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Abstract— For safe navigation in dynamic uncertain envi-
ronments, robotic systems rely on the perception and predic-
tion of other agents. Particularly, in occluded areas where
cameras and LiDAR give no data, the robot must be able
to reason about potential movements of invisible dynamic
agents. This work presents a provably safe motion planning
scheme for real-time navigation in an a priori unmapped
environment, where occluded dynamic agents are present.
Safety guarantees are provided based on reachability analysis.
Forward reachable sets associated with potential occluded
agents, such as pedestrians, are computed and incorporated into
planning. An iterative optimization-based planner is presented
that alternates between two optimizations: Nonlinear Model
Predictive Control (NMPC) and collision avoidance. Recursive
feasibility of the MPC is guaranteed by introducing a terminal
stopping constraint. The effectiveness of the proposed algorithm
is demonstrated through simulation studies and hardware
experiments with a TurtleBot robot equipped with a LiDAR
system. A video of experimental results is available at https:
//youtu.be/OUnkB5Feyuk.

I. INTRODUCTION

Robotic systems rely on various types of sensors including
range-based sensors such as LiDAR or depth cameras to
perceive the surrounding environment. However, sensors are
susceptible to occlusion. The field of view of the robot’s
sensors limit its visibility, and dynamic agents can hide
undetected in occluded regions. In a dynamic environment,
safe trajectory planning for a robot requires predicting the
future behavior of other agents present in the scene. However,
occluded areas may hide undetected dynamic agents, whose
trajectory a robot cannot predict. Therefore, to safely navi-
gate in an a priori unmapped environment among dynamic
agents where occlusions are present, a robot must reason
about all potential future motions of all potential dynamic
agents that might be hidden in the occluded regions.

This work proposes a framework for general robotics
settings including ground robots, autonomous cars or aerial
robots to safely travel through the occluded environment in
real-time, while avoiding both static and dynamic obstacles.
Our approach relies on real-time sensor observations to
detect occluded region boundaries from which a potential
moving agent might emerge at any time in the future.
Forward reachability analysis is performed for dynamic
obstacles in both visible and occluded areas. The robot
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Fig. 1: The ego vehicle (red) equipped with a range-based sensor scans
the visible regions. Top: Pedestrians (small red circles) who are hidden
in an occlusion are not detected by the sensor. Middle: Nested capsules
representing the forward reachable sets for all pedestrians potentially hidden
in the occlusion are computed. Bottom: The vehicle optimizes its trajectory
while avoiding the nested capsules along its prediction horizon, coming to
a stop at the end of the horizon.

optimizes a trajectory in an MPC fashion which attempts
to reach its goal position as fast as possible while it avoids
collision with the forward reachable sets that are computed
based on the last updated LiDAR scan of the environment.
Fig. 1 illustrates an example of our approach in an au-
tonomous driving scenario. The top figure shows that the
ego vehicle (red) uses its range sensor (LiDAR or depth
camera) to scan the visible regions (visible region boundary
is shown as solid black line). Dynamic agents or pedestrians
(shown as small red circles) who are outside the visible
region are not detected by sensors. To reason about the
movement of potential pedestrians in the occluded region,
the robot assumes their worst case behavior, which is moving
with maximum speed in any direction from the occlusion
boundary. The middle figure shows capsules which are the
pre-computed reachable sets resulting from this worst case
assumption on the undetected agents in the occlusion. In the
bottom figure, MPC prediction steps are illustrated, where the
vehicle avoids colliding with the growing reachable capsules
over the prediction horizon. Also, we find that requiring the
robot to come to a stop at the end of its prediction horizon
ensures recursive feasibility for the MPC, although, due to
the MPC re-solve at each time step, the vehicle does not
actually come to a stop during normal execution. Planning



to stop can be seen as a guaranteed safe contingency plan in
the unlikely event that the worst-case prediction comes true.

The contributions of the proposed approach are summa-
rized below:

• Line-of-Sight of LiDAR at the boundary of occluded
region is used to determine worst-case location of all
potential occluded agents over a time horizon.

• Reachability analysis is provided for collision avoidance
with both visible and hidden dynamic agents in the
environment.

• An efficient iterative optimization is proposed for fast
online computation.

• A formal guarantee for recursive feasibility (which en-
sures collision avoidance) of the proposed MPC scheme
is provided.

