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Intention Communication and Hypothesis
Likelihood in Game-Theoretic Motion Planning

Makram Chahine1, Roya Firoozi2, Wei Xiao1, Mac Schwager2 and Daniela Rus1

Abstract—Game-theoretic motion planners are a potent solu-
tion for controlling systems of multiple highly interactive robots.
Most existing game-theoretic planners unrealistically assume a
priori objective function knowledge is available to all agents. To
address this, we propose a fault-tolerant receding horizon game-
theoretic motion planner that leverages inter-agent communi-
cation with intention hypothesis likelihood. Specifically, robots
communicate their objective function which incorporates their
intentions. A discrete Bayesian filter is designed to infer the
objectives in real-time based on the discrepancy between observed
trajectories and predicted solutions to non-cooperative games
under available hypotheses. In simulation, we consider three
safety-critical autonomous driving scenarios of overtaking, lane-
merging and intersection crossing, to demonstrate our planner’s
ability to capitalize on alternative intention hypotheses to gen-
erate safe trajectories in the presence of faulty transmissions in
the communication network.

Index Terms—Path Planning for Multiple Mobile Robots or
Agents, Planning under Uncertainty, Collision Avoidance.

I. INTRODUCTION

ROBOT control in interactive environments is very chal-
lenging due to the complexity of evaluating the impact

of an agent’s actions on the behaviour of others. Predict-
then-plan strategies have substantially been addressed in the
literature [1], [2]; trajectories of other agents are predicted first,
then used as constraints in a single-agent planning scheme.
However this decoupling ignores the inherently interactive
nature of the problem. Indeed, in order to capture the reactive
nature of agents in a scene, a robot must be able to simulta-
neously predict the trajectories of other agents while planning
its own trajectory. Differential game theory provides a suitable
framework for expressing these types of multi-agent planning
problems without requiring a priori predictive assumptions.

The main challenge of decentralized implementation of
game-theoretic motion planners is that common knowledge
of the dynamics, constraints and objective functions of all
partaking players is required. One can argue that dynamics
and constraints could be assumed or inferred in structured
environments e.g. in driving scenarios. However, for a player
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Fig. 1: Overtaking on a highway. As the red car signals to the right, the green
car anticipates it making way and accelerates. If the red car’s signalling is
reliable and it does move over, the green car would have capitalized on this
communicated intention to reach its objective faster (left scenario). On the
other hand, if the red car does not switch lanes, the green car runs the risk
of collision if it is unable to react in time (right scenario).

to assign an objective function to each of the other agents, they
must have a representation of their intentions. We propose to
use vehicle-to-vehicle (V2V) communication for vehicles to
share their intentions with one another.

In the game-theoretic framework, the communication of in-
tention is best formalized as the sharing of one’s cost function,
which directly intervenes in computing the Nash equilibrium
trajectory solution. However, using communication network
between agents raises questions about the security and robust-
ness of the communication protocol to breaches and faults in
safety-critical applications. A simple and very frequent real-
life example is that of overtaking, where knowledge of the
other vehicle’s intention allows for a more efficient maneuver
as shown in Fig. 1. In this example, we present a case where
faulty communication could lead to a collision.

In this paper, we investigate the use of V2V communica-
tion as a solution to the safety shortcomings arising from
cost function mismatch in Model Predictive Control (MPC)
implementations of game-theoretic motion planners. We spec-
ify the requirements such a solution would need to satisfy,
namely robustness to communication faults and adaptability
throughout the unfolding of an evolving multi-agent scene. In
this work, we assume the vehicles are connected using V2V
communication network. Also, we assume a set of possible
intentions (hypotheses) for each vehicle is available to be
used in real time. Our proposed planner updates hypothesis
likelihoods, allowing an agent to reassess the reliability of
communicated intentions coming from each player in the
scene. With a hypothesis likelihood assigned to players’ in-
tentions, the agent adapts its version of a dynamic game at
each replanning interval. Our main contributions are,



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2023

1) An online Bayesian inference approach to estimate the
relative likelihoods of available hypotheses based on
past observations in the context of dynamic games with
communicated cost functions,

2) A communication-based game-theoretic receding hori-
zon motion planner is designed to be resilient to faulty
transmissions and safer than naive MPC implementa-
tions of dynamic game motion planners,

3) Simulations on three autonomous driving scenarios:
overtaking, lane-merging and intersection crossing, em-
pirically showcasing the superiority of our approach in
planning safe trajectories and avoiding crashes.

