
2712 IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

CATNIPS: Collision Avoidance Through Neural
Implicit Probabilistic Scenes

Timothy Chen , Preston Culbertson , Member, IEEE, and Mac Schwager , Member, IEEE

Abstract—We introduce a transformation of a neural radiance
field (NeRF) to an equivalent Poisson point process (PPP). This PPP
transformation allows for rigorous quantification of uncertainty
in NeRFs, in particular, for computing collision probabilities for a
robot navigating through a NeRF environment. The PPP is a gener-
alization of a probabilistic occupancy grid to the continuous volume
and is fundamental to the volumetric ray-tracing model underlying
radiance fields. Building upon this PPP representation, we present
a chance-constrained trajectory optimization method for safe robot
navigation in NeRFs. Our method relies on a voxel representation
called the probabilistic unsafe robot region that spatially fuses the
chance constraint with the NeRF model to facilitate fast trajectory
optimization. We then combine a graph-based search with a spline-
based trajectory optimization to yield robot trajectories through
the NeRF that are guaranteed to satisfy a user-specific collision
probability. We validate our chance constrained planning method
through simulations and hardware experiments, showing superior
performance compared to prior works on trajectory planning in
NeRF environments.

Index Terms—Collision avoidance, neural radiance fields
(NeRFs), robot safety, visual-based navigation.

I. INTRODUCTION

CONSTRUCTING an environment model from onboard
sensors, such as RGB(-D) cameras, lidar, or touch sen-

sors, is a fundamental challenge for any autonomous system.
Recently, neural radiance fields (NeRFs) [1] have emerged as a
promising 3-D scene representation with potential applications
in a variety of robotics domains including SLAM [2], pose
estimation [3], [4], reinforcement learning [5], and grasping [6].
NeRFs offer several potential benefits over traditional scene
representations: they can be trained using only monocular RGB
images, they provide a continuous representation of obstacle
geometry, and they are memory-efficient, especially considering

Manuscript received 25 November 2023; accepted 10 February 2024. Date of
publication 8 April 2024; date of current version 1 May 2024. This paper was rec-
ommended for publication by Associate Editor D. Panagou and Editor N. Amato
upon evaluation of the reviewers’ comments. This work was supported in part
by the NASA University Leadership Initiative under Grant #80NSSC20M0163
provided funds to assist the authors with their research, but this article solely
reflects the opinions and conclusions of its authors and not any NASA entity
and in part by Toyota Research Institute. The work of T. Chen was supported by
a NASA NSTGRO Fellowship. The work of Preston Culbertson was supported
by a NASA NSTRF Fellowship. (Corresponding author: Timothy Chen.)

Timothy Chen and Mac Schwager are with the Department of Aeronau-
tics and Astronautics, Stanford University, Stanford, CA 94305 USA (e-mail:
chengine@stanford.edu; schwager@stanford.edu).

Preston Culbertson is with the Department of Mechanical and Civil Engi-
neering, California Institute of Technology, Pasadena, CA 91125 USA (e-mail:
pculbert@caltech.edu).

Our code can be found at https://github.com/chengine/catnips.
Digital Object Identifier 10.1109/TRO.2024.3386394

Fig. 1. (a) Ground-truth of the Stonehenge scene. (b) Poisson point process
(PPP) of the scene represented as a point cloud. (c) Probabilistically Unsafe
Robot Region (PURR) of scene. (d) Generated safe paths from our method
Collision Avoidance Through Neural Implicit Probabilistic Scenes (CATNIPS).
Our code can be found at https://github.com/chengine/catnips.

the photorealistic quality of their renders. Using current imple-
mentations [7], [8], NeRFs can be trained in seconds using only
RGB images captured from monocular cameras, making on-
board, online NeRF training a viable option for robotic systems.

However, NeRFs do not directly give information about spa-
tial occupancy, which poses a challenge in using NeRF models
for safe robot navigation. In other 3-D scene representations,
such as (watertight) triangle meshes [9], occupancy grids [10], or
signed distance fields (SDFs) [11], occupancy is well defined and
simple to query. NeRFs, however, do not admit simple pointwise
occupancy queries, since they represent the scene geometry
implicitly through a continuous volumetric density field. For
this reason, integrating NeRF models into robotic planners with
mathematical safety guarantees remains an open problem.

To this end, we develop a framework for robot trajectory
planning that can generate trajectories through a NeRF scene
with probabilistic safety guarantees. To do this, we propose
a mathematical transformation of a NeRF to a Poisson point
process (PPP), which allows for the rigorous computation of
collision probabilities for a robot moving through a NeRF

1941-0468 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Stanford University. Downloaded on September 13,2024 at 19:38:24 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-3948-8739
https://orcid.org/0000-0002-1403-8697
https://orcid.org/0000-0002-7871-3663
mailto:chengine@stanford.edu
mailto:schwager@stanford.edu
mailto:pculbert@caltech.edu
https://github.com/chengine/catnips
https://github.com/chengine/catnips

CHEN et al.: CATNIPS: COLLISION AVOIDANCE THROUGH NEURAL IMPLICIT PROBABILISTIC SCENES 2713

scene. We further introduce a novel scene representation, a
probabilistically unsafe robot region (PURR), that convolves the
robot geometry with the NeRF to yield a 3-D map of all robot
positions with collision probabilities less than a user-specified
threshold. Finally, we propose a fast, chance-constrained trajec-
tory planner that uses the PURR to ensure the trajectories are
collision free up to the user-specified probability threshold. Our
method, called Collision Avoidance Through Neural Implicit
Probabilistic Scenes (CATNIPS), can compute probabilistically
safe trajectories at more than 3 Hz. This is many times faster
than existing NeRF-based trajectory planners that provide no
safety guarantees [12].

The key theoretical advance underpinning our results is the
novel transformation of the NeRF into a PPP. Existing works on
radiance fields either ignore the underlying probabilistic inter-
pretation of the field or treat it as a nuisance. A naive approach
is to convert the NeRF representation into a more traditional
deterministic mesh or occupancy representation. We argue that
such conversions are computationally slow, and they destroy
any potential mathematical safety guarantees for a downstream
planner. For example, generating a triangle mesh (e.g., using
marching cubes [13]) that represents a level set of the density
field requires the arbitrary selection of a density cutoff value, and
collapses the uncertainty represented by the density field into a
binary occupancy measure. In contrast, our method computes
rigorous collision probabilities using the NeRF density directly.
We provide simulation studies to show that our planner gen-
erates safe, but not overlyconservative, trajectories through the
environment. We contrast our paths to those generated using
a level-set-based environment representation and those from
prior work [12]. We find that the paths our method generates
are more intuitive and easier to tune than these baselines, as
collision is interpretably defined through violation of a collision
probability as opposed to violation of an arbitrary level set
of the density (Fig. 1). We show our method to be real time,
replanning online at 3 Hz on a laptop computer, compared to the
gradient descent-based planner proposed in [12], which requires
approximately 2 s for replanning.

The rest of this article is organized as follows. In Section II,
we discuss related work. In Section III we review background
concepts from NeRFs, and in Section IV we derive the PPP
interpretation of the NeRF. In Section V, we compute collision
probabilities for a robot in a NeRF environment, and in Sec-
tion VI we present our trajectory planning algorithm, CATNIPS.
Section VII gives our simulation results and Conclusions are in
Section VIII.

II. RELATED WORK

Here we review the related literature in robot planning and
control with NeRF representations, compare it with planning in
a SDF representation, discuss other uses of NeRFs in robotics,
and summarize chance-constrained planning.

A. Planning and Control With Onboard Sensing and SDFs

Planning and control based on onboard sensing has already
yielded a large amount of literature. Typically these works
present reactive control schemes [14], using the sensed depth

directly to perform collision checking in real time. These meth-
ods typically are myopic, reasoning only locally about the scene.
An alternate approach is to construct a map of the environment
using the depth measurements. Often a SDF is constructed from
depth data [15], [16], which in this work is encoded within
voxels. Han et al. [16] also integrated their system onboard
a quadrotor to validate their method. Such a representation
is typical in dynamic robotic motion planning, providing fast
collision checking and gradients in planning.

We believe NeRF is a promising alternative to more famil-
iar 3-D geometry representations like SDFs due to some key
NeRF properties. We show that the NeRF inherently encodes
uncertainty in the environment, whereas SDFs are typically
deterministic. Moreover, we find that deep network SDFs are
difficult to train, often requiring synthetic training points with
heuristically generated, error-prone depth labels. In contrast,
NeRFs can be supervised directly from RGB images, and can
be trained reliably and quickly with NeRF training packages
such as [8]. The modularity of NeRFs in perception pipelines,
especially those involving visual data, is another benefit of
NeRFs. However, this is not to say that the two cannot coexist.
There exists in the literature deep learning architectures that
simultaneously learn SDF and NeRF outputs based on empirical
consistency between the two (e.g., NeuS [17]). We hope that our
probabilistic interpretation of NeRFs can help bridge the gap
between these two representations and enable future pipelines
to access advantages of both representations.

B. Planning and Control Using NeRFs

Safety has been a largely unexplored topic in the NeRF
literature, with only preliminary approaches being studied in
simulation. The authors’ previous work NeRF-Nav [12] presents
a planner that avoids collisions in a NeRF environment model
by avoiding high-density areas in the scene. An alternative
work [18] instead uses the predicted depth map at sampled poses
to enforce stepwise safety using a control barrier function. The
two methods are not at odds, as the philosophy of Adamkiewicz
et al. [12] serves as a high-level planner that encourages non-
myoptic behavior while Tong et al. [18] can be used as a safety
filter for a myopic low-level controller interfacing directly with
the system dynamics.

More specifically, NeRF-Nav [12] adapted trajectory opti-
mization tools to plan trajectories for a robot through a NeRF
environment. Collisions are discouraged with a penalty in the
trajectory cost, but the probability of collision is not quantified or
directly constrained. In this work, we instead rigorously quantify
collision probabilities for a robot in a NeRF, and develop a trajec-
tory planning method to satisfy user-defined chance constraints
on collision. In addition, NeRF-Nav requires about 2 s for each
online trajectory resolve, while our proposed method requires
about 0.3 s per online trajectory resolve on similar computing
hardware.

C. Other Uses of NeRFs in Robotics

Some works have considered NeRFs as a 3-D scene repre-
sentation for robotic grasping and manipulation. For example,
Dex-NeRF [6] used NeRF-rendered depth images to obtain

Authorized licensed use limited to: Stanford University. Downloaded on September 13,2024 at 19:38:24 UTC from IEEE Xplore. Restrictions apply.

2714 IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

higher quality grasps for a robot manipulator than using a
depth camera. Similarly, one can use dense object descriptors
supervised with a NeRF model for robot grasping [4]. Some
works have also considered SLAM and mapping using a NeRF
map representation. The papers [2], [3] used the photometric
error between rendered and observed images to simultaneously
optimize the NeRF weights and the robot/camera poses. The
approach in [19] used a grid-interpolation-decoder NeRF ar-
chitecture in a similar SLAM pipeline. The work of Rosinol
et al. [20] proposed a combination of an existing visual odometry
pipeline for camera trajectory estimation together with online
NeRF training for the 3-D scene. NeRFs have also been used
for tracking the pose of a robot using an on-board camera and
IMU. For example, iNeRF [3] found a single camera pose from
a single image and a pretrained NeRF model, and Adamkiewicz
et al. [12] proposed a nonlinear optimization-based filter for
tracking a trajectory of an on-board camera using a sequence
of images and a pretrained NeRF. Loc-NeRF [21] approached
a similar problem using a particle filter instead of a nonlinear
optimization-based filter.