The paper is organized as follows: Sec. II reviews the
related work. Sec. III provides the required notations. Sec. IV
describes the problem definition. Sec. V provides recur-
sive feasibility guarantees for the proposed MPC scheme.
Sec. VI presents our proposed iterative optimization algo-
rithm. Sec. VII presents the applications and numerical re-
sults based on simulation studies and real world experiments.
Sec. VIII makes concluding remarks and discusses the future
work.

II. RELATED WORK

Hamilton-Jabobian (HJ) reachability is a standard method
to analyze safety, but it is computationally expensive. In
particular, for real-time applications such as robot navigation,
to address this challenge and reduce the online computation
burden, the authors in [1] propose precomputation of HJ
reachable sets offline and storing them in a look-up table to
be used online. In [2], the authors present fast and safe track-
ing approach (FaSTrack) in which slow offline computation
provides safety guarantees for a faster online planner. In [3],
the authors propose to extend FaSTrack approach to a meta-
planning scheme in which a refined offline computation en-
ables safe switching between different online planners. How-
ever, these approaches are restricted to static environments
and are not applicable to dynamic environments with moving
obstacles. In [4], the authors present a pursuer-evader game
theoretic framework for occlusion-aware driving (in dynamic
environment) with safety guarantees using reachability, and
simulation studies are provided by assuming linear dynamics
(double integrator) for the vehicle model.

Joint active perception and planning helps the robot to
gather additional information about the occluded regions
and gain visibility in a partially occluded environment. The
authors in [5], propose a perception-aware MPC framework
for quadrotors that simultaneously optimizes planning and
perception objectives. In [6], an MPC framework is coupled
with a visual pipeline. A deep optical flow dynamics pre-
sented as a combination of optical flow and robot dynamics
is used to predict the movement of points of interest. The
proposed Pixel MPC algorithm controls the robot to accom-
plish a high-speed task while maintaining visibility of the
important features. In [7] a geometric heuristic is proposed

to define a visibility measure around a corner. The perception
objective (visibility) is added to the MPC multi-objective cost
to navigate the occluded corner while maximize visibility. In
our proposed approach visibility maximization is not incor-
porated explicitly. However, by including a minimum safety
distance to the avoid set, the robot indirectly maximizes its
visibility to minimize the occluded area.

Other works including [8] and [9], These works mini-
mize the risk of collision but they do not provide formal
safety guarantees. In [10], MPC planning is proposed in
which the objective is to maximize visibility, but formal
safety guarantees or recursive feasibility of MPC is not
provided. Compared to these online navigation approaches,
our proposed MPC provides safety guarantees by online
computation of reachable sets.

In [11], an inference and motion planning scheme is
proposed to guarantee safety with respect to hypothetical
hidden agents. Reachable sets are constructed by taking
an occupancy map and enlarging the occluded boundaries.
Compared to this work, our approach does not make any
assumption regarding the intention of hidden agents. Our
proposed framework is dynamic-agnostic with respect to
hidden agents and assumes the hidden agents may move in
any arbitrary direction.

III. NOTATION

The required definitions and notations are provided below.
MPC Scheme: MPC is useful for online motion planing
among dynamic obstacles because it is able to re-plan
according to the newly available sensory data. MPC relies on
the receding-horizon principle. At each time step it solves a
constrained optimization problem and obtains a sequence of
optimal control inputs that minimize a desired cost function
l, while considering dynamic, state, and input constraints,
over a fixed time horizon. Then, the controller applies, in
closed-loop, the first control-input solution. At the next time
step, the procedure is repeated. In this paper, u0:N−1 and
z0:N indicate the input and state values along the entire
planning horizon N , predicted based on the measurements at
time t. For example [z0|t z1|t,..., zN |t] represents the entire
state trajectory along the horizon N predicted at time t
(referred to as the open-loop trajectory). Throughout this
paper τ represents the absolute time, t is the MPC execution
time and k is the open-loop prediction step for a given
time t. The static obstacles are denoted as O and dynamic
agents’ reachable sets are represented as Ω. So the unsafe
set is defined as union of these two sets Ω ∪ O. The safe
set Zs is represented as the complement of the unsafe set
Zs = (Ω ∪ O)c. Superscript c denotes the complement of
the set.
Occluded Area: As the robot navigates in the environment,
the occluded regions are identified using a LiDAR or depth
camera sensor. The boundary of the occluded area can
be used to perform reachability analysis for hidden oc-
cluded agents. Similarly forward reachability analysis can
be performed for visible agents, in case that no prediction
knowledge is assumed regarding their future actions.