II. RELATED WORK

Dynamic Games. Differential game theory provides a
framework to model multi-agent interactions without requiring
a priori assumption about predicting other agents’ behaviors
[3]. Differential games require solving coupled Hamilton-
Jacobi equations which are computationally intractable for
high-dimensional spaces. To make the problem tractable, iter-
ative linear-quadratic (iLQ) games are proposed in [4],[5]. The
iterative linear quadratic games provide feedback strategies
to form a feedback Nash equilibrium of the game. These
approaches are computationally efficient, but since the feed-
back policies are fixed, they cannot adapt to any change in
the behavior of the other agents. In contrast, our proposed
approach allows adaptability to any change in the game
structure and provides open-loop Nash equilibrium, instead.

Game-theoretic planning A game-theoretic setting allows
to model both adversarial and cooperative agents. In fact,
scenarios such as autonomous driving, where robots need
to interact with other intelligent agents, are fundamentally
game-theoretic [6], [7], [8]. Formalizing such interactions as
a game, robots can weigh the impact of their decisions on
the actions of other agents [9], even in competitive settings
such as drone or car racing [10], [11]. Most game-theoretic
works do not assume availability of a communication network
among the agents and model the interactions as a game formu-
lation. In [12], [13], [14] data-driven methods are presented
to infer objective functions of other agents online in game
theoretic planning without communication. On the other hand
distributed optimization approaches assume the existence of a
communication network and solve the optimization based on
the received communicated predictions [15], [16]. They devise
a communication and planning protocol in which all the agents
share their predicted planned trajectories. One drawback of
the former approach is that in an uncertain and dynamic
environment such as autonomous driving setting, solving a
game with a fixed structure may not be robust with respect to
adversarial agents’ behavior.

Also, distributed optimization approaches that completely
rely on the communicated trajectories and make use of pre-
dictions in the planning are susceptible to adversarial cyber-
attacks. In contrast, our proposed approach considers a combi-
nation of the two, in which we consider solving a game while
a communication network is assumed among the agents and
they make use of communicated information to update their

reliability towards other agents. Within the receding-horizon
game-theoretic framework the agents update the game cost
function according to the communicated information about
other agents’ intentions. Incorporating reliability into the game
formulation leads to quick adaptation and promotes resilience
against failures.

Communication-based planning and control. The emer-
gence of connected and automated vehicles [17], [18] has
the potential to drastically improve mobility, energy efficiency
and safety, especially in traffic bottlenecks (such as merging,
intersection, etc.) Optimal control problem are used in some
of these approaches [19], while MPC techniques are employed
as an alternative [20], mainly to take additional constraints and
disturbances into account. All the above mentioned works as-
sume that information shared through communication network
is reliable. While in this work, we consider communication-
based control in the presence of faulty transmissions on the
communication network.

III. PROBLEM STATEMENT

We consider a sequence of Generalized Nash Equilibrium
Problems (GNEPs) involving N players i ∈ {1, . . . ,N} over
a horizon of H time steps. An agent i’s state at time step
index t is denoted xi

t ∈ Rni
and control input ui

t ∈ Rmi
, with

dimensions of agent i’s state and control ni and mi. Let
xt = [x1,⊤

t , . . . ,xN,⊤
t ]⊤ ∈ Rn denote the joint state and ut =

[u1,⊤
t , . . . ,uN,⊤

t ]⊤ ∈ Rm denote the joint control of all agents
at time t, with joint dimensions n = ∑i ni and m = ∑i mi. We
define player i’s policy as π i = [ui,⊤

1 , . . . ,ui,⊤
H−1]

⊤ ∈Rm̃i
where

m̃i = mi(H−1) denotes the dimension of the entire trajectory
of agent i’s control inputs. The notation ¬i indicates all agents
except i, for instance π¬i represents the vector of the agents’
policies except that of i. Also, let X = [x⊤2 , . . . ,x

⊤
H ]
⊤ ∈ Rñ,

with ñ= n(H−1), denote the trajectory of joint state variables
resulting from the application of the joint control inputs to the
dynamical system defined by f : Rn×Rm→ Rn such that,

xt+1 = f (xt ,ut) (1)

Over the whole trajectory we can express the above kinody-
namic constraints with ñ equality constraints,

D(X ,π1, . . . ,πN) = D(X ,π) = 0 ∈ Rñ (2)

The cost function of each player i depends on its policy π i as
well as on the joint state trajectory X , which is common to all
players, such that ∀i ∈ {1, . . . ,N},

Ji(X ,π i) = ci
H(xH)+

H−1

∑
t=1

ci
t(xt ,ui

t) (3)

Notice that as player i minimizes Ji with respect to X and π i,
the selection of X is constrained by the other players’ strategies
π¬i and the dynamics of the joint system via (2). In addition,
the strategy π i could be required to satisfy (safety) constraints
that depend on the joint state trajectory X as well as on the
other players strategies π¬i . This can be expressed with a set
of g inequality constraints,

C(X ,π)≤ 0 ∈ Rg (4)
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where C : Rñ×Rm̃→Rg. The GNEP we form is the problem
of minimizing (3) for all players i ∈ {1, . . . ,N} with respect
to (2) and (4). More specifically,

min
X ,π i

Ji(X ,π i) ∀i ∈ {1, . . . ,N}

subject to D(X ,π) = 0 (5)
C(X ,π)≤ 0

The solution to such a dynamic game is a generalized Nash
equilibrium, i.e. a policy π such that, ∀i ∈ {1, . . . ,N}, π i is a
solution to (5) with the other players’ policies given by π¬i

that is also solved by (5) for all ¬i. As a consequence, at a
Nash equilibrium point solution, no player can improve their
strategy by unilaterally modifying their policy.

