pi(y

t
i | xti)

∑
xt−1
i

ui(x
t−1
i )

∑
xt−1
N(i)

pi(x
t
i | xt−1i , xt−1N (i), a

t−1
i )

∏
j∈N (i)

uj(x
t−1
j )

∑
xt
j

q1j (xtj)

[
pj(y

t
j | xtj)

∑
xt−1
N(j)

pj(x
t
j | xt−1j , xt−1N (j), a

t−1
j )

∏
l∈N (j)

ul(x
t−1
l )

]
.

(18)

Note that the above expression assumes that HMM i is not
a part of the neighbors of HMMs j ∈ N (i), i.e., that
i /∈ N (j) ∀j ∈ N (i). This is a simplifying assumption to
approximately include information from the neighbor set, as

we do not assume any simplifying structure; see the Remark
at the end of Section IV-C. There is a common structure in
the first (17) and second (18) iterations, as indicated by the
large brackets in both expressions. Define d1i as the following
quantity,

d1i (x
t−1
i , xti) = pi(y

t
i | xti)∑

xt−1
N(i)

pi(x
t
i | xt−1i , xt−1N (i), a

t−1
i )

∏
j∈N (i)

uj(x
t−1
j ). (19)

The second iteration (17) then simplifies to,

E1
i (xti) ∝

∑
xt−1
i

ui(x
t−1
i )d1i (x

t−1
i , xti). (20)

In addition, the second iteration (18) simplifies to,

E2
i (xti) ∝ pi(yti | xti)

∑
xt−1
i

ui(x
t−1
i )

∑
xt−1
N(i)

pi(x
t
i | xt−1i , xt−1N (i), a

t−1
i )

∏
j∈N (i)

[
uj(x

t−1
j )

∑
xt
j

q1j (xtj)d
1
j (x

t−1
j , xtj)

]
,

(21)

by using information computed by the neighbor HMMs j ∈
N (i) during the first iteration of the scheme, d1j . Notably, the
simplified second iteration (21) now only requires information
from the neighbors N (i), as indicated by brackets. If the
neighbors produce a message to share,

m1
j (x

t−1
j ) ∝ uj(xt−1j )

∑
xt
j

q1j (xtj)d
1
j (x

t−1
j , xtj),

then the second iteration (21) further simplifies,

E2
i (xti) ∝

[
pi(y

t
i | xti)

]∑
xt−1
i

ui(x
t−1
i )

[ ∑
xt−1
N(i)

pi(x
t
i | xt−1i , xt−1N (i), a

t−1
i )

∏
j∈N (i)

m1
j (x

t−1
j )

]
.

(22)

Finally, (22) shares a common structure with the first iteration
(17), as indicated by brackets. If d2i is defined as the following
quantity for the second iteration,

d2i (x
t−1
i , xti) = pi(y

t
i | xti)∑

xt−1
N(i)

pi(x
t
i | xt−1i , xt−1N (i), a

t−1
i )

∏
j∈N (i)

m1
j (x

t−1
j ), (23)

then the second iteration E2
i simplifies again to,

E2
i (xti) ∝

∑
xt−1
i

ui(x
t−1
i )d2i (x

t−1
i , xti),

which mirrors the form of the simplified first iteration (20).
By initializing the messages as the prior for all HMMs,
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m0
i (x

t−1
i ) = ui(x

t−1
i ), the quantity dki can be written gen-

erally as,

dki (xt−1i , xti) = pi(y
t
i | xti)∑

xt−1
N(i)

pi(x
t
i | xt−1i , xt−1N (i), a

t−1
i )

∏
j∈N (i)

mk−1
j (xt−1j ). (24)

Subsequent iterations Eki , k ≥ 3 continue to incrementally add
influence from additional HMMs in the GHMM to improve
the estimate of (16).

Using the general form of dki , the estimate of the joint
probability computed by HMM i at iteration k is,

Eki (xti) ∝
∑
xt−1
i

ui(x
t−1
i )dki (xt−1i , xti)

≈ E−i
[
p(xt, yt | y1:t−1)

]
,

(25)

and qki (xti) is updated by using the above estimate with (15).
Lastly, the updated message that is shared by each HMM at
the next iteration is,

mk
i (xt−1i ) ∝ ui(xt−1i )

∑
xt
i

qki (xti)d
k
i (xt−1i , xti). (26)

Using (13) moves the expectation into the argument of
(15) which allows the posterior factors to be used for
marginalization of (16). This property is key for creating
a tractable message-passing method. Otherwise, the quantity
E−i

[
log p(xt, yt | y1:t−1)

]
is not tractable to compute as we

do not allow for simplification based on the graph structure of
the GHMM, on the properties of distributions for the posterior
factors, or other properties. In addition, the estimates (25) are
normalized to estimate the normalization constant of the joint
probability (12), since the approximation (13) does not allow
this constant to be factored out.