Other papers have considered active view planning for NeRFs.
ActiveNeRF [22] treated the radiance value of the NeRF as
Gaussian distributed random variables (RVs), and performs
Bayesian filtering to find the next best view. An alternative
work [23] used disagreement among an ensemble of NeRFs
to choose the next best camera view. Similarly, Sunderhauf
et al. [24] used ensembles in a next best view strategy while
also adding ray-termination densities to the information gain
metric. S-NeRF [25] used variational inference to train a proba-
bility distribution over NeRFs for next best view selection. Ac-
tiveRMAP [26] considers a full informative trajectory planning
pipeline for a robot moving through a NeRF. In contrast to our
work here, they do not focus on the safety of the trajectories or on
quantifying collision probabilities. Perhaps the closest in spirit
in terms of modeling uncertainty is Bayes’ Rays [27], which
reasons locally about epistemic uncertainty (i.e., the distribution
over NeRF parameters) and differs from our work that pins
down the distribution that the NeRF model represents. However,
we envision future efforts that incorporate both works to fully
explain geometric uncertainty conditioned on RGB data.

Of course, many of these works would not be applicable to
robotics if they were not real time. Massive performance gains
have been made to train NeRFs in real time [7], [28], [29].
Moreover, NeRFs must be able to capture reality as well. They
are known to suffer in quality when reconstructing rich, real
environments over a large range of length scales. Attempts have
been made to fix this issue by extrapolating over the entire
camera frustum rather than a ray [30], [31].

D. Chance-Constrained Planning

Outside of NeRFs, there exists a large literature on trajectory
planning for robots that seeks to impose constraints on the
probability of collision when the underlying scene geometry
is unknown; this approach is known as chance-constrained
planning. The robot state is typically modeled as stochastic,

while the map is typically considered to be known determin-
istically. Some works do consider uncertainty in both the map
and the robot state, but they typically rely on a linear system
or Gaussian noise assumption to make computation convex
or analytical and efficient to solve. Du Toit and Burdick [32]
assume Gaussian-distributed obstacle states, and approximates
the collision probability as constant over the robot body (suit-
able only for small robots). Blackmore et al. [33] encoded the
probability of collision with faces of polytopic obstacles as a
linear constraint, but the resulting trajectory optimization is
a combinatorial problem, making it difficult to solve quickly.
Zhu and Alonso-Mora [34] incorporated this linear probabilistic
constraint into RRT. Luders et al. [35] again used this linear
constraint in an MPC framework with nonlinear dynamics,
executed on real hardware with dynamic obstacles and extended
to a multiagent context. None of these methods consider NeRF
environment models, which is our focus here.

III. NERFS

In this section, we introduce the mathematical preliminaries
and notation used in NeRFs. For clarity, we use bold face for
vector variables and functions that output vectors, and nonbold
text for scalar variables, functions that output scalars, and—in
some instances—rotations.

A NeRF is a neural network that stores a density and color field
over the 3-D environment. When coupled with a differentiable
image rendering model (usually a differentiable version of ray
tracing), the NeRF can be trained from a collection of RGB
images with known camera poses, and can generate photoreal-
istic synthetic images rendered from camera view points that are
different from the training images.

More specifically, the NeRF is a pair of functions
(ρ(p), c(p,d)). The density function, ρ : R3 �→ R≥0, maps a
3-D location p = (x, y, z) to a nonnegative density value ρ that
encodes the differential probability of a light ray stopping at that
point.1 The radiance (i.e., RGB color) function c : R3 × R

2 �→
R

3 maps a 3-D locationp = (x, y, z) and camera view direction
d ∈ {x ∈ R

3 | ||x|| = 1} (alternatively parameterized as a 2-D
vector of angles (θ, φ)) to an emitted RGB color c represented
as a vector in R

3. In this article, we focus specifically on the
density function ρ(p) as a proxy for occupancy, which should
ideally be zero in free space and take on large values in occupied
space. We use this ρ(p) function as a map representation for
planning robot trajectories. We also define C(o,d) ∈ [0, 1]3 as
the rendered pixel color in an image when taking the expected
color value from the NeRF along a ray r(t;o,d) with camera
origin o and pixel orientation d, where r(t) = o+ t · d. The
rendered color is given by

C(o,d) =

∫ tf

tn

ρ (r(t)) e−
∫ t
tn

ρ(r(τ))dτ c(r(t),d) dt (1)

1This density field can be stored entirely as a multilayer perceptron (MLP),
as in the original NeRF work [1], as a function interpolated on a discrete voxel
grid [28], or using a combination of interpolated voxel features and an MLP
decoder [7], [29]. Our method can work with any of these representations.

Authorized licensed use limited to: Stanford University. Downloaded on September 13,2024 at 19:38:24 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: CATNIPS: COLLISION AVOIDANCE THROUGH NEURAL IMPLICIT PROBABILISTIC SCENES 2715

where we only integrate points along the ray between tn and tf
(i.e., the near and far planes). In practice, this integral is evalu-
ated numerically using Monte Carlo integration with stratified
sampling. The resulting rendering (1) is differentiable.

A rendered image Ii is then an array of pixel colors associated
with a single camera pose, where the color of pixel j in image Ii
is given by C(oi,dij) with associated origin oi (determined
by the camera) and direction dij computed with an angular
offset from the camera optical axis for pixel j. We denote the set
of pixel indices for image Ii as Ii. The corresponding ground
truth image Īi is an array of pixels with colors C̄ij. A dataset
D for training a NeRF consists of a collection of such ground
truth images with known poses. The parameters of the NeRF are
trained by minimizing the loss function

J(θ) =
1

|D|
∑
i∈D

1

|Ii|
∑
j∈Ii

||C(oi,dij ;θ)− C̄ij||22 (2)

where θ are the parameters of the neural networks representing
the density and radiance fields ρ and c, which appear in the com-
putation of the pixel color C(oi,dij ;θ) through the rendering
equation (1). This mean squared error is called the photometric
error (or photomoetric loss) and is optimized with standard
stochastic gradient descent tools in, e.g., Pytorch. Intuitively, the
goal is to train the network so that the synthetic images generated
from the NeRF match the training images at the specified camera
poses as closely as possible.

While the camera poses are required to find oi and dij for
each pixel to train the NeRF, a standard pipeline has emerged that
takes images without camera poses, uses a classical structure-
from-motion algorithm (e.g., COLMAP [36]) to estimate the
camera poses, and supervises the NeRF training with these
poses. Recent methods also optimize the camera poses jointly
with the NeRF weights to improve the performance [8].

Hence, in practice a NeRF model can be obtained from only
RGB images (without camera poses). However the quality and
extent of the NeRF are limited by the quality of the training
images, and the volume covered by those images. Few images,
with low resolution, low photographic quality, and poor coverage
will yield a poor-quality NeRF. A large number of sharp, high-
resolution images from a rich diversity of view points will yield
a high-quality NeRF. Our goal is to accurately quantify collision
risk for a robot navigating through the scene regardless of the
quality of the trained NeRF. With our approach, the same robot
pose in the same 3-D scene may have a high collision probability
in a poor-quality NeRF, and a low collision probability in a high-
quality NeRF. The probability of collision is itself an expression
of the NeRF quality in the vicinity of the robot.

IV. NERF DENSITY AS A PPP

In this section, we show that a NeRF density field can be
transformed into the density of a PPP, and the NeRF color and
density fields together give rise to a “marked” PPP [37], [38].
To do this, we demonstrate that the NeRF volumetric rendering
equation is precisely the computation that is required to compute
expected pixel color if the color and density under this marked
PPP model. Training the NeRF can be interpreted as fitting

the PPP density parameters through moment matching on the
expected pixel color.

This connection is significant since the PPP derived from the
NeRF density field enables computation of probabilistic quan-
tities, such as the probability of a given volume being occupied
(e.g., of a robot body colliding with the NeRF), or the entropy
in the NeRF model. This also settles a debate in the literature
about whether the NeRF density can be probabilistically (it can),
and paves the way for practical utility in other domains beyond
safety (e.g., in active sensing and active view planning). In short,
we find that the NeRF density encodes a probabilistic model of
the geometry of the scene, the uncertainties of which can be
rigorously quantified through an underlying PPP.

A. Poisson Point Processes

Here we review the definition and properties of the PPP, a
stochastic process that models the distribution of a random col-
lection of points in a continuous space. Much of this discussion
is drawn from [37], to which we refer the reader for a more
detailed and rigorous treatment.

First, we recall that a discrete RV N that takes values in N is
said to have a Poisson distribution with parameter λ ≥ 0 if its
probability mass function is given by

Pr(N = m) =
λm exp(−λ)

m!
.

Poisson RVs are often used to model the distribution of the
number of discrete events in a fixed amount of time (e.g.,
customers arriving at a store), or over a fixed region of space (e.g.,
the number of rides hailed daily in a given neighborhood). The
PPP naturally extends this concept to the distribution over the
number of points in any subset of a multidimensional Euclidean
space.

Definition 1 (PPP): Consider a random processN onRn that
maps subsets2 B ⊂ R

n of the state space to the random number
N(B) of points that lie in B. We say N is a PPP with intensity
λ : Rn �→ R+ if:

1) The number of points N(B) that lie in B is a Poisson RV
with distribution

Pr(N(B) = m) =
Λ(B)m exp(−Λ(B))

m!

where Λ(B) =
∫
x∈B λ(x) dx.

2) For k disjoint subsets B1, . . . Bk ⊂ R
n, the number of

points in each subset, N(B1), . . . , N(Bk), are indepen-
dent RVs.

This is sometimes referred to as the inhomogeneous PPP since
the intensity λ is a function of the spatial variable x. If the
intensity is constant over x, this is called the homogeneous PPP.

The PPP encodes the randomness over both the number and
the location of random points. An important quantity for such
processes is the “void probability,” or the probability that a given
set B is empty. The void probability is given by

Pr(N(B) = 0) = exp

[
−
∫
B

λ(x) dx

]
. (3)

2The subsets B must be Lebesgue measureable.

Authorized licensed use limited to: Stanford University. Downloaded on September 13,2024 at 19:38:24 UTC from IEEE Xplore. Restrictions apply.

2716 IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

Thus, intuitively, the void probability shrinks as either the inten-
sity λ increases, or the set B grows larger.

It is also important to note that through the Poisson distribu-
tion, the expected number of points in the set B is identical to
the integral of the intensity, in other words,

E [N(B)] =

∫
B

λ(x) dx. (4)

When reasoning about collision probability, we want each
point associated with the PPP to have a corresponding volume.
Using the above fact (4), we can consider points or particles of
arbitrary size by weighting the PPP accordingly.

Given some reference particle size Vref associated with the
initial PPP, a desired particle size Vd, an integration domain B,
and the expected volume occupied by all the particles E[Vtotal],
we can retrieve E[Nd(B)], the expected number of particles of
size Vd, by conservation of E[Vtotal]. Namely,

VrefE [N(B)] = Vref

∫
B

λ(x) dx = E [Vtotal]

= VdE [Nd(B)]

E [Nd(B)] =

∫
B λ(x) dx

Vd/Vref
. (5)

Therefore, a PPP with the same expected occupied volume can
be produced using differing particle sizes by simply scaling the
density.

Finally, we note that PPPs may be “marked” or “colored”
with various quantities using a deterministic labeling function
c(x) : Rn �→ C. Using the statistics of the underlying PPP, it
is straightforward to compute the statistics of the labels for the
points appearing in a set; see [37, Ch. 5] for a detailed discussion.

B. “Rendering” a Marked PPP

The intensity function of a PPP admits an infinitesimal inter-
pretation: λ(x) dx is the probability that a point of the process
lies within an infinitesimal volume dx centered at x. This is
closely related to the interpretation of the density field offered
by the original NeRF authors [1]: “ρ(x) defines the infinitesimal
probability of a ray terminating at a given point x ∈ R

3.” In this
section, we show the volumetric rendering procedure introduced
in [1] in fact computes an expected color of a marked PPP along
a given ray.