MPC implementation with cost updates

Cost structures are fixed during the resolution of a dy-
namic game, which can lead to dangerous trajectories when
costs used differ from the true expressions. Hence, intelli-
gent agents should be able to update their interpretation of
others’ intentions. In our game-theoretic framework, this is
equivalent to enabling objective function estimate updates at
relevant frequencies. Proposed methods to achieve this include
inverse optimal control algorithms and Inverse Reinforcement
Learning (IRL). To the best of our knowledge, this problem has
not yet been tackled for intention-communicating agents with
possible transmission faults corrupting the communication
channel. We design a communication-based game-theoretic
receding horizon motion planner to update the cost repre-
sentations agents have of others by capitalizing on truthful
communication and absorbing misleading transmissions to
avoid dangerous trajectories.

IV. HYPOTHESIS ADAPTIVE MOTION PLANNER

Our solution relies on updating the perceived costs by com-
paring executed trajectories to those obtained by solving the
set of games corresponding to various intention hypotheses.
The approach is similar in principle to type-based games [21],
where the type of an agent is their intention, which, in our case
coincides with their cost function, thus constituting a complete
specification of the agent’s behaviour. This approach is based
upon the observation that the set of broadly defined possible
intentions in many multi-robot motion planning is small,
and that solutions that are close most likely arise from cost
formulations that are also close. The latter assumption need not
hold, not only for Nash equilibria but also for individual agents
planning in the presence of obstacles as the mapping between
cost formulations and corresponding trajectory solutions will
generally not be smooth. For instance, as we increase the
desired velocity of an ego vehicle initially merging behind
an ado vehicle, a threshold value will be reached, beyond
which the ego accelerates to merge in front of the ado.
Values infinitesimally close on either side of this threshold
thus lead to disparate solutions. These discontinuity points are
however very sparse and such cases are extremely unlikely
to randomly occur in simulation, where behaviour consistent
with our assumption is observed. The non-uniqueness of Nash

equilibria also means that even with correct costs, potentially
large trajectory deviations can arise. However, Peters et al.
[22] show that it is possible to ensure agents agree on a Nash
equilibrium.

We denote agent i’s true cost function, used for their own
planning in (5), as ci

v. Agent i broadcasts a communicated cost
denoted ci

c to all other agents in its vicinity. Communication
need not be truthful, i.e. we do not constrain ci

v = ci
c. We also

have access in a database to a set of ξ possible hypotheses
for other agents intentions, notably for agent i, cost functions
ci

h,l for l ∈ {1,2, . . . ,ξ}. We denote ci
h the vector of hypo-

thetical cost functions agent i has about the scene such that
ci

h = [ci
h,1, . . . ,c

i
h,ξ ]. Agent i solves a recursive game and must

estimate ξ +1 probability parameters representing the relative
likelihood of each of the hypotheses, λl with l ∈ {0, . . . ,ξ}
and such that ∑

ξ

l=0 λl = 1 and λl ≥ 0, then uses the estimated
likelihoods to assign a cost for agent j denoted ci

j. The zeroth
index corresponds to the communicated intention hypothesis
such that probability λ0 is as associated with cost c j

c. The ego
vehicle solves a non-cooperative game with its own cost cv
and the assigned cost function c j (we omit the superscript i
for clarity) for an ado agent j according to,

kmax = argmax([λ0, . . . ,λξ ]) (6)

c j =

{
c j

c , if kmax = 0
ch,kmax , otherwise

(7)

The design choice of planning with the highest likely
hypothesis is motivated by the discrete nature of possible
cost functions in most driving scenarios (switching lanes,
turning left or right etc.). In games with continuous cost
structure (desired speed, aggressiveness, comfort metrics), we
propose using the weighted sum of the intention hypotheses
to determine the cost assigned to agent j

c j = λ0c j
c +

ξ

∑
l=1

λlch,l (8)

A. Online Bayesian inference for hypothesis estimation

We use online discrete Bayesian filtering to update the
distribution weights. The belief vector ΛΛΛ is defined as
ΛΛΛ = [λ0,λ1, ...λξ ]

T . The transition matrix is defined as T =

[T kl ]
ξ

k,l=0, where each entry of the matrix is T kl = p(lt+1 =
k|lt = l). The filter predict step is,