The previous derivation is based on a model where each
MDP measurement is conditionally independent of other
MDPs given its own state, i.e., measurement models of the
form p(yti | xti). In general, MDP measurements may be
influenced by other MDPs as well, and we provide a derivation
for the model p(yti | xti, xtN (i)) in the Appendix to consider a
broader class of GMDP models with state uncertainty.

C. Simplifying with Anonymous Influence

Computing dki (24) may be intractable as marginalizing out
xt−1N (i) requires considering

∏
j∈N (i)|Xj | values. If a HMM

has many neighbors (large |N (i)|) or if the neighbors have
large state spaces |Xj | then the computational cost may be
significant. Therefore, we now exploit Anonymous Influence
to address this potential issue. If the dynamics (1) of a HMM
rely on a count aggregator (CA) (as shown in (5)), then it is
useful to create a mixed-mode function (MMF) m̃k−1

i (zt−1i )
to represent the received neighbor messages. Using this MMF
leads to the modified form of dki ,

dki (xt−1i , xti) = pi(y
t
i | xti)∑

zt−1
i

pi(x
t
i | xt−1i , zt−1i , at−1i )m̃k−1

i (zt−1i ). (27)

Algorithm 2 Relaxed Anonymous Variational Inference
(RAVI) for time step t

1: Input: prior factors ui(xt−1i ), graph G, actions at−1i ,
dynamics pi(xti | x

t−1
i , xt−1N (i), a

t−1
i ),

measurements yti and models pi(yti | xti)
2: Output: posterior factors qi(xti)
3: Parameters: iteration limit Kmax, lower bound ε,

convergence criteria
4: for each vertex i do
5: initialize message m0

i (x
t−1
i ) = ui(x

t−1
i )

6: initialize factor q0i (xti)

7: for iteration k = 1, . . . ,Kmax do
8: for each vertex i ∈ V do
9: Receive messages {mk−1

j (xt−1j ) | j ∈ N (i)}
10: Compute dki (xt−1i , xti) with (24) or (27)
11: Estimate Eki (xti) using (25)
12: Update qki (xti) by (15)
13: Compute mk

i (xt−1i ) with (26)
14: if factors qki (xti) converge then terminate early
15: return posterior factors qi(xti) = qki (xti)

The marginalization for (27) is now with respect to zt−1i which
has lower computational cost.

Algorithm 2, Relaxed Anonymous Variational Inference
(RAVI), summarizes the approximate filter for a single time
step. The factors qi(xti) are then used as the priors ui(xti)
for the next time step. The main component is the message-
passing scheme, which is relatively straightforward to imple-
ment. The posterior factors are initialized to any valid discrete
distribution (line 6) and the algorithms runs for a fixed number
of iterations Kmax unless the factors converge (line 14).

Remark. Our filtering approach is based on two key approxi-
mations, an approximate lower bound on the joint probability
(12) and a message-passing scheme to approximate the ex-
pectation of the joint probability (16). Variational Inference
techniques commonly rely on approximations and simplifi-
cations, such as other bounds of the ELBO [35], the mean-
field approximation [43], conjugate distributions [44], or the
presence of tractable substructures [45]. These approximations
are necessary to reduce the optimization of the ELBO to a
tractable optimization. Furthermore, Loopy Belief Propagation
(LBP) approximates computing marginals on a cyclic graph
with a message-passing scheme, and has been shown to be
accurate in a variety of applications [39]. Our focus in this
work is to develop a probabilistic approach with a focus on
scalability and performance, which we demonstrate with our
simulation results in Section VI.

V. SCALABLE CONSTRAINED CONTROL OF GMDPS

We now derive approximately optimal controllers that use
a maximum-likelihood estimate from our approximate filter
to produce a constrained control action. We present two
approaches, one based on approximate value functions, and
another based on approximate state-action functions. The use
of approximate value functions is more common in prior
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work, but its more difficult to enforce a capacity constraint
on the control action. In contrast, state-action functions are
less studied in relevant prior work, but are easier to use
with our capacity-constrained formulations, as we discuss in
Section V-C. We present both approaches to provide a broader
set of tools for controlling large-scale natural phenomena.

We assume binary actions, ati ∈ {0, 1} ∀i ∈ V , and enforce
a capacity constraint where the feasible action set at each time
step is,

Ac = {at ∈ A |
n∑
i=1

ati ≤ C}, (28)

and C ∈ Z≥0 is the maximum allowed capacity. We first derive
an approach based on approximate value functions.

A. Approximate Value Functions

We consider approximate value functions which are a sum
of local basis functions,

Vw(xt) =

n∑
i=1

wTi hi(x
t
O(i)), (29)

which mirrors the structure of the reward function (4), where
wi ∈ Rki and hi : XO(i) 7→ Rki . Each basis function
hi typically relies on state information from a few MDPs,
O(i) ⊆ V and |O(i)| � |V|. The purpose of this basis rep-
resentation is to leverage the additive structure of the reward
function and to greatly reduce the complexity of solving a
linear program to determine the approximate value function.
We use the following bound from [46] to derive a tractable
method for solving for the weights of the value function, and
for determining the approximation error relative to the optimal
value function.