Our key problem is how to relate the ray tracing used in NeRF,
a 1-D process, to the 3-D measure of occupancy, λ(x) in the PPP.
We consider the occupancy swept by a frustum (the pyramid of
light that projects onto a single pixel patch). In particular, when
generating the color of a particular pixel from a marked PPP, we
extend a pyramid along the pixel’s ray (see Fig. 2), and return
the color of the first point of the process encountered along the
ray in expectation.

More specifically, for each pixel in the image, with associated
ray r(o,d), we consider the frustum (Fig. 2, red) parameterized
by a length t ∈ [tn, tf],

F(t) ≡
{
o+ dτ + xn̂x + yn̂y | |x| ≤ w(τ)

2
,

Fig. 2. In the rendering process, the probability that the pixel color takes on
the color of the infintesimally small occluding slice (green) is given by the
probability that all slices in the region preceding the slice (red) are unoccluded.
Then, the pixel color is the expectation of the color taken by varying the position
of the occluding slice along the ray.

|y| ≤ h(τ)

2
, τ ∈ [tn, t]

}
(6)

where n̂x, n̂y are unit vectors orthogonal to d forming a basis
in the image plane and h,w are the height and width of the
frustrum cross section, respectively, starting from the size of the
pixel (h0, w0) on the image plane.

However, there still remains a modeling choice: given a fixed
particle size Vref, how many particles must be present in a given
cross-section of the frustum for light to be occluded? We say the
ray is occluded when the combined frontal area of the particles
present at depth t occupies a given fraction γ ∈ (0, 1] of the
frustum’s cross-section.

Since the frustum’s area A(t) varies with depth, for particles
of a fixed size, the number of particles needed to occlude the
ray would also vary with t. However, as previously discussed,
reweighting a PPP is equivalent to changing the particle size.
Thus, in this work we consider “dimensionless” particles whose
(projected) area on the frustum is exactly γA(t) (so only one par-
ticle is needed to occlude the ray) by reweighting the PPP density
accordingly along the ray. Thus, we say the ray terminates at the
depth of the first “dimensionless” particle encountered along the
ray.

C. Equivalence of NeRF and PPP Rendering

This brings us to our main result. Here we show that, under
appropriate assumptions on the distribution of the training rays
and the spatial variation of the NeRF density and color, the color
of a given pixel in an image rendered from a NeRF (1) is exactly
the expected color of the same pixel rendered from a PPP with
(scaled) intensity equal to the NeRF density ρ, and marking
equal to the NeRF radiance c. We then provide intuition on the
spatial relation between λ and ρ.

Assumption 1 (PPP Smoothness): Consider a PPP λ(x) and
color markingc(x,d). We assume the average of the PPP density
over any ball Bε, with center xε, is equal to the value of the PPP
density at the center of the ball, where ε is the minimum radius
ball required to contain a pixel projected from the near plane onto
the far plane of the NeRF scene. We also assume the color field

Authorized licensed use limited to: Stanford University. Downloaded on September 13,2024 at 19:38:24 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: CATNIPS: COLLISION AVOIDANCE THROUGH NEURAL IMPLICIT PROBABILISTIC SCENES 2717

c(x,d) is approximately constant over any Bε. Specifically,∫
Bε

λ(x) dx = λ(xε)VBε
(7)

and

∀(x,y) ∈ Bε : ||c(x,d)− c(y,d)|| = 0 (8)

where Bε is the smallest ball that can contain an image pixel
projected from the near plane onto the far plane of the NeRF
scene.

This assumption states that the variation in the PPP over a
small ball integrates to 0, while the color is constant in that
same region.3 These are both mathematical idealizations which
are unlikely to hold exactly in practice. However, we find em-
pirically that these assumptions are very close to being satisfied,
ultimately yielding well-calibrated collision probabilities. For
example, for a scene with length scale 2 m, a camera with focal
length 50 mm, and a1000× 1000pixel image, the far plane pixel
has side length on the order of 10−3 m, requiring ε =

√
2mm.

Empirically, this is consistent with the smallest resolution of
detail in a well-trained NeRF scene of a 2 m3 volume.

Assumption 1 is reasonable due to the loss of information
when encoding the continuous environment into the discretized
observation space of pixelated images. Due to the resolution
of the camera, color is constant across a pixel, hence we do
not have information to distinguish generating environments
whose colors only differ over the length scales of a single
pixel. Since reconstructing the continuous geometry given the
pixel-discretized images is ill-posed, we see this smoothness
requirement as a kind of regularization prior for the density and
color fields.

Moreover, we tolerate stricter assumptions on the color be-
cause, in practice, the radiance field (i.e., color) is also smoother
than the density field. The primary reason is that the radiance
field is defined even in regions of empty space and is therefore
allowed to smoothly change across surfaces; on the other hand,
the density must change more sharply across surfaces in order to
reflect the underlying discrete change in geometry. This is indeed
reflected in the literature, where the original NeRF work [1] uses
a smaller network to model color and later extensions like [28]
replace the network with smooth low-order spherical harmonics.

Assumption 2 (Ray Redundancy): Given a dataset of training
rays derived from training images, poses, and camera intrinsics,
no two rays intersect.

This is a weak assumption as ray intersection is a zero-
measure event. Moreover, floating point precision and noise in
the poses further reduces the likelihood of ray intersection. Given
these assumptions, we now state our main result.

Proposition 1 (Rendering of PPP): Consider a PPP λ(x) and
radiance c(x,d) and let the radiance satisfy (8) from Assump-
tion 1. Then, the expected color of a pixel rendered from the PPP
matches the form of the rendering equation (1).

Proof: Let us consider a ray r(t) = o+ t · d, where t ∈
[tn, tf]. We consider again the corresponding frustum F(t) (6),

3Note that we do not require the density assumption for NeRF-PPP equiv-
alence (Prop. 1, 2). Its use is in extracting an approximate scaling factor to
transform between the density ρ and PPP intensity λ (Cor. 1).

the pyramid created by sweeping the scaled pixel area along r
from tn to t.

As discussed in our rendering model, we consider “dimen-
sionless” particles whose projected area is γA(t) (so the ray
is occluded by the first particle encountered). Thus, the inten-
sity/expected number of particles of this slice δF(t) for those
of the occluding size (Vd = γVδF (t)) is defined as

Λ (δF(t)) =

∫
x∈δF(t)

Vrefλ(x)

γVδF (t)
dx

=

∫ t+δt/2

t−δt/2

∫
(x,y)∈A(τ)

Vrefλ(r(τ) + xn̂x + yn̂y)

γVδF (t)
dx dy dτ

=
δt
∫
A(t) Arefδtλ(r(t) + xn̂x + yn̂y) dx dy

γA(t)δt

if the reference particle is some small ball of size Vref = Arefδt.
Hence, the void probability of the slice (3) (equivalently, the

probability of no occlusion) is

Pr(N(δF(t)) = 0) =

exp

[
−
∫
A(t) Arefλ(r(t) + xn̂x + yn̂y) dx dy

γA(t)
δt

]
.

Now we consider the event where any slice of the frustum is
occluded, up to a given depth t. To do this, we divide the frustum
into smaller sections along its length. Because the number of
particles in disjoint subsets are independent by definition of
the PPP (Definition 1(ii)), then the probability of occlusion of
each section is independent of that of other sections. Hence, the
probability that the frustum up to t is not occluded requires all
sections to not be occluded∏

t

Pr(N(δF(t)) = 0)

=
∏
t

exp

[
−
∫
A(t) Arefλ(r(t) + xn̂x + yn̂y) dx dy

γA(t)
δt

]

= exp

[
−
∑
t

∫
A(t) Arefλ(r(t) + xn̂x + yn̂y) dx dy

γA(t)
δt

]
.

In the limit as the section widths δt approach zero, they
become slices, and the summation becomes an integral. Thus,
the probability that the frustum up to t is occluded is

Pr(F(t) not occluded)

= exp

[
−
∫
t

∫
A(τ) Arefλ(r(τ) + xn̂x + yn̂y) dx dy

γA(τ)
dτ

]
.

For notational simplicity, we henceforth denote the surface
integral divided by the scaled area of the slice by κ(τ).

Let us now consider a RV Tmin, which defines the distance of
the first occluding slice (denoted green in Fig. 2). We can define
the cumulative distribution function of this variable, for some
t > tn, Tmin ≤ t as the probability that F(t) is occluded. Thus,
the CDF of Tmin can be defined using the above equation,

Authorized licensed use limited to: Stanford University. Downloaded on September 13,2024 at 19:38:24 UTC from IEEE Xplore. Restrictions apply.

2718 IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

Pr(Tmin ≤ t) ≡ FTmin(t) = 1− P (F(t) not occluded)

= 1− exp

[
−
∫ t

tn

κ(τ) dτ

]
.

We can then compute the PDF of Tmin by differentiating FTmin

with respect to t, yielding

fTmin(t) =
d

dt
FTmin(t)

= κ(t) exp

[
−
∫ t

tn

κ(τ) dτ

]
. (9)

This defines a probability distribution over the extent of the
unoccluded region.

Finally, due to Assumption 1, the color of the slice returned
by the PPP rendering is equal to the marking function evaluated
at r(Tmin). Thus, we can compute the expected color of the PPP
rendering by computing the expectation of c(r(Tmin)), yielding

C(r) = E [c(r(Tmin))]

=

∫ tf

tn

κ(t)c(r(t)) exp

[
−
∫ t

tn

κ(τ) dτ

]
dt.

The PPP expected color matches exactly the expression given in
(1) from the original NeRF paper [1], completing the proof. �

Proposition 2 (NeRF-PPP Equivalence): Consider a NeRF
with density ρ(x) and let Assumption 2 hold. Then the NeRF is
a locally area-averaged PPP.

Proof: Following from the above proof, we make equiva-
lences between the two rendering equations for all training rays,
namely

∀ r(t;o,d) :

ρ(r(t)) =

∫
A(t) Arefλ(r(t) + xn̂x + yn̂y) dx dy

γA(t)
.

Note that we require Assumption 2 because when two rays
intersect, the left hand side of the above equation is necessarily
identical for both rays, yet the right hand side may not be.
Specifically, the integration domains for the two rays at the
intersection point may not be identical, hence the numerator
and denominator on the right hand side are not the same for
both rays. Moreover, note that for γ = 1 (full occlusion), the
density is the area-averaged number of particles over the slice
A(t). �

Crucially, this matches the intuition on the NeRF density
proposed by [1], [39]. However, our derivation is more gen-
eral than that of [39], which assumes a constant-area frustum.
Although we used a pyramidal frustum for illustration purposes,
note that our derivation does not assume the form of A(t) (e.g.,
rectangular, circular) and therefore the shape of the frustum, so
long as the frustum can be decomposed into disjoint slices that
are themselves connected sets. Finally, our derivation suggests
a more general rendering equation since we had to assume local
homogeneity of color to retrieve (1). Without this limitation, we
could derive a more expressive and accurate rendering equation.
Moreover, our derivation even proposes a parameter γ that can

Fig. 3. Overlay of a realization of the PPP with the ground-truth mesh of
Stonehenge. The two have strong spatial agreement.

be tuned to more precisely define occlusion and perhaps increase
the fidelity of the render.

Corollary 1: By (7) from Assumption 1, ρ(x) = Aref
λ(x)
γ ,

where 0 < γ ≤ 1, so the NeRF density is related to an equivalent
PPP through a constant scale factor Aref/γ.

In general, the constant Aref/γ is unknown, however we show
in Section V below that we do not need its exact value to compute
the collision probability for a robot body.