Forward Reachable Sets: The potential locations of dynamic
agents (visible or invisible) in the environment are captured
using forward reachability analysis. In general, a forward
reachable set ΩN is defined as the set of states that are
reachable after N time steps by a dynamical system zk+1 =
f(zk, uk) from a given set of initial states Ω0 by applying
an admissible sequence control input uk ∈ U , specifically
ΩN = {zN : ∃uk ∈ U ∀k = 0, . . . , N − 1, s.t. zk+1 =
f(zk, uk), z0 ∈ Ω0}. It follows from this definition that1

Ω′
k ⊂ Ωk =⇒ Ω′

N ⊂ ΩN for all N ≥ k. (1)

IV. PROBLEM FORMULATION

Safe navigation in dynamic occluded environment can be
formulated as an NMPC optimization problem that computes
collision-free trajectories in real-time. The MPC optimization
problem is formulated as follows

min
ut:t+N−1

N∑
k=0

l(zk|t,uk|t) (2a)

subject to zk+1|t = f(zk|t,uk|t), (2b)
z0|t = z(t), (2c)
zk|t ∈ Z, uk|t ∈ U , (2d)
∥zk|t − zk−1|t∥gt(zk|t) ≤ 0, (2e)
zN |t = zN−1|t, (2f)
and k ∈ {0, 1, 2, .., N},

where ut:t+N−1 = [u0|t, ..., uN−1|t] denotes the sequence
of control inputs over the MPC planning horizon N . The
robot state and input variables zk|t and uk|t at step k are
predicted at time t. The function f(·) in (2b) represents the
nonlinear (dynamic or kinematic) model of the robot, which
is discretized using Euler discretization. Z , U are the state
and input feasible sets, respectively. These sets represent
state and actuator limitations. Constraint (2e) is the com-
plementarity constraint in which gt(zk|t) ≤ 0 represents all
the collision avoidance constraints. The time-varying safe set
Zs

k|t is defined as Zs
k|t = {gt(zk|t) ≤ 0, ∀zk|t}. The com-

plementarity constraint (2e) formulation allows for gt(zk|t)
to be greater than 0 (the collision avoidance constraint is
violated) as long as zk|t = zk−1|t (the robot is stopped).
As an example consider a scenario where a pedestrian hits
a stopped car, the collision avoidance constraint is violated
but since the car is stopped, we consider the plan safe.
The idea is that if the pedestrian hits a stopped car, likely
there will not be major injury, and the pedestrian bears the
fault in the collision, not the car. Constraint (2f) is the
terminal constraint that is required to guarantee recursive
feasibility. Details are discussed in the next section. The
collision avoidance constraint gt(zk|t) ≤ 0 includes static

1Proof: Consider zk ∈ Ω′
k , a sequence of inputs (uk, . . . , uN−1), and

the resulting reachable point zN ∈ Ω′
N . Since Ω′

k ⊂ Ωk , we know zk ∈
Ωk . Since zN is reachable through the same set of control inputs, zN ∈
ΩN . This is true for any zN ∈ Ω′

N , so Ω′
N ⊂ ΩN .

and dynamic constraint as follows:

C(zk|t) ∩ Ob = ∅, b ∈ B, (3a)
C(zk|t) ∩ Ωr

k|t = ∅, r ∈ S. (3b)

Constraints (3a) are collision-avoidance constraints between
the robot C (modeled as a circle) and the static environment
denoted by set B indexed by b. Constraints (3b) represent
the collision-avoidance constraints between the robot C and
hidden and visible dynamic obstacles in the scene denoted
by the set S indexed by r.

V. RECURSIVE FEASIBILITY GUARANTEES

Assumption 1: We assume the robot’s sensor at each time
t returns a set Ω̄r

0|t that contains agent r at time t. If r is
not occluded, this set describes the region implied by the
sensor measurement (e.g., a disk with some error radius).
If r is occluded, this set is the occlusion region itself. If a
sensor measurement is not taken at time t, Ω̄r

0|t is the entire
admissible space for the agent.

Before we prove the main results of recursive feasibility, we
state and prove a lemma concerning the evolution of the safe
set for the robot.

Lemma 1: The predicted safe set at absolute time τ is
non-decreasing as t increases, that is,

Zs
(τ−t1)|t1 ⊂ Zs

(τ−t2)|t2 ∀t1 ≤ t2 ≤ τ.