Proposition 1 (Value function approximation error [46]). The
maximum difference between an approximate value function
Vw(xt) and the optimal value function V ?(xt) is δ =
max
xt∈X

|Vw(xt)− V ?(xt)| and is bounded,

δ ≤ 2γ

1− γ
max
xt∈X

|Vw(xt)− (BVw)(xt)|,

where (BV )(xt) is the Bellman operator for value functions,

(BV )(xt) = max
at∈A

Ep
[
R(xt, at, xt+1) + γV (xt+1)

]
,

and the expectation is taken with respect to the dynamics
model p(xt+1 | xt, at).

This bound is useful as the right hand side (R.H.S.) in-
volves quantities that can be approximated and minimizing the
R.H.S. explicitly minimizes the approximation error relative
to the optimal value function. In the following discussion,
we occasionally omit the argument of functions for clarity.
Minimizing φ = max

xt∈X
|Vw(xt)− (BVw)(xt)| leads to the non-

linear program,

min
wi∈Rki

φ∈R

φ

s. t. φ ≥ Vw(xt)− (BVw)(xt),

φ ≥ (BVw)(xt)− Vw(xt),∀xt ∈ X ,

(30)

where the Bellman operator for the models considered in this
work is,

(BVw)(xt) = max
at∈Ac

Ep

[
n∑
i=1

ri + γwTi hi(x
t+1
O(i))

]

= max
at∈Ac

n∑
i=1

Ep
[
ri + γwTi hi(x

t+1
O(i))

]
,

with the expectation taken with respect to the aggregate
dynamics model (2). Computing operations over the full
state space and the feasible action set is intractable so we
develop upper and lower bounds, (BVw)(xt) ≤ (BVw)(xt) ≤
(BVw)(xt). With these bounds, the following constraints are
imposed,

φ ≥ Vw(xt)− (BVw)(xt) ≥ Vw(xt)− (BVw)(xt),

φ ≥ (BVw)(xt)− Vw(xt) ≥ (BVw)(xt)− Vw(xt),∀xt ∈ X ,

and the original non-linear program constraints are still satis-
fied. Let the expected immediate reward and future value for
every MDP be,

gi(x
t
O(i)∪N (O(i)), a

t
O(i)) = Ep

[
ri + γwTi hi

]
.

A lower bound is any action that satisfies the constraint. We
use ati = 0 ∀i ∈ V and denote this action at,

(BVw) =

n∑
i=1

gi(x
t
O(i)∪N (O(i)), a

t
O(i)).

An upper bound is an over-approximation of the constrained
Bellman operator by removing the capacity constraint and
instead maximizing over the set of actions for each summand,

(BVw) =

n∑
i=1

max
at
O(i)

gi(x
t
O(i)∪N (O(i)), a

t
O(i)).

Removing the constraint over-approximates the value of each
MDP but is critical in dividing the original intractable non-
linear program into n tractable programs. The constraints in
(30) simplify to,

φ ≥
n∑
i=1

−wTi hi + max
at
O(i)

gi(x
t
O(i)∪N (O(i)), a

t
O(i)),

φ ≥
n∑
i=1

wTi hi − gi(xtO(i)∪N (O(i)), a
t
O(i)),∀x

t ∈ X .
(31)

We now decompose the approximation error, φ =
∑n
i=1 φi, to

impose the following constraints instead,

φi ≥ −wTi hi + max
at
O(i)

gi(x
t
O(i)∪N (O(i)), a

t
O(i)),

φi ≥ wTi hi − gi(xtO(i)∪N (O(i)), a
t
O(i)),∀x

t
O(i)∪N (O(i)).

This over-approximates φ by adding structure to the error
contribution of each MDP but reduces the coupled non-linear
program into n separate non-linear programs. In addition, the
constraints in (31) are still satisfied after adding this structure.
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The maximum operator is then replaced by adding a constraint
for each action which results in the linear program,

min
wi∈Rki

φi∈R

φi

s. t. φi ≥ −wTi hi(xtO(i)) + gi(x
t
N (O(i)), a

t
O(i)),

∀xtO(i)∪N (O(i)), a
t
O(i).

φi ≥ wTi hi(xtO(i))− gi(x
t
O(i)∪N (O(i)), a

t
O(i)),

∀xO(i)∪N (O(i)).