Having shown that a PPP can be derived from the NeRF, we
visually show this relationship in Fig. 3, where we generate
a point cloud randomly drawn from the PPP (blue spheres)
superimposed on the NeRF rendering of the same scene. The
correspondence in geometry of the NeRF scene and the PPP
point cloud is clear.

Note that while area-averaging of λ to ρ yielded the rendered
color as a line integral as opposed to a volume integral, we have
lost information about the λ field (i.e., the reference particle
Aref and occlusion γ) when using a learning framework to learn
ρ. In fact, we conjecture the observed aliasing phenomena in
which NeRFs fail at different scales [30] is due to this averaging
scheme. The success of works like Mip-NeRF [30] that reason
about the pixel not as a projection of a ray, but along a frustrum
and evaluating rendering as a volume integral (i.e., learning λ

rather than ρ) gives us reason to believe that learning the param-
eters of the PPP directly could yield higher quality geometry.

D. Discussion of PPP Interpretation

An important advantage of taking a PPP interpretation of
the NeRF density is that it allows us to leverage well-studied
properties of PPPs when reasoning about NeRFs. Specifically,
uncertainty metrics such as likelihood and entropy are well-
defined for PPPs. Suppose we measure a point cloud of our
environment using an onboard lidar or depth camera; i.e., for a
set of rays {r1, . . . , rk}we obtain noiseless depth measurements
{d1, . . . dk}. We can write the likelihood of obtaining these
depths under our NeRF using (9),

logP (d1, . . . dk) =

k∑
i=0

[
log ρ(r(di))−

∫ di

tn

ρ(r(t))dt

]
.

(10)

Authorized licensed use limited to: Stanford University. Downloaded on September 13,2024 at 19:38:24 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: CATNIPS: COLLISION AVOIDANCE THROUGH NEURAL IMPLICIT PROBABILISTIC SCENES 2719

If, say, the robot’s state is uncertain, and the depth measure-
ments are corrupted by noise, this likelihood can be used in the
computation of Bayes’ rule for pose estimation. Since previous
literature on NeRFs contained no such likelihood interpretation,
existing approaches to state estimation [3], [12] instead only
minimize a photometric loss as a proxy for maximum likelihood
estimation.

Further, notions of entropy and mutual information can be
generalized to point processes, as discussed in [40]. In particular,
the entropy of a point process over a set B is defined as

H(B) ≡
∫
B

λ(x)(1− log λ(x))dx (11)

=
γ

Aref

∫
B

ρ(x)(1 + logAref − log γ − log ρ(x))dx.

(12)

Thus, H can be used as a measure of the uncertainty of a NeRF
over some set B, which would be useful to reason about which
parts of the NeRF are poorly supervised (i.e., have high entropy)
for problems such as next-best-view selection and active percep-
tion.

Finally, the PPP interpretation of the NeRF allows us to
provide a novel perspective on NeRF training: minimizing the
photometric loss (2) proposed in [1] can be interpreted as per-
forming moment-matching [41, Ch. 4] on the first moment of
the color distribution along the supervised rays. In particular,
the photometric loss will be zero if the color rendered from the
NeRF (i.e., an expected color along the ray of a PPP) matches the
sample distribution (i.e., the color label in the dataset). We be-
lieve our probabilistic interpretation of the NeRF density could
also inspire other loss functions beyond (2), to perform other
methods of parameter estimation such as maximum likelihood
estimation, expectation maximization, and so on.

V. COMPUTING COLLISION PROBABILITY WITH NERF SCENES

To leverage the probabilistic interpretation of NeRFs to eval-
uate the probability of collision between a robot body and
the NeRF, we first define B(p,R) ⊂ R

n as the robot body
parameterized by its pose (p,R) (the set of points occupied
by the robot with position p ∈ R

3 and orientation R ∈ SO(3)),
and consider an environment represented as a NeRF with density
field ρ(p), which we have shown to be related to the PPP field
through a constant scale factor λ(p) = γρ(p)

Aref
.

We define collision probability or the probability that a col-
lection of points from a PPP intersects with the robot body, as
the probability that at most some volume Vmax from the NeRF
can exist within the robot volume. We call Vmax the specified
or allowable interpenetration volume. Given some auxiliary
particle (which may not be the same as the reference particle)
that is user-defined and has some volume Vaux < Vmax, we can
solve for the maximum number of auxiliary particles that should
exist in the robot volumeNmax

aux = Vmax
Vaux

. The definition of this new
type of particle is necessary because one does not have access
to the reference particle dimensions of the underlying PPP. We
show that this knowledge is not necessary to compute collision.

Nonetheless, we are simply solving for the cumulative distribu-
tion function (CDF) of the Poisson point process associated with
the auxiliary particle (i.e., the number of particles that exist in
the robot body),

Pr(X ≤ Nmax
aux ; ΛB) = exp−ΛB

�Nmax
aux �∑

i=0

Λi
B

i!
(13)

whereΛB is the intensity for the auxiliary particle over the robot
body.

Note that ΛB is the PPP associated with the auxiliary particle
and not the reference; therefore, we must scale the NeRF density
appropriately,

ΛB =

∫
B

λaux(x) dx =
Vref

Vaux

∫
B

λ(x) dx. (14)

Recall that Vref = Arefδt and assume an identical form for the
auxiliary volume Vaux = Aauxδt. In addition, we can substitute
the relationship between λ and ρ (Cor. 1) to get the following:

ΛB =
Arefδt

Aauxδt

∫
B

γρ(x)

Aref
dx =

γ

Aaux

∫
B

ρ(x) dx. (15)

This brings us to the first formal definition of NeRF collision.
Definition 2 (Probabilistically Safe): A robot body

parametrized by its pose B(p,R) is probabilistically safe
if the collision probability given in (13) and (15) satisfies
Pr(N(B(p,R)) ≤ Nmax

aux ; ΛB) ≥ σ, for desired probability
threshold σ, auxiliary particle associated with the specified
interpenetration volume, and occlusion threshold.

More succinctly, we consider a robot as probabilistically safe
if the interpenetration volume between the robot and the NeRF
is less that a threshold Vmax with probability at least σ. A major
remaining question is how to choose the auxiliary particle size
and occlusion threshold γ. Since we are assuming smoothness
on the length scales of a pixel, it is appropriate to use an auxiliary
particle of this size. We use the approximate size of a pixel at
the near plane and the sampling distance along a ray to find the
dimensions of the auxiliary particle. Specifically, given a camera
with focal length 50 mm, a scene of length 2 m, a FOV of 90◦,
and a 1000 × 1000 image, the pixel side on the image plane is
10−4 m, hence for a square pixel, Aaux = 10−8 m2. If the pixel
size is the 2-D resolution of the image, we can think of δt as the
sampling resolution used to learn the NeRF, henceVaux is the 3-D
resolution of the NeRF learned from data. Typically, there are
anywhere between 100 to 200 sample points along a ray between
the near and far plane, so we choose δt = 20 mm, yielding
Vaux = 2 · 10−8 m3. In fact, the CDF is relatively insensitive to
Aaux, as both Nmax

aux and ΛB are scaled the same amount for
changes in Aaux. γ is essentially a modeling parameter as there
is no way to know what the environment defines as an occlusion
event. However, in the interest of safety and interpretability, we
set γ = 1 so that it is meaningful (i.e., full occlusion) and such
that it yields the most conservative estimate for λ.

Authorized licensed use limited to: Stanford University. Downloaded on September 13,2024 at 19:38:24 UTC from IEEE Xplore. Restrictions apply.

2720 IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

VI. CHANCE-CONSTRAINED TRAJECTORY GENERATION IN

NERFS

We now consider the problem of real-time trajectory plan-
ning for a robot in an environment represented as a NeRF,
subject to constraints on the probability of collision (13). Our
proposed algorithm, CATNIPS, has two parts: we first generate a
lightweight, voxel-based scene representation, which we term a
probabilistically unsafe robot region (PURR), which encodes
the robot locations that satisfy the collision constraint for a
particular robot geometry. We then use Bézier curves to plan safe
trajectories in position space for a robot traversing the PURR
subject to the probabilistic collision constraint. By assuming
differential flatness of our robot, we can guarantee dynamic
feasibility of our solution when planning in the flat output space.

We note that the following collision calculations may be
conservative due to the approximation of the robot as a sphere
such that safety is invariant to orientation. However, the collision
metric (13) could be calculated while taking into account the
position, orientation, and the physical geometry of the robot.
We also note that the differentiability of the collision probability
permits its use in gradient-based trajectory optimizers. Nonethe-
less, our design choices were motivated by speed, scalability,
and modularity with other downstream tasks (e.g., active view
planning where the orientation can be freely manipulated).

A. Generating the PURR

The PURR is a binary, voxelized representation of the NeRF
that indicates collision in R

3. If the robot’s position is located
within a free voxel in the PURR, the robot is probabilistically
safe, i.e., the chance collision constraint is guaranteed to be
satisfied. Otherwise, safety is not guaranteed—the robot may
(or may not) be in violation of the chance constraint. Similar to
classical configuration space planning [42], the core idea behind
the PURR is to inflate the occupied space in the map such that
planning a path through free space in the inflated map corre-
sponds to a robot trajectory that satisfies the collision probability
constraint in the underlying NeRF map. We essentially “inflate”
the NeRF density function to account for both the robot geometry
and the chance constraint.

Fig. 4 shows a schematic of the PURR generation process, as
well as how the PURR fits into our trajectory planning pipeline.
We first voxelize the space of the map and label each cell with
the integral of the NeRF density multiplied with a scaling factor
over each cell to give the voxelized cell intensity grid Ic. We
then take the Minkowski sum between a sphere bounding the
robot and one underlying voxel cell to produce the set of all
voxels that the robot could be touching, in any orientation, if its
center of mass were located anywhere in one cell; we call this
the robot kernel K. Finally, we convolve the robot kernel K with
the cell intensity grid Ic to obtain the robot intensity grid Ir.
Finally, we evaluate the Poisson CDF using the robot intensity
(as well as the auxiliary particle parameters) and threshold the
robot intensity grid with the user-defined collision probability
threshold σ to get the binary PURR map. These operations are
described in more mathematical detail as follows.

Fig. 4. NeRF to PURR pipeline. (1) A density grid is sampled from the NeRF,
which is then trilinearly interpolated and integrated over a particular voxel to
retrieve the cell intensity grid. (2) A robot kernel is generated by taking the
Minkowski sum between the minimal bounding sphere of the robot and a single
voxel. (3) The kernel is used in a Conv3D operation with the cell intensity
voxel grid to create the robot intensity grid, which we then threshold by the
user-defined collision probability σ to create the PURR.

1) Cell Intensity Grid: The cell intensity grid Ic computes,
for each grid cell, the expected number of auxiliary particles in
voxel vijk

Ic(vijk) =

∫
vijk

γρ(x)

Aaux
dx. (16)

This integral, in general, cannot be computed analytically since
the density ρ is typically represented using a neural network.
We compute a high-quality approximation of this integral using
a trilinear interpolation scheme. In fact, if the NeRF density
uses an underlying voxel-based representation (as do the most
high-speed and high-quality NeRF variants in the literature [7],
[28]) our integral of the trilinear interpolation is exact.

We first discretize the environment spatially, using a rectan-
gular grid and query the NeRF for the density values at the grid
vertices. We then represent the continuous density field using
trilinear interpolation as [39]

ρ̂(x, y, z) = c1 + c2x+ c3y + c4z+

c5xy + c6yz + c7xz + c8xyz. (17)

The coefficients c1:8 are the solution of a linear system
A1:8c1:8 = ρ1:8, where A1:8 is the matrix of stacked row
vectors of the terms involving cell vertex locations, and ρ1:8
the densities at the vertices. Note that at the vertices of the cell
ρ̂(x, y, z) = ρ(x, y, z). Different interpolations exist for other
finite element geometries, although we only consider rectilinear
cells in this work. The cell values of the cell intensity grid are
computed from a closed form analytic solution to the integral
(16) plugging in (17) forρ over the extent of the cell. The analytic
expression is given in Appendix A.