Proof: We only have to show that the forward reachable
set of dynamic agents is non-increasing,

Ωr
(τ−t2)|t2 ⊂ Ωr

(τ−t1)|t1 ∀t1 ≤ t2 ≤ τ ∀r ∈ S,

since these are the only dynamic components in Zs. Consider
a forward reachable set Ωr

(τ−t)|t predicted for absolute time
τ based on an initial set Ωr

0|t. Now consider a sensor
measurement at time t + 1 that localizes the agent to a set
Ω̄r

0|(t+1) based on Assumption 1. We know that the agent lies
both in the set Ω̄r

0|(t+1) from the sensor, and in the one-step
reachable set Ωr

1|t computed from the previous time step.
Therefore, at time step (t + 1) the agent is in Ωr

0|(t+1) =

Ω̄r
0|(t+1) ∩ Ωr

1|t ⊂ Ωr
1|t. By the nested property of reachable

sets in (1) it follows that Ωr
(τ−(t+1))|(t+1) ⊂ Ωr

(τ−t)|t for
all t ≤ τ . Applying mathematical induction on t proves the
desired result.
As an illustration of the concept formalized in Lemma 1,
Fig. 2 depicts the forward reachable sets as circular shapes.
The black circles represent the forward reachable sets at time
step t = 0 and the red circles show the forward reachable
sets at the next time step t = 1. By comparing the sets in
absolute time τ = t+ k, the reachable set at prediction step
k = 1 at execution time step t = 1 (shown in solid red)
is always contained in the reachable set at prediction step
k = 2 at execution time step t = 0 (shown in solid gray),
so Ωr

τ |t=1 ⊂ Ωr
τ |t=0. Therefore, the safe set Zs

τ |t=0 at time
t = 0 is always contained in the safe set at time step t = 1.
At time t = 0, the safe set is Zs

τ |t=0 = (Ωr
τ |t=0∪O

b)c and at



Fig. 2: Forward reachable sets of unsafe region Ω are shown for two
consecutive time steps t = 0 and t = 1 in the simple case of a single
pedestrian based on a top speed bound.

time t = 1, the safe set is Zs
τ |t=1 = (Ωr

τ |t=0∩Ωr
τ |t=1∪Ob)c.

So Zs is always non-decreasing.
We now state our main theoretical result.
Theorem 2: If a feasible solution exists for the NMPC

optimization (2) at time t = 0, a feasible solution exists
for all t > 0, that is, the proposed NMPC framework is
recursively feasible.

Proof: Consider the NMPC problem (2) is solved
at time t = 0. Assume feasibility of z0 and let
[u∗0|0, u

∗
1|0, ..., u

∗
N−1|0] be the optimal feasible control se-

quence computed at z0 and [z0, z1|0, ..., zN |0] be the cor-
responding feasible state trajectory (which are assumed to
exist at t = 0). Apply u∗0|0 and let the system evolve
to z1 = f(z0, u

∗
0|0). At z1 consider the control sequence

[u∗1|0, u
∗
2|0, ..., u

∗
N−1|0, u

∗
N−1|0] for the consecutive MPC

problem at time t = 1. Since the time-varying state safe set
Zs is non-decreasing (according to Lemma 1) and the input
constraints do not change, the state and input constraints are
satisfied for all times except for potentially at state zN |1.
However, applying uN−1|1 = u∗N−1|0 at the last step keeps
the state at the previous state zN |1 = zN−1|1. At time t = 1
in case the collision-avoidance constraint is violated at the
last prediction time step g(zk=N |t=1) > 0, the fact that the
robot is stopped zN |1 = zN−1|1 ensures the robot will not
violate the complementarity constraint at the last step, so
the solution remains feasible. Applying this reasoning in a
mathematical induction for all subsequent time steps yields
the result stated in the theorem.
While the result applies generally to all problems that fall
under our assumptions, in the rest of this paper we consider
a specific setup in which the sensor is a LiDAR sensor,
and the agents are assumed to be able to move in any
direction with a known speed bound, leading to a simple
geometric computation of reachable sets. We develop a
practical algorithm based on (2) for this setup.