(32)

Each program contains ki + 1 variables and
|XO(i)∪N (O(i))|

(
|AO(i)|+ 1

)
constraints, and there is

one linear program associated with each MDP in the GMDP.
The quantity φ =

∑n
i=1 φi is a sub-optimality estimate of

Vw compared to the optimal value function V ?. Furthermore,
we can exploit Symmetry to reduce the number of programs
that must be solved, as typically multiple MDPs will have
identical solutions φi, wi. In particular, we use the same basis
approximation for all MDPs in the same equivalence class.

Theorem 2. For a GMDP containing s ≤ n equivalence
classes, the value function ALP method requires solving s
linear programs and

∑s
k=1|Ck|φk is the sub-optimality error.

Proof. The constraints in Program (32) are uniquely defined
by the reward function ri, dynamics pi, and basis approxima-
tion wTi hi. By definition, all MDPs in the same equivalence
class have identical reward functions ri and dynamics pi.
Therefore, using the same basis approximation wTi hi for
all MDPs in the same equivalence class results in identical
Programs (32). As a result, for n equivalence classes, the
solution to each program is unique as no two MDPs share the
same class. When there are s < n classes, there are at most s
unique solutions for all n linear programs. In this case, only
one linear program per equivalence class must be solved as
the solution for the per-MDP program (32) is identical for all
MDPs within a class.

B. Approximate State-Action Functions

We now derive a novel ALP approach to produce a state-
action function (i.e., a Q-function) to approximate a con-
strained value function. Our approximate state-action function
approach is based on the following bound from [46].

Proposition 2 (State-action function approximation error
[46]). The difference δ = max

xt∈X
|Vw(xt)−V ?(xt)| is bounded

by the maximum difference between the approximate state-
action function Qw(xt, at) and the Bellman operator on
Qw(xt, at),

δ ≤ 2

1− γ
max

xt∈X ,at∈A
|Qw(xt, at)− (BQw) (xt, at)|,

where (BQ) (xt, at) is the Bellman operator for state-action
functions,

(BQ) (xt, at) =

Ep
[
R(xt, at, xt+1) + γ max

at+1∈A
Q(xt+1, at+1)

]
.

We assume the approximate state-action function Qw form,

Qw(xt, at) =

n∑
i=1

wTi bi(x
t
O(i)) + atiw

T
i ci(x

t
O(i)), (33)

with wi ∈ Rki and bi, ci : XO(i) ⊆ X 7→ Rki , specifically for
our capacity constrained formulations which we describe in
the next section. Minimizing φ = max

xt∈X ,at∈Ac

|Qw(xt, at) −
(BQw) (xt, at)| results in the non-linear program,

min
wi∈Rki

φ∈R

φ

s. t. φ ≥ Qw(xt, at)− (BQw)(xt, at)

φ ≥ (BQw)(xt, at)−Qw(xt, at),

∀xt ∈ X , at ∈ Ac,
where the non-linearity is due to the maximization in the
Bellman operator. We follow a similar procedure as before
to develop a tractable and scalable method. The constrained
Bellman operator is,

(BQ) (xt, at) = Ep
[ n∑
i=1

ri(x
t
O(i)∪N (O(i)), a

t
O(i), x

t+1
O(i)) + . . .

γ max
at+1∈Ac

n∑
i=1

wTi bi(x
t+1
O(i)) + at+1

i wTi ci(x
t+1
O(i))

]
.

We construct upper and lower bounds for the constrained
Bellman operator to instead impose the constraints,

φ ≥ Qw(xt, at)− (BQw)(xt, at),

φ ≥ (BQw)(xt, at)−Qw(xt, at),∀xt ∈ X , at ∈ Ac.
Function arguments are omitted at times for clarity in the
following discussion. A lower bound is any action at+1

that satisfies the control constraint. A convenient choice is
at+1
i = 0 ∀i ∈ V thus,(

BQw
)

=

n∑
i=1

Ep
[
ri + γwTi bi

]
.

An upper bound is found by removing the capacity constraint
and choosing actions to improve the total value of Qw,(

BQw
)

=

n∑
i=1

Ep
[
ri + γwTi bi + γmax{0, wTi ci}

]
.

The maximization in the upper bound is replaced by two linear
constraints and the error φ is decomposed as a sum

∑n
i=1 φi.

The result is the following per-MDP linear program,

min
wi∈Rki

φi∈R

φi

s. t. φi ≥ wTi bi + atiw
T
i ci − Ep

[
ri + γwTi bi

]
,

φi ≥ Ep
[
ri + γwTi bi

]
− wTi bi − atiwTi ci,

φi ≥ Ep
[
ri + γwTi bi + γwTi ci

]
− wTi bi − atiwTi ci,

∀xtO(i)∪N (O(i)), a
t
O(i).

(34)
Each program contains ki + 1 variables and
3|XO(i)∪N (O(i))||AO(i)| constraints. Solving Program (34) for
each MDP does not enforce that the total control effort will
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satisfy the capacity constraint. However, allowing infeasible
actions results in a more conservative approximation of the
true constrained value function since adding constraints to
Program (34) cannot lower the error φi. Similar to Theorem 2,
we again exploit Symmetry to reduce the number of linear
programs that must be solved, by using the same basis
approximation for all MDPs in the same equivalence class.