2) Robot Kernel: The robot kernel K(vijk) is a mask that
indicates the neighborhood of cells around voxel vijk that are
considered in the computation of the collision probability when
the robot position p is anywhere in vijk. We first find the
Minkowski sum of the minimum bounding sphere4 of the robot

4Inflating the robot body to a sphere removes the effects of robot orientation
on safety. As a result, the PURR can be efficiently created in position space,
while downstream tasks have the ability to control the robot orientation without
impacting safety.

Authorized licensed use limited to: Stanford University. Downloaded on September 13,2024 at 19:38:24 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: CATNIPS: COLLISION AVOIDANCE THROUGH NEURAL IMPLICIT PROBABILISTIC SCENES 2721

Fig. 5. Top: Mesh of Flightroom and PURR with varying specified interpene-
tration values Vmax at fixed probability σ = 95%. Bottom: Density-thresholded
voxel maps with varying density values ρ. The PURR is precisely calibrated to
give a desired probability of collision, while thresholding the NeRF density
directly offers no particular safety guarantee. The density map can quickly
degenerate based on the threshold, while the PURR can still capture the geometry
for reasonable ranges of Vmax.

with the cell in which the robot center is located. We then
compute the smallest collection of voxels that contains this
Minkowski sum. This collection of voxels is the robot kernel,
which can be efficiently convolved with the 3-D voxelized grid
using standard PyTorch functions.

3) Robot Intensity Grid: Once the robot kernel is defined,
computing the collision probability for the robot in a particular
cell simply requires a convolution between the kernel K and the
cell intensity grid Ic. In particular, we generate a robot intensity
grid Ir, by convolving the kernel with each cell, giving the
expected number of auxiliary particles in the body as follows:

Ir(vijk) =
∑

vlmn∈K(vijk)

Ic(vlmn)

=
∑

vlmn∈K(vijk)

∫
vlmn

γρ̂(x)

Aaux
dx

≥
∫
B(p,R)

γρ̂(x)

Aaux
dx ∀ R ∈ SO(3),p ∈ vijk

≈
∫
B(p,R)

γρ(x)

Aaux
dx ∀ R ∈ SO(3),p ∈ vijk. (18)

Finally, the PURR P is generated by calculating the CDF (13)
using the robot intensity grid and thresholding by the collision
probability threshold σ

P(vijk) = Pr(X ≤ Nmax
aux ; Ir(vijk)) < σ. (19)

The resulting PURR is visualized at different specified interpen-
etration volumes at a reasonable probability ofσ = 95% in Fig. 5
(Top) for the Flightroom NeRF environment. On the bottom
of Fig. 5, a simple density thresholded grid can yield visually
similar voxel maps, but can degenerate arbitrarily quickly for
large density cutoffs. This is because the threshold for the PURR
is calibrated to a precise probability of collision, while thresh-
olding on the density provides no interpretable safety metrics.

Finally, we note that the trilinear interpolation of the density
(17) to compute the integral in (16) introduces a potential source
of approximation error. In practice, this error is much smaller
than the overapproximation built into the various voxelization
steps, yielding a PURR with a conservative probability of col-
lision. However, one can remove any doubt about the conser-
vatism of the approach by introducing an upper bound on the
trilinear approximation error into the formulation. We call this
approximation error bound the collision offset factor α.

Definition 3 (Collision Offset Factor): The collision offset
factor α is a map-wide upper bound on the difference between i)
the maximum collision probability achieved by integrating the
NeRF density ρ over the robot kernel (i.e., the “true” collision
probability) and ii) the collision probability using the trilinearly
interpolated density ρ̂ from (17),

α≤ min
i,j,k

{
min

p∈vijk,R∈SO(3)
Pr

(
X≤Nmax

aux ;

∫
B(p,R)

γρ(x)

Aaux
dx

)

−P(vijk)

}
.

Finally, if α exists, then (19) and consequently our PURR
are inflated with this collision offset factor to give the PURR a
rigorous collision probability guarantee

P(vijk) = Pr(X ≤ Nmax
aux ; Ir(vijk)) < σ − α. (20)

Theorem 1: Given a collision offset α and the desired col-
lision probability threshold σ, a robot with position p in the
complement of P is guaranteed to be probabilistically safe.

Proof: Following the expressions in (18), “≈” in the last line
becomes “≥” for a collision offset factor α, which satisfies
Definition 3. Therefore, the resulting PURR is an upper bound
on the probabilistic collision constraint of (13). �

Remark 1: If the discretizations match between the PURR
and a voxel-based NeRF architecture, as in [28] then α is
identically 0. In practice, we still set α to 0 regardless of the
NeRF architecture, and we find that the PURR free space is safe
invariant to the size of the cells used in trilinear interpolation
(see Fig. 9). We conclude that α ≈ 0 (i.e., trilinear interpolation
closely approximates the neural network) orα ≥ 0 (i.e., trilinear
interpolation is overapproximating the network).

Remark 2: Although voxel representations are undesirable in
memory compared to compact neural networks, we note that the
PURR is binary. The memory footprint can be further reduced
by using octrees and by storing the PURR with a compression
scheme, e.g., with hashing.

B. Path Planning in the PURR

We now turn to the problem of chance-constrained trajectory
optimization through the PURR. In particular, we seek to plan a
dynamically feasible path for a robot through the environment
such that all points along the trajectory satisfy a chance con-
straint on collision (rather than enforcing the chance constraints

Authorized licensed use limited to: Stanford University. Downloaded on September 13,2024 at 19:38:24 UTC from IEEE Xplore. Restrictions apply.

2722 IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

Fig. 6. (a) Discrete path returned by A∗. (b) Union of bounding boxes con-
taining subsets of the A∗ path while remaining strictly in the complement of the
PURR. (c) Smooth path represented as the union of Bézier curves whose control
points lie within a particular bounding box.

at discrete “knot points” along the trajectory). In particular, we
seek to find trajectories that are probabilistically safe.

Definition 4 (Probabilistically Safe Trajectory): A trajectory
is probabilistically safe if all points in the trajectory are pointwise
probabilistically safe.

We propose an algorithm containing three components used
to create these safe, continuous trajectories. The first step is to
find an initial, discrete path through the free space of the PURR
by solving a constrained shortest path problem Fig. 6(a) from
our initial position p0 to our final position pf (e.g., using A∗).
While dynamically infeasible, this path provides a connected,
collision-free path through the PURR that we will refine into a
smooth, feasible trajectory. The second step is to create a “tube”
of bounding boxes around this initial path that is not in collision
with the PURR Fig. 6(b). We opt for this design choice because
our emphasis in this article is in quantifying collision risk in the
NeRF in combination with a relatively simple planning scheme.
One can introduce more flexible and sophisticated planning
schemes [43], [44] to improve on our method. Finally, we gener-
ate a smooth curve connecting our initial and final positions by
solving a constrained convex optimization, requiring the curve
to lie in the free “tube” generated previously Fig. 6(c). We call
the resulting trajectory planning algorithm CATNIPS. CATNIPS
executes in real time given a precomputed PURR map.

1) A∗ Search: We first find a rough, discrete initial path
through the NeRF using an A∗ search over the voxel grid defining
the PURR free space. Specifically, given an initial position p0

and final position pf of the robot, we find a minimum-length
(measured in the Manhattan distance) path between the cor-
responding initial and final voxels. We search a six-connected
graph, i.e., the robot can move into neighboring free voxels of
the PURR along the x-, y-, and z-axes. Using A∗ with the usual
heuristic (distance to goal, not considering collision) yields a
connected, collision-free, but dynamically infeasible path from
the start to the goal.

2) Bounding Box Generation: We now seek to refine the
discrete, collision-free path returned by A∗ into a continuous
trajectory that is energy efficient, and dynamically feasible, for
our robot. To this end, we first generate a “tube” around our A∗

path that is both large (so we minimally constrain our trajectory
optimization) and lies in the free space of the PURR (so trajec-
tories in this tube still remain collision free). We represent this
tube as a union of bounding boxes, as shown in Fig. 6(b).

To generate these bounding boxes, we first split the A∗ trajec-
tory into straight-line segments (i.e., if the path returned by A∗

begins by moving along the z-axis for six voxels, we join these
into a single line segment between the start and endpoint of this
sequence). We then expand a bounding box around each line
segment by “marching” each face along its normal direction until
it is marginally in collision with the PURR (i.e., at least one cell
on the face borders an unsafe cell). To speed collision-checking
for the prospective boxes, we convert the PURR to a KD-tree
representation for this step.

Once this process is complete, we now have one bounding
box for each line segment in our original A∗ path; the union of
these bounding boxes both lies in the free space of the PURR,
and contains at least one connected, collision-free path between
our initial and final positions. However, for voxel grids with
fine spatial resolution, the number of bounding boxes will grow,
adding to the computational complexity; thus, as a final step we
eliminate all “similar” bounding boxes (i.e., any bounding box
whose volume has sufficient overlap with a bounding box earlier
in the sequence) to generate a simplified representation. We find
that these simple axis-aligned rectangular bounding boxes are
more well behaved in dense voxel grids, where narrow corridors
exist, while general polytopic alternatives such as Liu et al. [43]
introduced numerical instability into the planner due to acute
corners in the safe corridors (demonstrated by Toumieh and
Lambert [44]).

3) Smooth Trajectory Generation Via Bézier Curves: The
final step of our planner is to generate a smooth trajectory that
lies entirely in the union of the bounding boxes. To do this, we
represent our trajectory as a connected series of Bézier curves.
In particular, a Bézier curve in R

n, of order N , is given by

p(t; sk) =

N∑
k=0

(
N

k

)
(1− t)N−ktksk (21)

where sk ∈ R
n are a set of “control points” defining the geom-

etry of the curve, and the curve is traced by a free parameter
t ∈ [0, 1]. For any t ∈ [0, 1], the Bézier curve p(t) is simply
an interpolation of the control points sk, which means the
parametric curve lies in the convex hull of the control points [45].
Thus, to generate a probabilistically safe trajectory through the
PURR, we find a set of Bézier curves connecting our initial
position p0 and final position pf , whose control points lie in the
bounding boxes generated previously; since each Bézier curve
must lie in the convex hull of its control points, the entire curve
will lie in the complement of the PURR. We note that this is
a common method for enforcing safety constraints in the path
planning literature [46].

To find this trajectory, suppose we have L bounding boxes
{B1, . . . ,BL} generated from the previous step. We then find
a set of L Bézier curves with control points given by sik,
constraining all control points of the ith curve to lie in the
corresponding bounding box Bi. Since the Bézier curves are
linear functions of the control points, we can in turn repre-
sent the ith curve as pi(t) ≡ β(t)si, where si ∈ R

n(N+1) is
a concatenated vector of all N + 1 control points for curve i,
and β(t) : [0, 1] �→ R

n×n(N+1) is a coefficient matrix that only
depends on the curve parameter t. We can similarly represent
higher derivatives of the curve as p(d)

i (t) = β(d)(t)si. Since we

Authorized licensed use limited to: Stanford University. Downloaded on September 13,2024 at 19:38:24 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: CATNIPS: COLLISION AVOIDANCE THROUGH NEURAL IMPLICIT PROBABILISTIC SCENES 2723

are only concerned with positions and their derivatives, n = 3.
We refer the reader to [45] for a more detailed treatment of Bézier
curves and splines.

To help smooth the spline and discourage looping behavior,
we introduce the objective

J(s1, . . . sL)=
L∑

i=1

(∫ 1

0

||β(d)(t)si||22dt+
N−1∑
k=0

||sik − sik+1||22
)

which is quadratic in our decision variables si. A typical choice
is to penalize the snap of the trajectory (d = 4) as a proxy for
control effort [47].