ΛΛΛt+1|t = TΛΛΛt|t (9)

where the subscript t|t ′ denotes the estimate of ΛΛΛ at time t
given the observations up to and including time t ′. To make
minimal assumption on how the intention dynamics evolve,
we take T to be the identity matrix. The measurement matrix
M is defined as, M = diag[p(yt−s:t |It = 0), ..., p(yt−s:t |lt = ξ )],
where the measurement likelihood for diagonal elements of
the matrix M are computed based on the steps outlined in
Algorithm 1. The filtering equations are formulated over s
state measurements and the filter update step is,

ΛΛΛt+1|t+1 =
MΛΛΛt+1|t

1T MΛΛΛt+1|t
(10)
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In Algorithm 1, the inputs are measurements yt−s:t and be-
lief vector ΛΛΛt−s over the past s time steps. The output is
the measurement likelihood p(x̂t−s:t = yt−s:t |ΛΛΛt−s), where x̂
denotes the open-loop Nash solution of the dynamic game
(5). The game is solved over H horizon from yt−s with
ΛΛΛt−s and the control sequence ut−s:t+H is computed. Then
the dynamics is propagated forward up to time t and the
state trajectory x̂t−s:t is computed. Finally the measurement
likelihood p(x̂t−s:t = yt−s:t |ΛΛΛt−s) is computed.

Algorithm 1 Measurement likelihood for discrete Bayesian
filter

1: Input: yt−s:t ,ΛΛΛt−s
2: Output: p(x̂t−s:t = yt−s:t |ΛΛΛt−s)
3: Steps: ut−s:t+H ← solve game (5) from yt−s with ΛΛΛt−s

over H horizon
4: x̂t−s:t ← forward propagate (1) up to time t
5: p(x̂t−s:t = yt−s:t |ΛΛΛt−s)← likelihood with p(xt−s:t |ΛΛΛt−s) ∝

p(xt−s:t |x̂t−s:t(ut−s:t(ΛΛΛt−s)))

In our setup, at time step t − s agent i solves his current
perceived game determined by ΛΛΛt according to (6)-(7) with
horizon H and executes the trajectory obtained for s < H
time steps. At step t, agent i observes the executed joint state
trajectories of all agents between t− s and t which we denote
X̂t−s:t = [x̂⊤t−s, . . . , x̂⊤t ]⊤. Similarly, for l ∈ {0,1, . . . ,ξ} agent
i can obtain hypothetical trajectories X l

t−s:t = [xl,⊤
t−s, . . . ,x

l,⊤
t ]⊤

by solving each of the available versions of the game, with the
convention that l = 0 represents the communicated game. We
can thus compute, for hypotheses l ∈ {0,1, . . . ,ξ}, a disparity
score with the observed executed joint trajectory dl , which
we take to be the sum along all points of the trajectory if the
l1-norm of the element-wise relative state error, such that,

dl =
t

∑
k=t−s

∥∥∥(xl
k− x̂k)⊘ x̂k

∥∥∥
1

(11)

where the ⊘ symbol represents the Hadamard element-wise di-
vision. The choice of this formulations allows for all elements
of the observed state (positions, translation velocities, angular
rates. etc.) to have the same weight in the norm computation.
We shed light on the necessity of taking numerical precautions
to avoid divisions by zero in (11). We also ensure all computed
error scores are in practice strictly positive by adding a small
offset to (11). The hypothesis relative likelihoods λl for l ∈
{0,1, . . . ,ξ} presented in Section IV-A must rank in the inverse
order of that of the disparity scores as closer trajectories are
assumed to arise from games with more accurate cost function
representations. We obtain our current estimate of the relative
likelihoods denoted Λ̃ΛΛt = [λ̃0, . . . , λ̃ξ ] by requiring likelihoods
to be inversely proportional to disparity scores and thus to
satisfy the following conditions,

λ̃l =
dl′

dl λ̃l′ , ∀l, l′ ∈ {0,1, . . . ,ξ}, l ̸= l′ (12)

ξ

∑
l=0

λ̃l = 1 (13)

λ̃l ≥ 0, ∀l ∈ {0,1, . . . ,ξ} (14)

Note that the
(

ξ+1
2

)
conditions (ξ + 1 choose 2) in (12) are

highly redundant and can be replaced by ξ conditions:

λ̃l =
d0

dl λ̃0, ∀l ∈ {1, . . . ,ξ} (15)

Also the strict positivity of dl for l ∈ {0,1, . . . ,ξ} combined
with condition (13) ensures that any solution to (15) and (13)
necessarily satisfies (14). Thus, computing the current estimate
of the relative likelihoods comes down to solving the simple
linear system

AtΛ̃ΛΛ
⊤
t = B (16)

with At ∈ R(ξ+1)×(ξ+1) and B ∈ Rξ+1 such that,

At =



1 1 1 · · · 1
1 − d1

d0 0 · · · 0

1 0
. . .