Theorem 3. For a GMDP containing s ≤ n unique equiva-
lence classes, the approximate state-action function Qw ALP
method requires solving s linear programs and

∑s
k=1|Ck|φk

is the approximation error.

Proof. The approximate state-action function Qw is deter-
mined after solving for the weights wi. The Program (34) for
two MDPs have identical solutions wi, φi if both are in the
same equivalence class and the same basis functions are used.
Therefore, for n classes, n programs are solved to determine
Qw. Only s programs are solved for s < n classes as the
solution is identical for all MDPs in the same class.

C. Capacity Constrained Programs

In the previous two sections, we derived methods for
constructing an approximate value or state-action function.
However, it is still necessary to extract a policy, which may be
non-trivial given the

(
n
C

)
possible feasible constrained actions.

Therefore, we now introduce a class of linear programs that
have a capacity constraint and an explicit solution, and then
discuss building a policy for an approximate value or state-
action function.

Proposition 3 (Capacity Constrained Linear Program). The
integer linear program,

max
at∈Ac

λ+

n∑
i=1

µia
t
i, (35)

where λ, µi ∈ R, has an explicit solution. Assume that µ1 ≥
µ2 ≥ · · · ≥ µn. An optimal solution is,

ati =

{
1 if i ≤ C and µi ≥ 0,

0 otherwise.
(36)

Proof. The values µi can always be sorted a priori. The
solution is optimal as changing it cannot improve the objec-
tive. Consider an optimal solution described as ati = 1 for
i ∈ {1, . . . , j} with j ≤ C and zero otherwise. If j = C, then
choosing atk = 1 for any k > j will violate the constraint.
If j < C, then choosing atk = 1 for j < k ≤ C lowers the
objective as µk must be negative. Finally, switching atk = 1 to
atk = 0 for k ≤ j does not improve the objective as µk must
be non-negative.

We now discuss the conditions under which our approximate
functions result in the policy described by (36).

Theorem 4. For approximate value functions Vw, if the form
of the dynamics (1), reward functions (4), and basis functions
(29) result in,

Ep
[
R(xt, at, xt+1) + γVw(xt+1)

]
= λ+

n∑
i=1

µia
t
i, (37)

then the constrained policy is determined by (36). Further-
more, for approximate state-action functions of the form in
(33), the constrained policy is determined by (36).

Proof. The approximate value function is determined after
solving for the weights of the basis function representation.
If the relationship in (37) holds, the constrained policy is,

π(xt) = arg max
at∈Ac

λ+

n∑
i=1

µia
t
i.

Therefore, the policy π(xt) is determined by (36). For approx-
imate state-action functions, if the assumed form (33) is used
then the constrained policy is,

π(xt) = arg max
at∈Ac

n∑
i=1

wTi bi(x
t
O(i)) + atiw

T
i ci(x

t
O(i)). (38)

Let λ =
∑n
i=1 w

T
i bi(x

t
O(i)) and µi = wTi ci(x

t
O(i)). The

constrained maximization (38) is equivalent to Program (35)
and so the policy is determined by (36).

Although the policy (36) exactly solves Program (35), it is
necessary in our derivations to remove the capacity constraint
when determining an approximate value function Vw or state-
action function Qw to develop tractable methods. As a result,
the approximate functions are analogous to unconstrained
solutions found via dynamic programming. The use of (36)
with an unconstrained approximate solution is therefore an
approximation to the true constrained policy determined by a
method that explicitly includes the control constraint.

D. Simplifying with Anonymous Influence

Theorems 2 and 3 describe how we leverage Symmetry
to reduce the total number of linear programs that must be
solved to fully determine an approximate value or state-action
function. Similarly, Anonymous Influence can be exploited to
simplify the implementation of the Programs (32) and (34).
For example, consider the wildfire model (Section III) and let
O(i) = i∪N (i) and |N (i)| = 4 for all trees. Without mixed-
mode functions (MMFs), Program (32) requires enumerating
on the order of 107 state combinations. By using a MMF, for
the basis functions we present in Section VI, we only need to
consider on the order of 103 state combinations. This reduction
significantly simplifies the implementation of our framework
which is still tractable for graphs where MDPs may have many
neighbors or large state spaces. In the next section, we present
several simulation experiments to validate the performance of
our filter and the combined filter and controller.

VI. SIMULATION EXPERIMENTS

For all simulation experiments, values of α = 0.2 and β =
0.9 were used for the tree dynamics in the forest wildfire model
(Section III). We use a forest size of 50×50 with 101192 total
states and at the initial time, all trees are healthy except for
a 4 × 4 grid of fires in the center of the forest. Simulations
terminate when there are no more trees on fire.
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Figure 3: Example filter results for a single model simulation.
The simulation accuracy for a filter is the median accuracy
over the entire time series. Here, LBP is the same as taking as
the measurement as the estimate, as it overlays the measure-
ment accuracy in the plot. In contrast, RAVI is 9% better.