To generate our desired trajectory, we then solve the following
optimization:

min
s1,...,sL

J(s1, . . . , sL)

s.t. sij ∈ B
i ∀i ≤ L, j ≤ N

β(d)(1)si = β(d)(0)si+1 ∀i ≤ L, d ≤ D

β(0)s1 = p0

β(1)sL = pf . (22)

In particular, we constrain the control points of every segment
so that si must lie in the corresponding bounding box Bi,
which defines a set of linear inequalities in si. We also enforce
continuity of each spline up to a desired derivative D, which
defines a set of linear equality constraints. Finally, we enforce the
boundary conditions of our trajectory, i.e., that the curve begins
at our initial position p0 and ends at our final position pf . We
choose to optimize Bézier curves of order N = 8, to balance the
expressiveness of our model (which needs nontrivial derivatives
up to order d = 4) with the number of parameters needed to
specify the curve.

Since our objective is quadratic in the control points, and our
constraints are defined by linear inequalities and equality con-
straints, the resulting optimization (22) is a quadratic program
(QP) that can be solved in real time.

Corollary 2: The trajectory given by the solution of the QP
(22) is probabilistically safe.

Proof: The QP (22) constrains each Bézier curve to live
within a bounding box that is probabilistically safe, rendering
each curve safe. The resulting trajectory, given by the union of
the Bézier curves is therefore probabilistically safe. �

Remark 3: We emphasize that all trajectories are probabilis-
tically safe in which all points in any trajectory satisfies the
interpenetration constraint (13) with probability σ. This is not
equivalent to the statement that some σ fraction of all trajecto-
ries do not contain any points that violate the interpenetration
constraint.

Remark 4: If the robot system dynamics is differentially flat
such that its position is a subset of the flat outputs, then the paths
generated by the proposed QP (22) (with D set to the highest

derivative of position in the flat outputs) are dynamically fea-
sible. Therefore, a robot tracking a trajectory from this planner
remains probabilistically safe.

Remark 5: We note that each segment of the trajectory re-
turned by our planner is parameterized by a simple curve pa-
rameter t, which need not correspond to time. However, since
we assume our system is differentially flat, there exists a time
scaling such that the curve is dynamically feasible. To resolve
this, we use a simple time rescaling (as in [47]) to generate the
final trajectory as a function of time.

VII. NUMERICAL RESULTS

In this section, we study our proposed chance-constrained
trajectory optimizer on the simulated Stonehenge scene and
real Statues and Flightroom environments. The real scenes were
captured using a hand-held phone camera with poses extracted
from COLMAP. Using our proposed trajectory optimizer, we
generate trajectories for a simulated and real quadrotor flying
through the scene, and study the safety and conservativeness of
trajectories generated across a large number of initial and final
conditions. Using the same path planning algorithm, we perform
a comparison between the PURR and a baseline voxel occupancy
representation obtained by thresholding the raw NeRF density
at a desired density level. We also compare these methods to the
authors’ previous work NeRF-Nav [12]. Because this method
requires an A* initialization, we use the same A* initialization
for both the baseline grid and NeRF-Nav. Specifically, the NeRF-
Nav A* initialization is generated from the baseline density
grid corresponding to the cutoff ρ = 102 (the most conservative
cutoff).

We demonstrate that both voxel methods are more compu-
tationally efficient than NeRF-Nav, and also generate trajecto-
ries that are safer (with fewer collisions) and less conservative
(shorter paths). Further, we find that our method, CATNIPS,
allows the user to set a clearly defined probability threshold for
collision. In contrast, the density threshold baseline does not give
such a probabilistic guarantee. In other words, similar behavior
can be obtained from a density thresholded map, but this requires
a user to tune the density threshold through trial and error to
reach a desired qualitative level of safety, and thresholds that
work for one environment may not generalize to others. Even
after tuning to get good empirical behavior, the baseline offers
no accompanying safety guarantee.

A. Algorithm Performance

Qualitative results of the proposed method for 100 start and
goal locations on a circle (perturbed randomly in the up-down
direction) for all three environments are shown in Fig. 7. The
PURR was generated using a resolution of 150 voxels per side,
with probability threshold σ = 0.95, and Vmax = 10−6 specified
volume penetration.5 Moreover, because our quadrotor system
is differentially flat with flat outputs in position, the robot can

5Because the cameras are mapped to be within a unit box, all reported length
scales are assumed to be in this normalized system unless explicitly stated.

Authorized licensed use limited to: Stanford University. Downloaded on September 13,2024 at 19:38:24 UTC from IEEE Xplore. Restrictions apply.

2724 IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

Fig. 7. Generated safe paths across 100 configurations from Stonehenge,
Statues, and Flightroom, visualized from the top and sides. Both Statues and
Flightroom NeRFs were trained from images of the real environments.

follow these paths with a standard differential flatness-based
control pipeline [47].

We first compare our method to two baselines: the “baseline
grid,” which computes occupancy from a density threshold, and
NeRF-Nav [12], a gradient-based trajectory planner for NeRFs
in Fig. 8. We analyze their performance on three metrics: the
minimum signed distance achieved during the trajectory to the
ground-truth mesh (negative is within the mesh), the maximum
interpenetration volume achieved during the trajectory, and the
difference in lengths between the generated trajectory and the
shortest straight line path. The first two metrics quantify safety,
while the last quantifies conservativeness. We evaluate the algo-
rithms on the 100 randomized configurations distributed evenly
on a circle.

We choose to display the same six parameter combinations
for CATNIPS, varying the specific interpenetration and prob-
ability cutoff, over all scenes to demonstrate generalizability
and interpretability. The cutoffs we choose to be reasonable
thresholds of 95% and 99%. The interpenetration we choose
to be some fraction of the robot body. For Stonehenge, 5 ·
10−6, 10−6, 10−7 correspond to 13%, 3%, 0.3%, while for the
real environments, these values correspond to 4%, 0.8%, 0.08%,
respectively.

To benchmark against the baselines, we vary the density
cutoffs of the baseline grid and the collision penalty weight in
NeRF-Nav. We again stress the lack of interpretable parameters
for both NeRF-Nav and the baseline grid paths and their required
parameter tuning to get a desired safety performance, which
is impossible to know a priori as one does not have access to
the ground-truth in reality. However, in order to benchmark the
methods in good faith, we choose the density cutoffs on the
baseline grid such that the performance on these metrics were
similar to those of CATNIPS in a synthetic environment (i.e.,
Stonehenge), since we have access to its ground-truth mesh.
We then use the same cutoffs for the real environments. In our
experience, these are also thresholds that are typically used to
extract meshes from NeRFs using marching cubes [13]. For
NeRF-Nav, the collision penalty weights are chosen so that they
are the dominant term in the loss.

We can see that NeRF-Nav trajectories are unsafe when
compared to paths generated from either voxel method (negative
is in collision with the mesh) over all collision loss weights
(102, 103, 104). As we increase the weighting on the collision
penalty, we do see that the algorithm can be increasingly safe
on average (higher SDF, lower volume intersection). However,
such a high collision penalty (104) will typically cause numerical
issues in the trajectory optimizer. Moreover, these trajectories
in the worst case are simply less safe than either voxel method.
Finally, these trajectories also deviate from the shortest path the
farthest, illustrating conservatism and nonsmooth paths.

The trajectories derived from the baseline grid can exhibit
safe and nonconservative behavior. However, it is clear that the
parameters necessary to achieve this behavior cannot be gen-
eralized over all scenes. This is evident for the cutoff ρ = 104,
where safety performance in Stonehenge is reasonable, but we
see unsafe performance in the real environments.

We see that our method, CATNIPS, is safe (by construction)
and nonconservative. On average, these trajectories are similar
in conservativeness compared to the baseline grid paths, while
exhibiting reasonable levels of safety and respond as expected to
changes in parameters (greater SDF and lower intersection when
decreasing specified volume intersection and/or increasing prob-
ability threshold). We draw the reader’s attention to the volume
intersection metric (Fig. 8, middle row) for CATNIPS, where
trajectorywise safety is expressed (please see Remark 3 for the
distinction). The arrowhead represents the σ quantile over 100
trajectories, while the dotted lines represent the specified volume
intersection. While we make no claims on full-trajectory rates of
safety (i.e., the arrowhead need not be below the corresponding
dotted line), we see that, indeed, aσ proportion of the trajectories
tends to be completely safe (with no unsafe points existing on
the whole trajectory).

We validate the pointwise safety claims we make, as well
as ablate CATNIPS over grid discretizations, in Fig. 9. The
figure contain runs with parameter combinations of two dif-
ferent collision probabilities, three different specified volume
intersections, three different grid discretizations (100, 150, 200),
and three different environments. Note that some columns can
contain multiple bars, representing different grid discretizations
or environments while maintaining the same collision cutoff
and volume intersection. Bar heights represent the fraction of
all 100 trajectories that contain at least a point with volume
intersection higher than what was specified for that combina-
tion of parameters. Numbers on top of these bars indicate the
percentage of all points in all trajectories that fall below the
specified volume intersection for the same parameter setting.
Our theoretical claims pertain to the rate across all points on
all trajectories (number on top of bars), yet we observe for
our method the desired collision rate tends to hold across full
trajectories as well (the height of the bars). Combinations not
visualized mean there were no points in any trajectories that
violated the volume intersection constraint.

Note that the reported percentage of all points being safe (all
percentages greater than the probability cutoff) means that our
derived pointwise probabilistic safety constraint is validated and
that satisfaction of this constraint is invariant to the parameters.

Authorized licensed use limited to: Stanford University. Downloaded on September 13,2024 at 19:38:24 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: CATNIPS: COLLISION AVOIDANCE THROUGH NEURAL IMPLICIT PROBABILISTIC SCENES 2725

Fig. 8. Statistics on distances to obstacles, interpenetration, and path conservativeness over 100 trajectories for each environment (Stonehenge, Statues, and
Flightroom). We benchmark our PPP method (three different interpenetration distances, each at 95% and 99% probability) against the paths using the baseline
grid and NeRF-Nav [12]. Whiskers indicate max/mean/min over all trajectories, and the density of color represents the spread. Top: The minimum distance to
the ground-truth mesh for every trajectory. Our method uses interpretable parameters, such that we can tune for safety (lower volume intersection) without being
overly conservative (lower path deviation). Meanwhile, the effect of the density cutoff in the baseline grid is unpredictable across scenes, and the NeRF-Nav paths
can lead to collision violations (low whiskers) and overly conservative paths. Mid: The maximum interpenetration volume per trajectory. Although we only make
claims about pointwise safety, we see that trajectorywise safety is approximately satisfied (i.e., arrowheads representing 95%, 99% of trajectories tend to be below
the specified interpenetration indicated by red dotted lines). Bottom: Difference between the minimum length of a straight line path and the executed path. We see
that both CATNIPS and the baseline grid are less conservative than NeRF-Nav.

Fig. 9. Effect of grid discretizations and environments on safety. Bars represent
fraction of trajectories out of 100 that contain at least one point greater than
the specified interpenetration volume. This ablation is performed over spec-
ified interpenetration volumes, collision probabilities σ = (95%, 99%), grid
discretizations N = (100, 150, 200), and environments (Stonehenge, Statues,
Flightroom). The total percent of points across all trajectories below the specified
interpenetration volume for a specific combination of parameters and scenes is
indicated above the bar. Combinations not shown means that all points in that
setting were below the specified interpenetration volume. We see that pointwise
safety is always satisfied, and trajectorywise safety is approximately valid.