...
...

...
. . . 0

1 0 · · · 0 − dξ

d0


, B =


1
0
...
...

0.

 (17)

The likelihood estimation scheme is based on the online filter-
ing approach presented in section IV-A. For the filter predict
step (9), the transition probability matrix is assumed as identity
matrix T= Iξ+1 to make minimal assumption on the transition
dynamics between different hypothesis. Therefore ΛΛΛt+1|t =
ΛΛΛt|t . Equation (16) is equivalent to the filter update step
(10). While the measurement likelihood p(x̂t−s:t = yt−s:t |ΛΛΛt−s)
discussed in algorithm 1 is computed using equation (11). We
finally obtain the new value of ΛΛΛt used to define the next
perceived game to solve via the fusion of the previous value
ΛΛΛt−s with the new estimate Λ̃ΛΛt according to a fixed update rate
γ , such that,

ΛΛΛt = (1− γ)ΛΛΛt−s + γΛ̃ΛΛt (18)

The update rate γ is the filter’s only hyperparameter. It
determines how fast we update our likelihood vector according
to previous estimates. Smaller γ values (slower) can be useful
in scenarios with high replanning frequencies, where shorter
observed trajectories contain less useful signal, and a gradual
convergence of ΛΛΛ over a larger sample is desired. Larger γ val-
ues favor quick adaptation to new observations contradicting
the current active hypothesis.

B. Proposed Motion Planner

Our solution consists of an MPC implementation of the
open-loop dynamic game solver over a time horizon H, with
the Nash equilibrium policy subsequently executed for HN
time steps before updating the perceived game costs and
repeating. Agent i, with cost function ci, initial joint state
of the scene x0, initial hypothesis likelihood vector ΛΛΛ0, and
hypothesis cost models for other agents ci

h, thus computes
its motion according to our decentralized on-board planner
outlined in Algorithm 2.
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Algorithm 2 Planner for robot i

1: procedure PLANNER(x0,ΛΛΛ0,ci,ci
h,H,HN ,γ)

2: x← x0, ΛΛΛ← ΛΛΛ0
3: while interacting do
4: COMMUNICATE(ci)
5: c¬i

c ← RECEIVECOMMUNICATEDCOSTS
6: c← FORMPERCEIVEDGAME(ΛΛΛ,c¬i

c ,ci
h) (6)-(7)

7: π ← SOLVEDYNAMICGAME(x,c,H) (5)
8: xi← EXECUTE(xi,π i,HN)
9: x¬i← OBSERVESTATE(HN)

10: ΛΛΛ← UPDATELIKELIHOOD(π,x,γ) (16)-(18)
11: end while
12: end procedure

The hypothesis likelihood update compute time is largely
negligible relative to the dynamic game solver. Hence, the
planning time scales linearly with the number of hypotheses
as compared to using ALGAMES to plan a single version of
the dynamic game. Indeed, for a single version of a 3 agent
game, a 20 step look-ahead and a 5 step executed trajectory,
the compute costs required for solving the game and updating
the hypotheses likelihood vector are shown in Table I.

TABLE I: Orders of magnitude of the run time, number of allocations and
disk space required to solve the dynamic game and to update the hypothesis
likelihood vector.

Task Run time (s) # alloc. Space (MB)

SOLVEDYNAMICGAME 10−1 105 100
UPDATELIKELIHOOD 10−4 103 0.1

Also, ALGAMES solver has a O(HN3) complexity, i.e.
linear in H the game horizon and cubic in N the number of
agents. Our planner solves Ξ such games at each replanning
time step, where Ξ is the number of hypotheses available
to the planning agent. Thus, overall, our solution scales like
O(HΞN3), and experimental compute times are given in Table
II.

TABLE II: Ego vehicle run times (average for 5 runs, in ms) for a fixed
horizon H = 20 for the intersection scenario with 2,3 and 4 agents with an
increasing number of hypotheses from 1 to 3.

N = 2 N = 3 N = 4

Ξ = 1 3 142 776
Ξ = 2 5 272 1533
Ξ = 3 8 403 2268

V. SIMULATIONS

We test our proposed solution on three autonomous driv-
ing scenarios inspired by real-life situations with increasing
complexity. In our simulations we introduce confusion in the
communication scheme to show the adaptation ability of our
planner in the case of cost mismatch. We look at a two
vehicle overtaking maneuver, a three vehicle lane merging
scenario and a four vehicle intersection negotiation. In all
the simulations, all agents plan their trajectories using our
proposed planner.

A. Simulation setup

The dynamic game solver we use is ALGAMES [23], which
handles trajectory optimization problems with multiple actors
and general nonlinear state and input constraints. The vehicles
obey nonlinear unicycle dynamics. The state of a vehicle
xi

t comprises of its 2D position (px horizontal, py vertical),
its heading angle and scalar velocity. The control input ui

t
comprises of the angular velocity and scalar acceleration.