A. Filter Performance

We compare our filter RAVI against loopy belief propaga-
tion (LBP) which we adapt for online sequential estimation
by limiting the time history to a maximum of length H = 3.
If adding a new time step will exceed this limit, the model is
reinitialized with only the latest time step and the prior belief
is from the first time step of the previous model. For RAVI, the
value of ε was chosen to be 10−10. Both RAVI and LBP were
terminated early if less than 1% of the posterior factors stop
changing their maximum likelihood belief. We also compare
against taking each measurement as the estimate for each time
step, which may produce inconsistent estimates, e.g., a tree
transitioning from healthy to burnt in one time step. All filters
were initialized with the ground truth.

At each time step of the simulation, the belief produced
by the filter is converted to a maximum likelihood estimate
and compared to the true state. We compute the percentage of
trees whose states are correctly estimated as the “accuracy” of
the estimator at that time step. The result is a time history
of accuracies for a single simulation, as shown in Fig. 3.
We compute the median accuracy for the time history which
we call the simulation accuracy. We run 10 total simulations
and report the first quartile, the median, and the third quartile
simulation accuracy. Table II shows the results for different
message passing iteration limits and measurement model ac-
curacies pc in (6). While pc = 0.9 may seem like a very
accurate measurement model, there is a 0.92500 ≈ 10−115

probability that the true ground state is observed. For the
lowest limit Kmax = 1, LBP is slow and is the same accuracy
as simply taking the measurement as the estimate. While we
showed in prior work that LBP can be effective when given
enough iterations [4], it does not scale to the model size in this
work and cannot be used online. For example, the 2018 Camp
wildfire in Northern California at one point was spreading at
a rate of 80 acres per minute [47]. At this rate, a wildfire
burns 184 acres in 138 seconds, compared to 5.33 acres in 4
seconds. Therefore, it is critical to use a fast, accurate online

Table II: Filter results for two different measurement accura-
cies pc in (6). Data are the median simulation accuracy for
10 simulations, and the subscript and superscript indicate the
first and third quartiles, respectively. LBP improves with more
iterations but is slow while RAVI is accurate and fast enough
to be used online.

Method
Measurement Accuracy Estimate Time

(seconds)80% 90%

Measurement 80.0+0.1
−0.1% 90.0+0.2

−0.1% —

LBP Kmax = 1

Kmax = 2

RAVI Kmax = 1

Kmax = 5

Kmax = 10

80.0+0.0
−0.0% 90.0+0.0

−0.0% 138.73

85.0+0.8
−1.1% 94.5+0.9

−0.8% 251.43

98.0+0.4
−0.3% 99.4+0.1

−0.2% 1.41

98.6+0.2
−0.2% 99.5+0.0

−0.1% 4.25

98.6+0.2
−0.2% 99.5+0.0

−0.1% 4.23

filter to enable an effective response to natural disasters.
In contrast, RAVI is effective even for the low iteration limit,

and improves slightly given more iterations. Coordinate ascent
methods are known to find local optima and RAVI quickly
finds a solution which does not significantly change with more
iterations. In particular, the time to produce an estimate drops
for Kmax = 10 which is likely due to slightly more accurate
posterior factors at earlier time steps in each simulation.

B. Closed-loop Filter and Controller Performance

We call our control approach ACSAR (Approximate Con-
strained Scalable Allocation of Resources) and present simula-
tion results to demonstrate the performance of our closed-loop
filter and control approach, RAVI ACSAR.

Given the filtering results in Table II, we use the measure-
ment and RAVI (with Kmax = 5) and pc = 0.9 as filtering
methods. We use ACSAR to generate both an approximate
value function and an approximation state-action function, and
we also compare with a method from prior work for approxi-
mate value functions. The control effectiveness parameter used
was ∆β = 0.45, the discount factor was γ = 0.95, and the
control capacity was C = 5.

We use the following reward and basis functions in con-
junction with our approximate value function approach,

ri(x
t
i∪N (i)) = 1H(xti)− 1F (xti)e

t
i,

wTi hi(x
t
i∪N (i)) = wi,0 + wi,11H(xti) + wi,21F (xti)e

t
i,

where eti =
∑
j∈N (i) 1H(xtj) is the number of healthy trees

that are neighbors of tree i. Furthermore, we assume that every
tree has four neighbors, |N (i)| = 4 ∀i ∈ V , so that there is
one equivalence class. The derived policy is then applied to the
original graph model. The Program (32) requires computing
an expectation of the basis functions, which is conditioned
on a given configuration of the states xti∪N (i)∪N (N (i)). The
result is the following expression after applying the dynamics
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in Table I,

Ep
[
wTi hi(x

t+1
i∪N (i))

]
= wi,0 + wi,11H(xti)p(x

t+1
i = H | xti, xtN (i))

+ wi,2

(
1H(xti)p(x

t+1
i = F | xti, xtN (i))

+ 1F (xti)p(x
t+1
i = F | xti, ati)

)
∑

j∈N (i)

1H(xtj)p(x
t+1
j = H | xtj , xtN (j)).