This makes (13), the PURR, and the planning architecture sur-
rounding it generalizable to arbitrary environments and reason-
able grid discretizations. This result also implies that the error in-
troduced through trilinear interpolation of neural network-based
density fields is small in terms of its impact on safety (i.e.,
collision offset factor α ≥ 0). This is especially attractive for
real scenes where there is no way to validate safety a priori, and

Fig. 10. Signed distances along the executed trajectories on a real drone in
the Flightroom environment. There were ten open-loop trajectories, and two
additional ones with online replanning. All trajectories are above 0 and hence
safe.

for applications where coarser grid discretizations are necessary
for computational performance. Moreover, trajectorywise safety
(like in Fig. 8) is generally satisfied over grid discretizations and
scenes.

Here we would like to summarize several subtle points re-
garding collision violation to the reader. The violation of the
specified volume penetration at some points (Figs. 8 and 9) is
due to both the probabilistic nature of the collision constraint,
and due to the fact that the NeRF does not exactly capture the
ground truth surface. For the NeRF density to exactly represent
the true surface, under our PPP interpretation, it would have

Authorized licensed use limited to: Stanford University. Downloaded on September 13,2024 at 19:38:24 UTC from IEEE Xplore. Restrictions apply.

2726 IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

to be exactly 0 outside the surface, and ∞ inside. In this case,
collision would be deterministic because the only way to satisfy
the chance constraint on collision would be to have no collision.
In practice, a NeRF density field cannot be either 0 or ∞
both because of continuity in the representation and embedded
uncertainty about where the true surface is. Therefore, a collision
with the true surface may occur with the prescribed probability.
We believe that an accurate representation of uncertainty in
perception-based planning must admit for some probability of
collision, as there is always a nonzero probability that percep-
tion errors have led to an incorrect estimation of occupancy
in the scene. We further alleviate this “NeRF-to-real” gap by
embedding several conservative approximations into our method
through the construction of the PURR. Therefore, in practice,
we collide with the true surface less frequently than required by
the collision constraint. Again, this fact is illustrated in Fig. 9,
where the collision constraint satisfaction is very close to 100%
but not conservative enough to be unappealing to use (Figs. 7
and 8).

Finally, we validate our CATNIPS pipeline on drone hardware
experiments in our Flightroom environment (Fig. 10). Using
a pretrained static NeRF, we compute ten trajectories from
start-goal points distributed on the perimeter of a circle around
the scene, and drive the on-board controller to follow these
waypoints (open-loop). Then, we choose two of these start-goal
locations and run the CATNIPS A*, bounding box generation,
and convex program online (choosing the next predicted point as
a waypoint) while simultaneously updating the drone to follow
the stream of waypoints (closed loop). All trajectories are run
until they reach the goal location. The open-loop trajectories are
about 20 s long since they are predefined, while the closed-loop
trajectories can have varying times since they are not predefined.
We see that all trajectories have a signed distance greater than
0 and are therefore safe (no collision). Even for the open-loop
trajectory that comes close to 0, we visually verify a collision-
less trajectory. The near-zero SDF is due to overapproximating
the drone body with a bounding box when computing the signed
distance.

B. Computation Times

The implementation of the above algorithms are performed in
Pytorch on a laptop with an RTX 4060 GPU. Our method is built
on top of NeRFStudio [8]. Little effort was made to optimize
code for fast computation, so we expect these execution time
could be substantially reduced. Moreover, for a fair comparison,
we ported NeRF-Nav to NeRFStudio. In general, the planning
portion of CATNIPS (A*, bounding box, and Bézier curve gen-
eration) operates at around 3 Hz. The operation from querying
the NeRF density to the creation of the PURR runs at 1 Hz. The
breakdown of each operation is shown in Table I. As a promising
direction for future work, one can further reduce the computation
time for creating the PURR and optimizing trajectories in the
PURR through parallelization and code optimization on a GPU.6

6The A* library [48] we use allows users to preprocess a static voxel grid such
that generating the A* initialization is a look-up operation that is near instant in
exchange for a one-time processing cost of approximately a second.

TABLE I
TIMING RESULTS (PERFORMED ON A LAPTOP WITH AN RTX 4060 GPU)
BETWEEN OUR VOXEL METHODS (CATNIPS AND BASELINE GRID) AND

NERF-NAV. BECAUSE BOTH VOXEL METHODS USE SIMILAR OPERATIONS,
THEY HAVE IDENTICAL TIMES

Note that the proposed method produces smooth trajectories
from the current position to the goal. Also note that in an online
replanning scenario, usually only the next waypoint is tracked
before the entire trajectory is updated. Thus, certain parts of our
method can be adapted to only consider the vicinity of the robot,
trading computation time for suboptimality. In comparison,
NeRF-Nav takes longer to converge (if at all) to a reasonable
tolerance, without any safety guarantees. We believe this is
primarily due to the difficulty of optimizing its highly nonconvex
objective and the many queries required to the density neural
network within the trajectory optimizer. In order to produce the
best performance from NeRF-Nav in terms of safety, we ran the
algorithm for 1000 gradient steps.

VIII. CONCLUSION

In this article, we present a novel method for chance-
constrained trajectory optimization through NeRF scenes. We
present a method to transform the NeRF into a PPP, which we use
to generate rigorous collision probabilities for a robot body mov-
ing through the scene. Leveraging this expression for collision
probability, we develop a fast method for online trajectory gen-
eration through NeRF scenes, which, offline, distills the NeRF
density into a voxel-based representation of collision probability
called the PURR. Using the PURR, we present an algorithm to
plan trajectories represented as Bézier splines that guarantee
a robot traversing the spline does not exceed a user-defined
maximum collision probability. In numerical experiments, we
show our proposed method generates safer and less conservative
paths than a state-of-the-art method [12] for trajectory planning
through NeRFs, and also gives more well-behaved and more user
interpretable results than a baseline planner that uses a threshold
on the NeRF density as a proxy for collision probability. We also
demonstrate that our pipeline can run in real time.

This work opens numerous directions for future research.
Since our entire pipeline (both PURR generation and trajectory
optimization) can run at real time rates, our planner could
be combined with a NeRF-based state estimator (e.g., [19],
[21]) to perform active exploration or next-best-view planning
on NeRFs, allowing a robot to autonomously explore a novel
environment using only onboard vision. Building on naviga-
tion, another interesting direction is to tune the collision metric

Authorized licensed use limited to: Stanford University. Downloaded on September 13,2024 at 19:38:24 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: CATNIPS: COLLISION AVOIDANCE THROUGH NEURAL IMPLICIT PROBABILISTIC SCENES 2727

online during execution. Because the collision probability is
differentiable with respect to the pose, it is possible to tune the
collision probability online in response to data collected on-
the-fly (e.g., sensed minimum distance to the nearest obstacle).
This could be implemented with autodifferentiation as part of
a PyTorch-based planning pipeline. The probabilistic collision
framework developed here could have interesting applications
to problems such as differentiable simulation of rigid bodies
represented as NeRFs [49] or planning for problems such as
contact-rich manipulation and locomotion. Finally, since our
derivation a PPP from a NeRF is rigorous and generalizable, we
hope that our interpretation of NeRFs will be useful to research
beyond robotics, for example, in computer vision and computer
graphics.

APPENDIX A
INTEGRATION OVER TRILINEARLY INTERPOLATED CELLS

For a trilinearly interpolated density over a cell
vijk given by (17) with local coordinates (x, y, z) ∈
([ax, bx], [ay, by], [az, bz]), the volume integral over the cell can
be computed analytically as∫ bx

ax

∫ by

ay

∫ bz

az

ρ(x)dxdydz = (bx − ax)(by − ay)(bz − az)

+
c2
2
(by−ay)(bz−az)(b

2
x−a2x)

+
c3
2
(bx−ax)(bz−az)(b

2
y−a2y)

+
c4
2
(bx−ax)(by−ay)(b

2
z−a2z)

+
c5
4
(bz−az)(b

2
x−a2x)(b

2
y−a2y)

+
c6
4
(bx−ax)(b

2
y−a2y)(b

2
z−a2z)

+
c7
4
(by−ay)(b

2
x−a2x)(b

2
z−a2z)

+
c8
8
(b2x−a2x)(b

2
y−a2y)(b

2
z−a2z)

(23)

where ci are the coefficients of the trilinear interpolation.

ACKNOWLEDGMENT

The authors would like to thank Keiko Nagami, Adam Cac-
cavale, Gadi Camps, and Jun En Low for their insights through-
out this project.

REFERENCES

[1] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi,
and R. Ng, “NeRF: Representing scenes as neural radiance fields for view
synthesis,” in Proc. Eur. Conf. Comput. Vis., 2020, pp. 405–421.

[2] E. Sucar, S. Liu, J. Ortiz, and A. Davison, “iMAP: Implicit mapping and
positioning in real-time,” in Proc. Int. Conf. Comput. Vis., 2021, pp. 6209–
6218.

[3] L. Yen-Chen, P. Florence, J. T. Barron, A. Rodriguez, P. Isola, and T.-Y.
Lin, “INeRF: Inverting neural radiance fields for pose estimation,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., 2021, pp. 1323–1330.

[4] L. Yen-Chen, P. Florence, J. T. Barron, T.-Y. Lin, A. Rodriguez, and
P. Isola, “NeRF-Supervision: Learning dense object descriptors from
neural radiance fields,” in Proc. IEEE Conf. Robot. Autom., 2022,
pp. 6496–6503.

[5] D. Driess, Z. Huang, Y. Li, R. Tedrake, and M. Toussaint, “Learning
multi-object dynamics with compositional neural radiance fields,” in
Proc. Conf. Robot Learn., 2022, pp. 1755–1768. [Online]. Available:
https://dannydriess.github.io/compnerfdyn/

[6] J. Ichnowski, Y. Avigal, J. Kerr, and K. Goldberg, “Dex-NeRF: Using a
neural radiance field to grasp transparent objects,” in Proc. Conf. Robot
Learn., 2020, pp. 526–536. [Online]. Available: https://proceedings.mlr.
press/v164/ichnowski22a.html

[7] T. Müller, A. Evans, C. Schied, and A. Keller, “Instant neural graphics
primitives with a multiresolution hash encoding,” ACM Trans. Graph.,
vol. 41, no. 4, pp. 102:1–102:15, Jul. 2022.

[8] M. Tancik et al., “NeRFstudio: A framework for neural radiance field
development,” in Proc. SIGGRAPH Conf., 2023, pp. 1–12. [Online].
Available: https://dl.acm.org/doi/10.1145/3588432.3591516

[9] H. Edelsbrunner, “Surface Reconstruction by Wrapping Finite Sets in
Space,” in Discrete and Computational Geometry: The Goodman-Pollack
Festschrift, B. Aronov, S. Basu, J. Pach, and M. Sharir, Eds. Berlin,
Germany: Springer, 2003, pp. 379–404.

[10] A. Elfes, “Using occupancy grids for mobile robot perception and naviga-
tion,” Computer, vol. 22, no. 6, pp. 46–57, Jun. 1989.

[11] S. Osher and R. P. Fedkiw, Level Set Methods and Dynamic Implicit
Surfaces. New York, NY, USA: Springer, 2003.

[12] M. Adamkiewicz et al., “Vision-only robot navigation in a neural radiance
world,” IEEE Robot. Autom. Lett., vol. 7, no. 2, pp. 4606–4613, Apr. 2022.

[13] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution
3D surface construction algorithm,” ACM SIGGRAPH Comput. Graph.,
vol. 21, no. 4, pp. 163–169, Aug. 1987.

[14] X. Wu, S. Chen, K. Sreenath, and M. W. Mueller, “Perception-aware
receding horizon trajectory planning for multicopters with visual-inertial
odometry,” IEEE Access, vol. 10, pp. 87911–87922, 2022.

[15] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto, “Voxblox:
Incremental 3D Euclidean signed distance fields for on-board MAV plan-
ning,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2017, pp. 1366–
1373.