1) Constraints: The dynamics constraints at time t consist
in following the system dynamics given by (1), with f being
unicycle dynamics in all our driving simulations. We also
enforce collision-avoidance constraints on the trajectories, by
modelling collision zones of the vehicles by circles or radius

r, such that, at any time step t,
∥∥∥pi

t −p j
t

∥∥∥2

2
≥ r2, ∀i, j ∈

{1, . . . ,N}. In addition, we require the vehicles to remain
on the road, by constraining the distance between each ve-
hicle and the closest point q on each boundary b to remain
larger than the collision radius r,

∥∥pi
t −qb

∥∥2
2 ≥ r2, ∀b,∀i ∈

{1, . . . ,N} where pi
t = [pxi

t , pyi
t ] contains the plane coordinates

of the agent i at time t extracted from the complete state vector
xi

t . Thus, the autonomous driving problem is formalized via
non-convex and non-linear coupled constraints.

2) Cost function: The cost structure considered is quadratic,
penalizing the distance to the desired final state x f and the
use of controls, Ji(X ,π i) = ∑

H−1
t−1

1
2 (xt − x f )

⊤Q(xt − x f ) +
1
2 u⊤t Rut +

1
2 (xH − x f )

⊤Q f (xH − x f ), where Q, R and Q f
represent state, input and final state penalization weight ma-
trices, respectively. This cost function depends only on the
decision variables of vehicle i, as players’ behaviors are
only coupled through collision constraints. Thus, although
knowledge of other agents’ intentions does not intervene in
the individual cost agent i is optimizing for, it does however
determine the trajectories of others, and subsequently the
collision constraints agent i has to satisfy.

B. Advantage of V2V communication

We show through a simple takeover maneuver experiment
that intention sharing between agents can improve the quality
of the planned solutions. Vehicle v1 wishes to maintain high
velocity on the left lane along a two-lane highway. Vehicle v2
is in front of it initially and is driving at a slower speed. v2
wishes to move to the right lane. We consider two scenarios:
first with v1 agnostic to v2’s intention, and second with v2’s
true cost function available to v1. In the first case, since
no information is available to v1, we let v1 suppose that
v2’s desired state is on the left lane at the same speed. The
trajectories in both cases are presented in Fig. 3. In this figure
and all subsequent figures depicting executed trajectories, the
marker size increases with respect to time.

We clearly notice that access to v2’s intentions allows v1 to
satisfy its objective of maintaining high speed on the left. On
the other hand, the absence of such information and of the
ability to update the cost based on observations deteriorates
the reward collected as v1 gets stuck behind v2, expecting the
latter to drift back to the left lane.
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Fig. 3: No communication (top) and true cost communication (bottom). v1
and v2 executed trajectories in green and red respectively.

C. Unique true alternative

We first validate the soundness of our approach by consid-
ering cases with one agent sending faulty communication. The
other agents use our planner with one alternative hypothesis,
which we here assume to be the true cost function of the faulty
agent. Furthermore, we assume that all players initially trust
each other (at t = 0 we initialise λ0 = 1,λ1 = 0). We simulate
three real-life driving situations: a takeover maneuver, a lane
merging, and an intersection negotiation.

1) Takeover: Vehicle v1 wishes to maintain high velocity
on the left lane along a two-lane highway. In front of it on
the same lane is a slower vehicle, v2, which misleadingly
expresses its intention to make way (e.g. by signalling to the
right), when its true intention is to stay on the left lane.

The obtained trajectories with and without the use of our
planner are presented in Fig. 4.

Fig. 4: Communication only planner solution (top) and adaptive hypothesis
likelihood planner with γ = 0.6 solution (bottom). v1 and v2 executed
trajectories in green and red respectively. The true desired states and quadratic
state penalties are x1

f = [6.0,0.1,0.0,0.9], Q1 = Diag([0.0,1.0,0.1,10.0]) and
x2

f = [6.0,0.1,0.0,0.6], Q2 = Diag([0.0,20.0,0.1,1.0]). v2’s communicated
desired state is x2

com = [6.0,−0.1,0.0,0.6].

Relying on communicated cost functions only, the overtak-
ing vehicle v1 persists in attempting to pass by v2 from the
left as at each episode the Nash equilibrium with the fixed
communicated cost from v2 would yield an optimal policy in
which v2 moves out of v1’s way. This leads to an aggressive
maneuver where v1 repeatedly bumps v2 pushing it to the right
lane for v1 to squeeze through. Using our planner, v1 observes
v2’s reluctance to make way over the first few iterations, and
quickly assigns the alternative cost function to v2, leading to
a smooth overtake from the right.