(39)

The resulting approximate linear program is then,

min
wi∈R3

φi∈R

φi

s. t. φi ≥ wi,0 + wi,11H(xti) + wi,21F (xti)e
t
i

− 1H(xti)− 1F (xti)e
t
i

− γ (Eq. (39)) , ati = 0,∀ xti∪N (i)∪N (N (i)).

φi ≥ −wi,0 − wi,11H(xti)− wi,21F (xti)e
t
i

+ 1H(xti) + 1F (xti)e
t
i

+ γ (Eq. (39))∀ xti∪N (i)∪N (N (i)), a
t
i.

To implement this program, we exploit Anonymous Influence
to drastically reduce the number of constraints that must be
specified. Computing the expectation (37) to determine the
control policy then yields the following action weights,

µi = −γw21F (xti)∆β
∑

j∈N (i)

1H(xtj)(1− αf tj ).

Solving the program yields w2 = −1.43, and so this policy
treats fires in priority of the number of neighboring healthy
trees and their likelihood of remaining healthy at the next time
step. We compare our approach with the basis approximation
proposed in [11], which can also be used with our capacity
constrained formulation 35. The basis functions are,

wTi h
prior
i (xti) = w01H(xti) + w11F (xti) + w21B(xti),

The action weight for the policy (36) when using this basis
with the same reward function as before is,

µi = γ∆β1F (xti)(w3 − w2).

Therefore, the resulting policy is to randomly treat trees on
fire at each time step.

Table III summarizes the results for two different filtering
methods in combination with the prior work basis functions
and our basis functions. We present the median percent of
surviving healthy trees, along with the first and third quartile,
to summarize the performance of the overall framework.
Without control, nearly the entire forest typically burns down.
Although the measurement appears to be accurate enough for
control, there are many cases where a tree is believed to be
on fire but is actually healthy or burnt. As a result, control
actions are wasted as treating a healthy or burnt tree has no
effect. Finally, only the combination of our filter and our value
function basis approximation is successful in extinguishing the
wildfire. We also note that the approximation error for the
prior work basis is φi = 2.29 whereas for our approach it is
φi = 1.97.

Table III: Results for two filter methods and two choices
of value function basis approximations. Data are the median
remaining percent of remaining healthy trees over 100 sim-
ulations, with the subscript and superscript denoting the first
and third quartile, respectively. Without control, the majority
of the forest burns down. An accurate filter is required, as
otherwise control effort is wasted on trees that are believed to
be on fire but are actually healthy or burnt. Only our filtering
method RAVI and our control approach ACSAR is successful
in preserving the majority of trees in the forest.

Filter Method Control Method Remaining Healthy Trees

— No Control 1.0+0.0
−0.0%

Measurement Prior Work [11] Vw(xt) 1.3+0.3
−0.3%

ACSAR Vw(xt) 2.2+0.5
−0.3%

RAVI Kmax = 5 Prior Work [11] Vw(xt) 1.9+1.7
−0.4%

ACSAR Vw(xt) 97.8+0.6
−1.0%

Lastly, we also construct an approximate Qw function using
ACSAR to illustrate a complementary approach. We use the
following reward and basis functions,

ri(x
t
i, x

t+1
i ) = 1H(xti)− (1− ati)1F (xt+1

i ),

wTi bi(x
t
i) = wi,0 + wi,11H(xti) + wi,21F (xti),

atiw
T
i ci(x

t
i∪N (i)) = atiwi,31F (xti)e

t
i.

After solving Program (34), the approximation error was
φi = 0.84 and over 100 simulations, the percent of remaining
healthy trees was 97.8+0.7

−1.0%.

VII. CONCLUSIONS

In this work, we proposed a certainty-equivalence approach
to build a framework capable of addressing large-scale graph-
based models with control constraints and measurement uncer-
tainty. After splitting the problem into two parts, we derived
approximately optimal filtering and control methods. Future
work will focus on relaxing the structural assumptions that
were required to scale our approach to models with very large
state spaces. In addition, the parameters α and β in our wildfire
model may be time or spatially varying, to model wind and
terrain effects. It would be useful to parameterize either our
linear programs or the resulting policy (or both) by these
quantities, so that it is possible to react to changing model
parameters online. Lastly, prior work on factored POMDP
formulations may provide ideas for a scalable framework
construction with improved guarantees.
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APPENDIX

A. Derivations for Other Measurement Models

We now consider measurement models of the form pi(y
t
i |

xti, x
t
N (i)). The form of (16) is then,

E−i
[
p(xt, yt | y1:t−1)

]
∝∑

{xt
j |j∈V,j 6=i}

( n∏
j=1
j 6=i

qj(x
t
j)
)( n∏

i=1

pi(y
t
i | xti, xtN (i))

)
×

(∑
xt−1

n∏
i=1

pi(x
t
i | xt−1i , xt−1N (i), a

t−1
i )ui(x

t−1
i )

)
.