VI. ITERATIVE OPTIMIZATION SCHEME

A. NMPC Optimization

The following optimization represents the nonlinear MPC
scheme. The collision-avoidance with static obstacles in the
environment Ob represented in (3a) are performed based on

Fig. 3: Left: LiDAR-based collision avoidance: Blue areas are obstacles;
Black dots are point clouds; Green circles are centered at down-sampled
point-clouds. Right: Boundary of occlusion is detected based on a jump in
range values of two consecutive points 1 and 2.

point-cloud data received from LiDAR. (Other sensors and
methods can be used for collision detection and avoidance
as well). Figure 3 (left) depicts LiDAR-based collision
avoidance scheme, where black dots are point clouds and
blue areas are obstacles. Point-clouds are down sampled
and green circles are centered at the sampled point clouds.
Circles’ radius should be selected to ensure full coverage of
the visible portion of obstacle. The safe distance between the
robot (magenta circle) with each green circle are incorporated
as constraints in the NMPC optimization

min
ut:t+N−1

(2a) (4a)

subject to (2b), (2c), (2d), (3a), (2e), (2f) (4b)
dist(C(zk|t), z̄projk|t) ≥ dsafe, r ∈ S, (4c)
and k ∈ {0, 1, 2, .., N},

where z̄rprojk|t denotes the projected state trajectory computed
by solving collision avoidance optimization (The bar notation
means the value is known). More details are included in
the next section. The computed minimum distance is then
constrained to be larger than a safe predefined minimum
allowable distance dsafe. (dsafe is a design parameter and
should be determined based on the uncertainty quantification
of physical models and stochastic measurement errors.)

B. Collision Avoidance Optimization

Occlusion detection: To detect the boundary of occlusion,
the consecutive range values obtained from LiDAR are com-
pared and the ones with a difference larger than a threshold
are detected as occlusion boundary. For example, in Figure
3 (right), there is a large jump between the range values of
Point 1 and Point 2 (red points), so the LiDAR line-of-sight
that passes through those two points indicates a boundary of
occlusion. All the other red points in the figure are computed
is the same way and their line-of-sight indicate an occlusion
boundary.
Reachable set construction: The reachable set is where
target agents (pedestrians) might present. The initial set for
constructing the reachable set is a line segment which is the
boundary of occlusion detected by LiDAR. To consider the
worst-case, the pedestrian is assumed to start its movement



Fig. 4: The capsule set is constructed by polytope and circles.

Fig. 5: Capsule sets are enlarged along the MPC prediction horizon based on
the speed upper-bound vtarget assumed for invisible agent. The gray circles
illustrate forward reachable sets for visible target. The red dashed lines
represent LiDAR rays.

from the occlusion boundary. No prior knowledge of the
agents’ dynamic model is assumed and the only assumption
is that the target maximum speed vtarget is known. This
upper-bound on speed can be specified according to the
environment such as driving or in-door settings.

Capsules are described as the union of two circles C1, C2

and a rectangle P as shown in Figure 4. Figure 5 shows the
forward reachable sets that are nested capsules, which grow
over time along the MPC horizon. The reachable sets are
enlarged at each time step k along the MPC planing horizon.
The enlarged capsule set is computed by increasing the radius
of the two circles C1 and C2 by distance dtarget =

vtarget

∆t , which
is the maximum distance that a pedestrian can travel in a time
step ∆t. The corresponding polytopic set is constructed as
shown in Figure 4 based on the convex hull of the 4 points
(green dots) obtained from circle enlargement. The capsule
set construction procedure is summarized in Algorithm 1.

Minimum distance from the capsule set: The robot shape
is approximated as a circle with radius rrobot and the colli-
sion avoidance between the robot and the dynamic agent
such as pedestrian is formulated based on the minimum
distance between the circle (robot) and the capsules (the
pedestrian forward reachable sets). To compute the minimum
distance dist(Crobot,Ω), first the robot’s center of mass z
is projected on to the capsule dproj = min{dC1 , dC2 , dP},
where dC1 , dC2 , dP are distances to the circle C1 and circle
C2 and the polytope P , respectively. Then the robot radius
is subtracted as dist(Crobot(z),Ω) = dproj − rrobot. Distance
to the circles dC1 and dC2 are computed by calculating the
distance to the center of circles and subtracting the radius of
circle. Distance to the polytope P is computed by solving the

Algorithm 1 Capsule Set Construction Algorithm

1: According to LiDAR scan of the environment, the jump in the
values of two consecutive range measurements indicates the
boundary of an occluded region.

2: The circles C1 and C2 with radius dtarget centered at the end
points of line-of-sight are created and the vertices of the
associated polytope are determined according to the circles’
radius.