2) Lane-merging: Next we consider a lane-merging ma-
neuver involving three vehicles on a two-lane highway. Let v1
be the source of the fault, communicating its willingness to
make way to the merging vehicle v2, when in truth it wishes
to maintain driving along the right lane without reducing its
speed. Driving along the left lane, v3’s objective is to maintain
high velocity.

Fig. 5 shows the trajectory obtained using communicated
intentions only, and that with v2 and v3 using our planner.
The first trajectory depicts an aggressive and unsafe merging
scenario. Indeed, at each planning step, v2 persists in assuming

Fig. 5: Communication only planner solution (top) and adaptive
hypothesis likelihood planner with γ = 0.6 (bottom) cases :
v1, v2 and v3 executed trajectories in green, red, and blue
respectively. The true desired states and quadratic state penalties
are x1

f = [2.5,−0.1,0.0,0.6], Q1 = Diag([0.0,20.0,0.1,20.0]),
x2

f = [2.5,−0.1,0.0,0.6], Q2 = Diag([0.0,1.0,0.1,1.0]) and
x3

f = [3.0,0.1,0.0,0.7], Q3 = Diag([0.0,1.0,0.1,1.0]). v1’s communicated
cost matrix is Q1

com = Diag([0.0,1.0,0.1,1.0]).

v1 will either slow down or switch to the left lane in order to
accommodate it. Hence, v2 continues to execute the merge in
front of v1, passing dangerously close to both v1 and the road
boundary. Using our adaptive planner, v2, notices v1’s reluc-
tance to make way over a couple of planning episodes, assigns
larger likelihood to the alternative scenario and subsequently
plans to allow v1 to pass first before merging. In this case,
v2 avoids finding itself in the hazardous situation of being
tailgated by v1.

3) 4-way intersection: The last example we consider in-
volves four vehicles negotiating an intersection crossing. Three
vehicles, v1, v2 and v3 intend to drive straight across (west to
east, east to west and north to south respectively). Vehicle
v4 wants to execute a left turn (south to west). We assume v4
misleads the other agents about its aggressiveness. Trajectories
planned with the faulty intention as well as those obtained with
agents v1, v2 and v3 using our adaptive planner are presented
in Fig. 6.

Fig. 6: Communication only planner solution (left) and adaptive
hypothesis likelihood planner with γ = 0.4 (right) cases : v1,
v2, v3 and v4 executed trajectories in green, red, blue and
yellow respectively. The true desired states and quadratic state
penalties are x1

f = [1.2,−0.1,0.0,0.7], Q1 = Diag([0.0,1.0,0.1,1.0]),
x2

f = [−1.2,0.1,−π,0.7], Q2 = Diag([0.0,1.0,0.1,1.0]),
x3

f = [−0.1,−1.2,−π/2,0.7], Q3 = Diag([0.0,1.0,0.1,1.0]) and
x4

f = [−1.2,0.1,π,0.7], Q4 = Diag([0.0,1.0,0.1,20.0]). v4’s communicated
cost matrix is Q4

com = Diag([0.0,1.0,0.1,1.0]).

Without adapting the cost functions, v2 does not hasten its
passage as v4 comes increasing close to it, as communication
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from v4 suggest it is willing to slow down to let v2 through.
Thus v2 drives right in front of v4 as it executes its turn, leading
to a collision. In the adaptive case, v2, noticing v4’s absence
of braking, accelerates as it enters the intersection and avoids
getting crashed into.

4) Update rate dependency: We study the effect of the
update rate γ on evolution of the perceived game determined
by ΛΛΛ and present quantitative analysis of the minimum dis-
tance between each pair of vehicles with respect to this filter
parameter. Closed-loop simulations of our proposed planner
for all three scenarios are presented in Fig. 7.
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Fig. 7: Left: Evolution of the hypotheses relative likelihoods ΛΛΛ throughout the
simulation as a function of the filter update rate γ . The communicated cost’s
likelihood is depicted in blue, and the alternative hypothesis in red, the largest
bar determining which version of the game is used for planning during the
current episode. Right: Normalized distances between each pair of vehicles
d(vi,v j)/dmin (logarithmic scale) as a function of γ . The dashed line depicts
the collision threshold dmin.

The main observation is that it is desirable for the hypothesis
likelihood filter to converge before the start of the inter-vehicle
interactions. Indeed, this not only allows agents to enjoy addi-
tional lead time to adapt their maneuvers to avoid collisions,
but also to avoid interactions corrupting the intention signal
used to update the filter. Overall, we notice that for large
enough update rates, our planner allows agents to identify the
correct intention of the faulty agent and use this information
to replan safe trajectories.