(40)

The first iteration is,

E1
i (xti) ∝

[ ∑
xt
N(i)

pi(y
t
i | xti, xtN (i))

∏
j∈N (i)

q0j (xtj)

]
∑
xt−1
i

ui(x
t−1
i )

[
pi(x

t
i | xt−1i , xt−1N (i), a

t−1
i )

∏
j∈N (i)

uj(x
t−1
j )

]
,

and the second iteration is,

E2
i (xti) ∝

∑
xt
N(i)

pi(y
t
i | xti, xtN (i))

∏
j∈N (i)

q1j (xtj)

∑
xt−1
i

ui(x
t−1
i )pi(x

t
i | xt−1i , xt−1N (i), a

t−1
i )

∏
j∈N (i)

uj(x
t−1
j )

[ ∑
xt
N(j)

pj(y
t
j | xtj , xtN (j))

∏
l∈N (j)

q1l (xtl)

pj(x
t
j | xt−1j , xt−1N (j), a

t−1
j )

∏
l∈N (j)

ul(x
t−1
l )

]
.

Following the same derivation as before and using the common
structure in the previous two expressions indicated by brackets,
the quantity dki is,

dki (xt−1i , xti) =
∑
xt
N(i)

pi(y
t
i | xti, xtN (i))

∑
xt−1
N(i)

pi(x
t
i | xt−1i , xt−1N (i), a

t−1
i )

∏
j∈N (i)

mk−1
j (xt−1j , xtj).

Messages are now initialized as,

m0
i (x

t−1
i , xti) = ui(x

t−1
i )q0i (xti).

The kth estimate update (15) and message update (26) remain
the same for this case. Similar to the derivation in Section IV,
influence from additional HMMs is approximately added
to estimates of (16), as we do not consider special graph
structure. In addition, the Anonymous Influence property can
be exploited if either the dynamics (1) or the measurement
distribution pi(y

t
i | xti, xtN (i)) (or both) can be represented

using mixed-mode functions (MMFs).

ACKNOWLEDGMENTS

The authors would like to thank Adam Caccavale, Eric
Cristofalo, Preston Culbertson, and Kunal Shah for their
insightful discussions and suggestions.

REFERENCES

[1] V. Raghavan, G. ver Steeg, A. Galstyan, and A. G. Tartakovsky,
“Coupled hidden Markov models for user activity in social networks,”
in IEEE International Conference on Multimedia and Expo Workshops
(ICMEW), 2013, pp. 1–6.

[2] W. Dong, A. S. Pentland, and K. A. Heller, “Graph-coupled HMMs for
modeling the spread of infection,” in Proceedings of the Twenty-Eighth
Conference on Uncertainty in Artificial Intelligence, 2012, pp. 227–236.

[3] R. N. Haksar and M. Schwager, “Controlling large, graph-based MDPs
with global control capacity constraints: An approximate LP solution,”
in 57th IEEE Conference on Decision and Control (CDC), Dec 2018,
pp. 35–42.

[4] R. N. Haksar, J. Lorenzetti, and M. Schwager, “Scalable filtering of
large graph-coupled hidden Markov models,” in 2019 IEEE Conference
on Decision and Control (CDC), Dec 2019, in press.

[5] Z. Feng and E. A. Hansen, “Approximate planning for factored
POMDPs,” in Proceedings of the 6th European Conference on Planning,
2001.

[6] P. Poupart and C. Boutilier, “VDCBPI: an approximate scalable algo-
rithm for large POMDPs,” in Advances in Neural Information Processing
Systems 17, L. K. Saul, Y. Weiss, and L. Bottou, Eds. MIT Press, 2005,
pp. 1081–1088.

[7] C. Guestrin, D. Koller, and R. Parr, “Solving factored POMDPs with
linear value functions,” in Seventeenth International Joint Conference
on Artificial Intelligence (IJCAI-01) workshop on Planning under Un-
certainty and Incomplete Information, 2001, pp. 67–75.

[8] T. Veiga, M. Spaan, and P. Lima, “Point-based POMDP solving with
factored value function approximation,” 2014.

[9] J. Pajarinen, J. Peltonen, A. Hottinen, and M. A. Uusitalo, “Efficient
planning in large POMDPs through policy graph based factorized
approximations,” in Machine Learning and Knowledge Discovery in
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