3: Convex hull of polytope vertices is obtained to determine H-
representation of polytope, necessary for collision avoidance
optimization.

optimization problem: dP = min
y

{∥z̄−y∥2|Ay ≤ b}, where

z̄ is the robot position, which is known (the bar notation
means the value is kept as fixed). The optimal solution
of the above optimization problem is denoted as y∗. After
computing dproj, the corresponding projected point zproj on
the capsule set is computed (the projection of robot on the
capsule set) by

zproj =


y∗ if dproj = dP

(1− ratio1)z̄+ ratio1C1
center if dproj = dC1

(1− ratio2)z̄+ ratio2C2
center if dproj = dC2 ,

(5)

where ratio1 = (dC1 − rC1)/dC1 and ratio2 = (dC2 −
rC2)/dC2 , and rC1 and rC2 are radius of the Circle 1 and
Circle 2, respectively. In (5), the first equation is projection
of robot on polytope and the second and third equations
represent the projection of the robot on Circle 1 and Circle
2, respectively. The projection of the robot on the capsule
set zproj is computed by solving (5). This projection step
is solved for all the robot predicted states along the MPC
horizon z̄k|t ∀k ∈ {1, ..., N} (open-loop state trajectory)
and for each boundary of occlusion r ∈ S, in parallel. The
projected open-loop state trajectory z̄rprojk|t is computed and
is incorporated into the constraint (4c) as a fixed known
value. To summarize, the optimization (4) and optimization
(5) alternate. In the NMPC (4), the projected states z̄rprojk|t are
kept fixed and decision variables of optimization are the robot
states along the MPC horizon zk|t. In collision avoidance
optimization (5), the robot states are kept fixed z̄k|t and the
projected states zprojk|t are computed.
Also, to use open-loop projected states in the NMPC in
constraint (4c), we need to rely on the projected states from
the previous iteration (t − 1) of NMPC solutions (open-
loop state trajectory). So, before solving (5), the robot state
trajectory z̄k|t is shifted one step forward in time and the
last step is interpolated as [z̄(2), ..., z̄(N), z̄(Intp)].

Note that the optimization problem for projecting the
robot on polytope and finding dP has a lower-bound on
minimum distance which is zero, so in case the point z is
already inside the polytopic set P the minimum distance is
calculated as zero. One alternative solution is to formulate
the collision avoidance with capsule sets exactly the same as
collision avoidance formulation for static obstacles, in which
circles are sampled on the occlusion boundary and the robot
distance to these circles are incorporated into the NMPC



Algorithm 2 Iterative Optimization Algorithm

1: Initialize state trajectory [z(1), ..., z(N)]
2: for t = 0, 1, ...,∞ do
3: Receive LiDAR scan and compute the capsule sets:

[Ωr(1), ...,Ωr(N)] for each r ∈ S
4: Compute the shifted state [z̄(2), ..., z̄(N), z̄(Intp)].
5: Solve Problem (5) for the shifted state trajectory for each

r ∈ S in parallel to find projected robot states on the capsule
sets [zproj(2), ..., zproj(N), zproj(Intp)] for each prediction step
of the open-loop trajectory.

6: Solve NMPC Problem (4)
7: Apply uMPC to move forward.
8: end for

problem directly as collision avoidance constraint. Using
this alternative approach no iterative optimization scheme is
required. However, incorporating the constraints directly into
the NMPC can slightly affect the computation time.

C. Iterative Optimization Algorithm

Problem (5) is itself an optimization problem, so imposing
it as a constraint of Problem (2) yields a bilevel optimiza-
tion which is computationally intensive. To overcome this
challenge, by relying on the ability of MPC to generate
predicted open-loop trajectories, we devise an alternative
optimization algorithm in which we alternate between the
two optimizations: NMPC optimization (4) and collision
avoidance optimization (5), as detailed in Algorithm 2. In
step 1⃝ of Algorithm 2, the sequence of state trajectory is
initialized. In step 3⃝, new LiDAR measurement is received
and the reachable sets are computed accordingly. In step 4⃝,
the associated open-loop state trajectory is shifted forward
one step in time and the last step is copied or interpolated.
In step 5⃝, the collision avoidance optimization is solved
in parallel for each boundary of occluded area. In step 6⃝
NMPC problem (4) is solved and a sequence of open-loop
actions is computed. In step 7⃝, the first control input uMPC
is applied and the procedure is repeated for the next time
step.

VII. SIMULATIONS AND HARDWARE EXPERIMENTS

To validate the effectiveness of the proposed approach,
both simulation studies and real-world experiments have
been performed. The NMPC optimization is modeled using
CasADi [12] in python. For the experiment, a TurtleBot robot
equipped with Velodyne LiDAR (Vlp-16 Puck Lidar Sensor
360 Degree) is used. OptiTrack motion capture system is
used for robot localization. The MPC is ran on a Lenovo
ThinkPad laptop with ubuntu 20.04 OS with 3.00 GHz Intel
CPU Core i7 with 32 GB of RAM.

