
1

Fast Contact-Implicit
Model-Predictive Control

Simon Le Cleac’h1∗, Taylor A. Howell1∗, Mac Schwager2, and Zachary Manchester3

Abstract—We present a general approach for controlling
robotic systems that make and break contact with their envi-
ronments. Contact-implicit model-predictive control (CI-MPC)
generalizes linear MPC to contact-rich settings by relying on
linear complementarity problems (LCP) computed using strategic
Taylor approximations about a reference trajectory and retaining
non-smooth impact and friction dynamics, allowing the policy to
not only reason about contact forces and timing, but also generate
entirely new contact mode sequences online. To achieve reliable
and fast numerical convergence, we devise a structure-exploiting,
path-following solver for the LCP contact dynamics and a custom
trajectory optimizer for trajectory-tracking MPC problems. We
demonstrate CI-MPC at real-time rates in simulation, and
show that it is robust to model mismatch and can respond to
disturbances by discovering and exploiting new contact modes
across a variety of robotic systems, including a pushbot, hopper,
and planar quadruped and biped.

Index Terms—Model-Predictive Control, Legged Robots, Con-
tact Modeling, Optimization and Optimal Control.

I. INTRODUCTION

CONTROLLING systems that make and break contact
with their environments is one of the grand challenges

in robotics. Numerous approaches have been employed for
controlling such systems, ranging from hybrid-zero dynamics
[39, 1, 24], to complementarity controllers [3], to neural-
network policies [15, 16], and model-predictive control (MPC)
[40, 33]. There have also been numerous successes deploying
such approaches on complex systems in recent years: direct
trajectory optimization and LQR on Atlas [21], smooth-contact
models and differential dynamic programming on HRP-2
[36, 19], zero-moment point and feedback linearization on
ASIMO [17], and MPC with simplified dynamics models on
Cheetah [5] and ANYmal [23]. However, reliable general-
purpose control techniques that can reason about contact
events and can be applied across a wide range of robotic
systems without requiring application-specific model simpli-
fications, gait-generation heuristics, or extensive parameter
tuning remain elusive.

In this work, we focus on the problem of local tracking con-
trol for systems that experience contact interactions with their

1 Simon Le Cleac’h and Taylor A. Howell are with the Department of
Mechanical Engineering, Stanford University, Stanford, CA 94305, USA.
{simonlc, thowell}@stanford.edu

2 Mac Schwager is with the Department of Aeronautics and
Astronautics, Stanford University, Stanford, CA 94305, USA.
schwager@stanford.edu

3 Zachary Manchester is with The Robotics Institute, Carnegie Mellon
University, Pittsburgh, PA 15213, USA. zacm@cmu.edu

(Corresponding author: Taylor A. Howell)
∗ These authors contributed equally to this work.

Fig. 1: Planar quadruped walking over uneven terrain. The
reference gait is optimized for flat ground. Our CI-MPC policy,
with orange center-of-mass and blue foot position trajectories,
is able to adapt online to the unmodeled variation in terrain
and track the reference trajectory.

environments. Our approach combines a differentiable “hard-
contact” rigid-body dynamics formulation with strategic lin-
earizations, exploitation of the trajectory-optimization problem
structure, and specialized numerical optimization techniques.
The result is a model-predictive-control algorithm that can
effectively reason about contact changes in the presence of
large disturbances while remaining fast enough for real-time
execution on modest computing hardware.

We formulate dynamics with contact as a complementarity
problem that simultaneously satisfies impact and friction con-
straints. By employing a path-following method to optimize
this problem, we naturally and reliably converge from “soft”
to “hard” contact as the central-path parameter is decreased
to zero. At a solution point, the implicit-function theorem is
then utilized to efficiently compute dynamics derivatives for
use in the policy. To enable real-time performance for model-
predictive control, we pre-compute linearizations of the sys-
tem’s dynamics, signed-distance functions, and friction cones
about a reference trajectory, while explicitly retaining comple-
mentarity constraints that encode contact switching behavior,
resulting in a sequence of lower-level time-varying linear-
complementarity problems (LCP). An upper-level trajectory-
optimization problem is then optimized using an efficient
structure-exploiting solver. We refer to this algorithm as
contact-implicit model-predictive control (CI-MPC).

Finally, we demonstrate that our CI-MPC policy can gener-
ate new contact sequences online and reliably track reference
trajectories while subject to significant model mismatch and
large disturbances for a number of qualitatively different
robotic systems, including a pushbot, hopper, and planar

ar
X

iv
:2

10
7.

05
61

6v
2

 [
cs

.R
O

]
 2

8
Se

p
20

21

2

quadruped and biped.
Our specific contributions are:
• A contact-dynamics formulation that can be reliably eval-

uated and efficiently differentiated with a custom path-
following solver

• Fast, structure-exploiting solvers for the contact-dynamics
and trajectory-optimization problems

• A model-predictive-control framework for robotic sys-
tems with contact dynamics

• A collection of simulation examples demonstrating the
performance of the CI-MPC algorithm on a variety of
robotic systems across a range of highly dynamic bal-
ancing and locomotion tasks

In the remainder of this paper, we first review related work
on controlling systems that experience contact events with
MPC and LCP contact dynamics in Section II. Next, we
present a brief overview of linear MPC, outline the classic
LCP for contact dynamics, and provide background on path-
following methods and how to differentiate through their solu-
tions via the implicit-function theorem in Section III. Then, we
present our differentiable contact-dynamics implementation in
Section IV and our CI-MPC algorithm in Section V. In Section
VI, we provide simulation results to demonstrate the policy’s
performance. Finally, we discuss our results in Section VII
and conclude with directions for future work in Section VIII.