D. Multiple inexact alternatives

We next test and validate our planner in the more complex,
realistic setting of multiple hypotheses about other agents’
intentions, which have no reason to necessarily include the
exact true cost functions. We show that when the hypothesis
set contains a cost function that is close enough to the true
one, safer planning is achieved using our approach. Indeed,

we revisit the takeover example presented earlier, but now
consider three alternative hypotheses to the communicated
intention of v2. The first is to maintain the left lane with a
penalty on deviation from the lane center a quarter as small
as the true one, the second is to maintain the left lane with a
penalty 20 times smaller than the true value, and the third is
to change lanes at a third of the initial speed. We show the
evolution of ΛΛΛ and of the minimum inter-vehicle distance as
a function of γ in Fig. 8.
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Fig. 8: Evolution of the hypotheses relative likelihoods ΛΛΛ throughout the
simulation as a function of the filter update rate γ . The communicated cost’s
likelihood is depicted in blue, and alternatives in red, yellow and purple. For
γ ≥ 0.8, collision is avoided.

According to the simulation results, our planner achieves
collision-free trajectories in complex environments with broad
and imprecise assumptions about other agents’ costs utilizing
the proposed online Bayesian filtering scheme which allows
fast adaptation for the planner. The simulation results confirm
that our solution can be used to ensure safety and improve
performance in various driving scenarios.

E. Performance and robustness

We test the robustness of our approach to intention commu-
nication reliability, initial state conditions and process noise
on the lane-merging scenario, comparing it to two planning
baselines. We consider two available intention hypotheses for
v1 (I1: v1 wishes to stay on the right lane maintaining same
speed, and I2: v1 wishes to accelerate with less emphasis on
lane keeping), in addition to the communicated intention (Ic:
v1 is willing to yield the lane to the merging v2). We assume
all agents have access to the correct cost functions for v2 and
v3. Our planner has access to all three hypotheses for planning.
The first baseline is a communication-only planner using
only Ic. The second uses our planner in a no-communication
scheme, i.e. with only I1 and I2 as possible options. We
uniformly randomize the initial positions of all three agents
and introduce 20% uniform process noise on the executed
control commands. We run 100 merging simulations with
faulty communication (v1’s cost function is represented by I1
and not Ic) and 100 runs with correct communication (v1’s cost
is Ic as communicated). The results are presented in Table III.

As intended, our proposed planner generates safe trajec-
tories whether the communicated intention is correct or not.
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Hyp. ddd Risky Crash JJJ aaaccccccmax
Fa

ul
ty {Ic} 1.40±0.09 16% 0% 11.46 10.92

{I1, I2} 1.56±0.04 2% 0% 11.21 10.80
{Ic, I1, I2} 1.55±0.06 1% 0% 11.07 10.74

C
or

re
ct {Ic} 1.57±0.01 0% 0% 11.09 10.66

{I1, I2} 1.54±0.12 4% 2% 11.19 10.76
{Ic, I1, I2} 1.57±0.01 0% 0% 11.07 10.66

To
ta

l {Ic} 1.48±0.10 8% 0% 11.28 10.79
{I1, I2} 1.56±0.09 3% 1% 11.20 10.78
{Ic, I1, I2} 1.55±0.05 0.5% 0% 11.07 10.70

TABLE III: Statistical performance of our planner versus communication and
agnostic baselines (n = 100 maneuvers for each of Faulty/Correct commu-
nication scenarios).n d (mean ± std) represents the minimum normalized
distance between each pair of vehicles, such that d =min{d(vi,v j)/dmin | i, j∈
{1,2,3}, i ̸= j}, with dmin denoting the collision threshold. Risky maneuvers
are accounted for when d is within 30% of dmin, and crashes when d ≤ dmin.
The cost of the maneuver for the merging agent, denoted J, is computed
according to the quadratic cost. The maximum acceleration of the merging
vehicle accmax is used as a comfort score.

Indeed, over the 200 simulations with our adaptive planner,
only one trajectory is considered risky and no crashes are
recorded. Also as expected, our planner matches the perfect
information game in terms of performance when commu-
nication is correct. We also notice the importance correct
communication can have in insuring safety, as not having
access to a close enough intention in the set of hypotheses
can lead to dangerous trajectories and crashes. Indeed, when
v1 correctly communicates its intention Ic the adaptive planner
using only {I1, I2} exhibits a large variance in trajectories
leading to a 2% crash rate. Our planner is capable of both
absorbing situations with faulty intention communication, and
leveraging correct information for Nash optimal trajectory
planning, without compromising on performance and comfort.

VI. CONCLUSION

We have introduced a new receding horizon game-theoretic
motion planner designed to operate in real-time in the frame-
work of intention sharing multi-robot systems with potential
communication faults. We demonstrate the robustness of our
solution to such perturbations on complex autonomous driving
scenarios, showcasing its ability to plan safe trajectories in
situations from which naive implementations fail to recover.
Future directions include integrating online intention identifi-
cation into our framework in addition to incorporating state
uncertainty.
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