The Robot dynamic is modeled by a nonlinear kinematic
unicycle model ẋ = v cos(ψ), ẏ = v sin(ψ), ψ̇ = δ, where
the state vector is z = [x, y, ψ]⊤ (x, y, and ψ are the longi-
tudinal position, the lateral position, and the heading angle,
respectively). The input vector is u = [v, δ]⊤ (v and δ are the
velocity and the steering angle, respectively). Using Euler
discretization, the unicycle model is discretized with sam-
pling time ∆t as x(t+1) = x(t)+∆t v(t) cos(ψ(t)), y(t+

1) = y(t) + ∆t v(t) sin(ψ(t)), ψ(t+ 1) = ψ(t) + ∆t δ(t).
The cost is defined as l(z,u) =

∑t+N
k=t ∥(zk|t −zGoal)∥2Qz

+
∑t+N−1

k=t (∥(uk|t)||2Qu
+∥ (∆uk|t)∥2Q∆u

), where ∆u pe-
nalizes changes in the input rate. Qz ⪰ 0, Qu, Q∆u ≻ 0
are weighting matrices, zGoal is the goal location that robot
should reach. Throughout the simulations the sampling time
∆t is 0.1s. Simulation studies are performed for two different
scenarios including navigating a corner and navigating a
complex environment with multiple obstacles. In both sce-
narios the proposed Occlusion-Aware planner (O-A MPC) is
compared against baseline MPC which is agnostic towards
occlusions and possible presence of invisible agents.

Figure 6 illustrates corner navigation scenario. The closed-
loop simulation for both planners (O-A MPC and baseline
MPC) are shown. In this simulation, minimum allowable

Fig. 6: Corner navigation simulation.

distance dsafe is 0.5m, the velocity input is bounded within
0 to 2m/s. The steering input is bounded within ±πrad.
The robot shape is defined by a circular shape with radius
rrobot = 0.2m. Boundaries of the track shown are defined as
the limits on the position states x and y. The width of the
track is 1m. The robot’s initial condition z0 is [x0, y0, ψ0]
= [0.8m, 0.3m, π2 rad]. Two goal positions zgoal1 as [x =
1, y = 2.5] and zgoal2 as [x = 2.5, y = 2.5] are specified.
The MPC prediction horizon N is 10. A potential dynamic
agent hidden behind the occluded area is assumed to be
moving with speed vped = 0.5m/s. As seen, baseline MPC
(red) is agnostic towards occlusion boundary and navigates
the corner without considering collision with any possible
potential invisible agent that might emerge from the occluded
region. Conversely, O-A MPC planner (blue) slightly turns
to the left as it approaches the corner to take a wider turn
before turning completely to the right to avoid collision with
any potential invisible agent.

Figure 7 (left figure) shows navigation in an environment
with multiple obstacles which lead to various occluded
regions. Closed-loop simulation for baseline MPC and O-
A MPC with different speeds assumed for invisible agents
are compared. As seen, the baseline MPC (blue) is the
less conservative planner which is close to the obstacles,
but the O-A MPC with vped = 0.3m/s considers collision
avoidance with possible invisible agent and keeps larger
distance to the obstacles. Also, as the presumed speed upper-
bound for invisible target agent increases to vped = 0.5m/s



Computation Time (Sec)
Approach Average Max Std
Baseline MPC 0.023 0.030 0.004
NMPC Optimization 0.033 0.054 0.006
CA Optimization 0.004 0.007 0.001
O-A MPC (Total) 0.037 0.061 0.007

TABLE I: Computation time statistics over 100 iterations is compared for
baseline MPC and O-A MPC.

Fig. 7: Left: Navigation in environment with multiple obstacles. The plots
compare robot executed trajectories for various speed upper-bounds assumed
for the target agent. Right: Open-loop MPC trajectory is shown for time
step t = 7s. Capsule sets corresponding to each predicted step of MPC are
shown in the same color.