[16] L. Han, F. Gao, B. Zhou, and S. Shen, “FIESTA: Fast incremental Eu-
clidean distance fields for online motion planning of aerial robots,” in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., pp. 4423–4430, 2019.

[17] P. Wang, L. Liu, Y. Liu, C. Theobalt, T. Komura, and W. Wang, “NeuS:
Learning neural implicit surfaces by volume rendering for multi-view
reconstruction,” in Proc. Conf. Neural Inf. Process. Syst., 2021, pp. 27171–
27183. [Online]. Available: https://proceedings.neurips.cc/paper/2021/
hash/e41e164f7485ec4a28741a2d0ea41c74-Abstract.html

[18] M. Tong, C. Dawson, and C. Fan, “Enforcing safety for vision-based
controllers via control barrier functions and neural radiance fields,” in
Proc. IEEE Int. Conf. Robot. Autom., 2023, pp. 10511–10517.

[19] Z. Zhu et al., “NICE-SLAM: Neural implicit scalable encoding for
SLAM,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2022,
pp. 12776–12786.

[20] A. Rosinol, J. J. Leonard, and L. Carlone, “NeRF-SLAM: Real-time dense
monocular SLAM with neural radiance fields,” 2022, arXiv:2210.13641.

[21] D. Maggio, M. Abate, J. Shi, C. Mario, and L. Carlone, “Loc-NeRF: Monte
Carlo localization using neural radiance fields,” in Proc. IEEE Int. Conf.
Robot. Autom., 2023, pp. 4018–4025.

[22] X. Pan, Z. Lai, S. Song, and G. Huang, “ActiveNeRF: Learning where to
see with uncertainty estimation,” in Proc. Eur. Conf. Comput. Vis., 2022,
pp. 230–246.

[23] K. Lin and B. Yi, “Active view planning for radiance fields,” in Proc.
Robot. Sci. Syst., 2022.

[24] N. Sünderhauf, J. Abou-Chakra, and D. Miller, “Density-aware NeRFs
ensembles: Quantifying predictive uncertainty in neural radiance fields,”
in Proc. IEEE Int. Conf. Robot. Autom., 2023, pp. 9370–9376.

[25] J. Shen, A. Ruiz, A. Agudo, and F. Moreno-Noguer, “Stochastic neural
radiance fields: Quantifying uncertainty in implicit 3D representations,”
in Proc. Int. Conf. 3D Vis., 2021, pp. 972–981.

[26] H. Zhan, J. Zheng, Y. Xu, I. Reid, and H. Rezatofighi, “ActiveRMAP: Ra-
diance field for active mapping and planning,” 2022. [Online]. Available:
https://arxiv.org/abs/2211.12656

[27] L. Goli, C. Reading, S. Selllán, A. Jacobson, and A. Tagliasacchi,
“Bayes’ rays: Uncertainty quantification for neural radiance fields,” 2024,
arXiv:2309.03185.

[28] Sara et al., “Plenoxels: Radiance fields without neural networks,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2022, pp. 5491–5500.

Authorized licensed use limited to: Stanford University. Downloaded on September 13,2024 at 19:38:24 UTC from IEEE Xplore. Restrictions apply.

https://dannydriess.github.io/compnerfdyn/
https://proceedings.mlr.press/v164/ichnowski22a.html
https://proceedings.mlr.press/v164/ichnowski22a.html
https://dl.acm.org/doi/10.1145/3588432.3591516
https://proceedings.neurips.cc/paper/2021/hash/e41e164f7485ec4a28741a2d0ea41c74-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/e41e164f7485ec4a28741a2d0ea41c74-Abstract.html
https://arxiv.org/abs/2211.12656

2728 IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

[29] A. Yu, R. Li, M. Tancik, H. Li, R. Ng, and A. Kanazawa, “PlenOctrees for
real-time rendering of neural radiance fields,” in Proc. Int. Conf. Comput.
Vis., 2021, pp. 5732–5741.

[30] J. T. Barron, B. Mildenhall, M. Tancik, P. Hedman, R. Martin-Brualla, and
P.P. Srinivasan, “Mip-NeRF: A multiscale representation for anti-aliasing
neural radiance fields,” in Proc. Int. Conf. Comput. Vis., 2021, pp. 5855–
5864. [Online]. Available: https://openaccess.thecvf.com/content/
ICCV2021/html/Barron_Mip-NeRF_A_Multiscale_Representation_
for_Anti-Aliasing_Neural_Radiance_Fields_ICCV_2021_paper.html

[31] J. T. Barron, B. Mildenhall, D. Verbin, P.P. Srinivasan, and P. Hedman,
“Mip-NeRF360: Unbounded anti-aliased neural radiance fields,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2022, pp. 5460–5469.

[32] N. E. Du Toit and J. W. Burdick, “Probabilistic collision checking with
chance constraints,” IEEE Trans. Robot., vol. 27, no. 4, pp. 809–815,
Aug. 2011.

[33] L. Blackmore, M. Ono, and B. C. Williams, “Chance-constrained opti-
mal path planning with obstacles,” IEEE Trans. Robot., vol. 27, no. 6,
pp. 1080–1094, Dec. 2011.

[34] H. Zhu and J. Alonso-Mora, “Chance-constrained collision avoidance for
MAVs in dynamic environments,” IEEE Robot. Autom. Lett., vol. 4, no. 2,
pp. 776–783, Apr. 2019.

[35] B. Luders, M. Kothari, and J. How, “Chance constrained RRT for prob-
abilistic robustness to environmental uncertainty,” in Proc. AIAA Guid.
Navigation Control Conf., 2010, Art. no. 8160. [Online]. Available: https:
//arc.aiaa.org/doi/abs/10.2514/6.2010-8160

[36] J. L. Schonberger and J.-M. Frahm, “Structure-from-motion revisited,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2016, pp. 4104–
4113.

[37] J. F. C. Kingman, Poisson Processes. Oxford, U.K: Clarendon Press, 1993,
vol. 3.

[38] S. N. Chiu, D. Stoyan, W. Kendall, and J. Mecke, “Point Processes I
the Poisson Point Process,” in Stochastic Geometry and Its Applications.
Hoboken, NJ, USA: Wiley, 2013, pp. 35–63.

[39] P. L. Williams and N. Max, “A volume density optical model,” in Proc.
Workshop Volume Visual., 1992, p. 61–68.

[40] F. Baccelli and J. O. Woo, “On the entropy and mutual information of point
processes,” in Proc. IEEE Int. Symp. Inf. Theory, 2016, pp. 695–699.

[41] A. W. v. d. Vaart, Asymptotic Statistics. Cambridge, U.K.: Cambridge Univ.
Press, 1998.

[42] T. Lozano-Perez, Spatial Planning: A Configuration Space Approach.
Berlin, Germany: Springer, 1990.

[43] S. Liu et al., “Planning dynamically feasible trajectories for quadrotors
using safe flight corridors in 3D complex environments,” IEEE Robot.
Autom. Lett., vol. 2, no. 3, pp. 1688–1695, Mar. 2017.

[44] C. Toumieh and A. Lambert, “Voxel-grid based convex decomposition of
3D space for safe corridor generation,” J. Intell. Robot. Syst., vol. 105,
no. 4, 2022, Art. no. 87.

[45] K. I. Joy, “Bernstein polynomials,” 2013. [Online]. Available: http://www.
inf.ufsc.br/aldo.vw/grafica/apostilas/Bernstein-Polynomials.pdf

[46] A. Gasparetto and V. Zanotto, “A new method for smooth trajectory
planning of robot manipulators,” Mechanism Mach. Theory, vol. 42, no. 4,
pp. 455–471, Apr. 2007.

[47] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and
control for quadrotors,” in Proc. IEEE Int. Conf. Robot. Autom., 2011,
pp. 2520–2525.

[48] ”dijkstra3d,” 2021. [Online]. Available: https://github.com/seung-lab/
dijkstra3d

[49] S. Le Cleac’h et al., “Differentiable physics simulation of dynamics-
augmented neural objects,” IEEE Robot. Autom. Lett., vol. 8, no. 5,
pp. 2780–2787, May 2023.

Timothy Chen received the B.S. degree in mechan-
ical engineering from Caltech, Pasadena, CA, USA,
in 2020. He is currently working toward the Ph.D.
degree in aeronautics and astronautics with the Multi-
Robot Systems Lab, Stanford University, Stanford,
CA, USA, (2026 expected).

He is passionate about combining techniques from
computer vision and control to enable robots to per-
ceive, reason about, and act on their environments.
His research explores robust techniques to marry the
two fields, while simultaneously quantifying uncer-

tainty in these methods.
Mr. Chen is a recipient of the NASA Space Technology Graduate Research

Opportunities Fellowship.

Preston Culbertson (Member, IEEE) received the
Ph.D. degree in mechanical engineering from Stan-
ford University, Stanford, CA, USA, mentored by
Prof. Mac Schwager, in 2022.

He is a Postdoctoral Scholar with the AMBER Lab,
Caltech, Pasadena, CA, USA. His research interests
include the intersection of robotics, machine learning,
optimization, and computer vision. Specifically, his
research explores how to enable robust robot behavior
for dynamic, contact-rich tasks like manipulation,
locomotion, and navigation, emphasizing new tools

for understanding risk and uncertainty for autonomous systems. His work on
collaborative manipulation and robot assembly was awarded the NASA Space
Technology Research Fellowship and the “Best Manipulation Paper” Award at
ICRA 2018.

Mac Schwager (Member, IEEE) received the B.S.
degree in mechanical engineering from Stanford Uni-
versity, Stanford, CA, USA, and the M.S. and Ph.D.
degrees in in mechanical engineering from the Mas-
sachusetts Institute of Technology, Cambridge, MA,
USA, in 2000, 2005, and 2009, respectively.

He is an Associate Professor of aeronautics and
astronautics with Stanford University. He was a Post-
doctoral Researcher with the GRASP lab, University
of Pennsylvania, and the Computer Science and Ar-
tificial Intelligence Lab, MIT, and was an Assistant

Professor with Boston University prior to joining Stanford. His research interests
include distributed algorithms for control, perception, and learning in groups of
robots, and models of cooperation and competition in groups of engineered and
natural agents.

Dr. Schwager was the recipient of the NSF CAREER Award in 2014, the
DARPA Young Faculty Award in 2018, and a Google Faculty Research Award
in 2018, and the IROS Toshio Fukuda Young Professional Award in 2019.

Authorized licensed use limited to: Stanford University. Downloaded on September 13,2024 at 19:38:24 UTC from IEEE Xplore. Restrictions apply.

https://openaccess.thecvf.com/content/ICCV2021/html/Barron_Mip-NeRF_A_Multiscale_Representation_for_Anti-Aliasing_Neural_Radiance_Fields_ICCV_2021_paper.html
https://openaccess.thecvf.com/content/ICCV2021/html/Barron_Mip-NeRF_A_Multiscale_Representation_for_Anti-Aliasing_Neural_Radiance_Fields_ICCV_2021_paper.html
https://openaccess.thecvf.com/content/ICCV2021/html/Barron_Mip-NeRF_A_Multiscale_Representation_for_Anti-Aliasing_Neural_Radiance_Fields_ICCV_2021_paper.html
https://arc.aiaa.org/doi/abs/10.2514/6.2010-8160
https://arc.aiaa.org/doi/abs/10.2514/6.2010-8160
http://www.inf.ufsc.br/aldo.vw/grafica/apostilas/Bernstein-Polynomials.pdf
http://www.inf.ufsc.br/aldo.vw/grafica/apostilas/Bernstein-Polynomials.pdf
https://github.com/seung-lab/dijkstra3d
https://github.com/seung-lab/dijkstra3d

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