and vped = 0.7m/s values (shown in red and light green,
respectively), the robot’s behavior is more conservative and
it keeps larger distance towards the occluded regions, as
expected. Figure 7 (right figure) shows the enlargement of
capsule sets along the MPC horizon. The blue trajectory
shows the closed-loop plan from the initial condition z0 =
[x0, y0, ψ0] = [0.8m, 0.3m, π2 rad] to the goal position zgoal
as [x = 2.9, y = 2.8]. The open-loop trajectory at time step
t = 7s is shown as colored dots, where each color represents
one step of prediction. For example red dot shows zk=0|t=7,
light red is zk=1|t=7, purple is zk=2|t=7, green is zk=3|t=7,
yellow is zk=4|t=7, light blue is zk=5|t=7, pink is zk=6|t=7

and so on (only portion of horizon steps are illustrated in
the figure for clarity). The corresponding capsule sets are
shown in the same color. As seen, at each horizon step k,
the robot satisfies minimum distance requirement to capsule
sets. Computation times for baseline MPC and O-A MPC for
the scenario of Figure 7 are reported in Table I for over 100
iterations. As seen, the average of computation time for O-A
MPC is larger than baseline MPC, due to extra constraints
associated with reachable sets on occluded boundaries, but
O-A MPC is still suitable for real-time implementation.

Figure 8 shows snapshots of closed-loop simulation of
LiDAR and O-A MPC for a scenario in which a robot
(magenta circle) navigates in an environment with multiple
static (blue regions) and dynamic obstacles or pedestrians
(green circles). Top left figure shows the initial condition
in which one pedestrian is visible to the robot and the
other is initially hidden in occluded region. Point clouds
from LiDAR simulation are shown in purple. Boundary of
occlusion and capsule reachable sets are shown in red. As
the robot navigates the environment to reach its goal (red
star), the occlusion boundary changes as the LiDAR scan

Fig. 8: Top Left: One of the pedestrians (green circles in the top right) is
moving to the left and is visible to the robot. The other pedestrian (green
circle in the bottom left region) is intiallly in the occluded region and
she/he starts to move towards the top. Top Right: At the moment that
pedestrian crosses occlusion boundary, she/he is visible to the robot and the
forward reachable sets (green) are computed to avoid collision with visible
target. Bottom Left: The robot moves towards its goal while avoiding
collision with visible/hidden agents, (open-loop trajectories are shown in
black). Bottom Right: Finally, the robot reaches its goal and its executed
trajectory is illustrated (blue).

is updated. As soon as the pedestrian crosses the boundary
of occlusion (top right figure), the O-A planner creates
the pedestrian’s reachable sets (nested green circles) and
avoid collision with visible agents (green reachable sets) and
capsules (red reachable sets) corresponding to occluded area.
The bottom left figure shows the open-loop trajectory (black
dots) as the robot move towards its goal. The bottom right
figure shows the entire executed trajectory in which the robot
reaches its goal while avoiding collision with hidden/visible
pedestrians. Note that visible targets can create dynamic
occlusion in the environment. This type of occlusion can
be handled in a similar way. However, in this simulation the
occlusion caused by moving visible pedestrian is considered
negligible due to the small size of pedestrian.

Figure 9, shows experimental results that compares base-
line MPC with O-A MPC for robot navigation in different en-
vironments, a corner, square-shaped obstacle and triangular-
shaped obstacle. For all these experiments, the environment
is unknown to the robot, so it relies on its LiDAR to
perceive the environment in real-time. LiDAR point cloud
data (purple) define the environment boundaries and obsta-
cles. However, they act differently on how they navigate
the occluded regions. Blue dots represent the executed plan
starting from black small triangle and reaching the goal
position (red star). Gray arrows show the heading of robot at
each time step. Both MPC planners are operating in 10 Hz
with horizon N = 10. The left column shows corner scenario
in which O-A MPC takes a wider turn to navigate the
corner to avoid collision with possible invisible agents, but
baseline MPC which is agnostic towards occlusion regions
navigates the corner without considering collision avoidance
with occluded dynamic agents. The middle and right columns
confirm the same results for navigation in environments with
square-shaped and triangular-shaped obstacles.



Fig. 9: Experimental Results: Gray arrows show the robot’s heading at each time step; Blue dots show the executed plan; LiDAR point clouds are shown in
purple. Top Row: Different environments (corner, square obstacle, triangle obstacle (from left to right). Second Row: Baseline MPC is occlusion-agnostic
and navigates the occluded regions by taking tight turns without considering collision avoidance with potential invisible dynamic agents. Third Row:
Occlusion-Aware MPC planner takes wide turns in occluded regions.

VIII. CONCLUSION AND FUTURE WORK

This work proposed a novel perception-aware real-time
planning framework for safe navigation of robotics sys-
tems in an a priori unknown dynamic environment where
occlusions exist. The presented NMPC strategies provide
safety guarantees and computational efficiency. For future
work, the proposed algorithm can be extended to be used
for safe navigation in 3-dimensional spaces for aerial robot
applications.
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