II. RELATED WORK

In this section, we review related work on MPC for the
control of dynamical systems that make and break contact
with their environments and provide an overview of methods
for solving LCP contact dynamics.

A. Model-Predictive Control

Today, most successful approaches for controlling legged
robots utilize MPC in combination with simplified models and
heuristics originally pioneered by Raibert for hopping robots
[32]. The key insight of this work is that the control problem
can be decoupled into a high-level controller that plans body
motions while ignoring the details of the leg dynamics, and a
low-level controller that determines the necessary leg motions
and joint torques to generate the forces and torques on the
body determined by the high-level controller.

Arguably the most impressive control work on humanoids
has utilized centroidal dynamics with full kinematics to enable
Atlas to navigate various obstacles scenarios [8] and perform
parkour [13]. Integrating hardware design and controller syn-
thesis has also recently enabled small humanoids to perform
agile acrobatic maneuvers in simulation [6].

There have also been impressive advances for quadrupeds,
achieved by designing hardware that aims to closely match the
modeling approximations made in the controller, e.g., building
very light legs, [5]. Whole-body control, which has the benefit
of simpler overall control structures and the ability to leverage
a system’s dynamics, has been achieved at real-time rates
on hardware [27]. Approaches that utilize both force-based
MPC and whole-body control have also demonstrated agile
locomotion [18].

A major limitation of these prior works is that the control
policies are highly specialized to a specific robotic system. In
this work, we compare our CI-MPC approach to a number of
system-specific control methods that perform quite well for
their given system, but do not generalize to other systems,
whereas our policy generalizes to many different systems
that experience contact while achieving comparable or better
performance.

B. LCP Contact Dynamics

Our CI-MPC framework relies on efficient evaluations of
contact dynamics. The classic approach for simulating rigid-
body systems that experience contact is a velocity-based time-
stepping scheme that optimizes an LCP. The LCP’s solution
produces a one-step simulation of rigid-body systems that
experience hard contact. This problem can be efficiently opti-
mized using pivoting-based techniques [12], such as Lemke’s
algorithm [7], or path-following methods [20]. Implementa-
tions of pivoting methods can be found in general LCP solvers
such as PATH [11], or contact-dynamics simulators including
DART [22]. Pivoting approaches enforce strict complementar-
ity at each iteration, frequently resulting in non-differentiable
solution points. While it is possible to compute subgradients
of the solution in these situations, optimization using these
subgradients becomes much more difficult. In contrast, path-
following methods relax the complementarity constraints, and
can return smooth gradients.

For trajectory generation, the LCP problem’s contraints have
been directly used to encode contact dynamics with collocation
techniques in large nonlinear programs in order to optimize
trajectories without pre-specified mode sequences for loco-
motion and simple manipulation tasks [29]. Subsequent work
improved this approach by introducing higher-order integrators
for the dynamics (5) and a numerically robust, exact `1-
penalty for handling the complementarity constraints [25].
Alternative gradient-based approaches that utilize simulator
rollouts differentiate through the solution of a one-step LCP
[9, 38].

Another popular contact-dynamics formulation is MuJoCo’s
[36] soft-contact model, which solves a convex optimization
problem and trades physical realism for fast and reliable
performance. It is possible to recover finite-differenced gradi-
ents from the simulator. Similarly, the LCP complementarity
constraints can be relaxed, resulting in a soft-contact model
that exhibits improved numerical properties [14].

III. BACKGROUND

In this section, we provide technical background on linear
MPC, the LCP formulation for contact dynamics, introduce
path-following methods for optimizings LCPs and an approach
for differentiating through their solutions.

A. Model-Predictive Control

CI-MPC is a receding-horizon control policy; in this section,
we provide background on this type of algorithm, which

3

optimizes the following trajectory-optimization problem:

minimize
x1:T ,u1:T−1

gT (xT) +
T−1∑
t=1

gt(xt, ut)

subject to xt+1 = ft(xt, ut), t = 1, . . . , T − 1,
(x1 given).

(1)

For a system with state xt ∈ Rn, control inputs ut ∈ Rm,
time index t, initial state x1, and discrete-time dynamics ft :
Rn × Rm → Rn, we aim to minimize an objective with
stage-cost functions, gt : Rn ×Rm → R, and terminal-cost
function, gT : Rn → R, over a planning horizon T .

To reduce computational complexity for online perfor-
mance, the actual problem we would like to optimize is often
replaced with a proxy that has linear dynamics,

xt+1 = Atxt +Btut, (2)

and quadratic cost functions,

gt(xt, ut) = xTt Qtxt + qTt xt + uTt Rtut + rTt ut, (3)

gT (xT) = xTTQTxT + qTT xT . (4)

This formulation, with additional affine state and control
constraints, is commonly referred to as linear MPC. Without
such constraints, (1) is solved efficiently with a backward
Riccati recursion and is commonly referred to as the LQR
problem.

In MPC, after optimizing an instantiation of (1), the opti-
mized control at the first time step, u∗1, is applied to the system.
After the system evolves, x1 is updated and (1) is re-optimized
in order to compute a new control input for the system. By
repeating this procedure, feedback control is achieved [37].
In practice, applying the controls optimized with time-varying
linearized dynamics and quadratic costs, to the actual nonlinear
system is extremely effective, especially for applications that
track a reference trajectory.

In order to optimize (1) efficiently using Newton or quasi-
Newton methods, MPC requires differentiable dynamics con-
straints. In the case of linear MPC, these derivatives, i.e.,
At and Bt, resulting from a linearization about a reference
trajectory that is being tracked, can be pre-computed offline for
additional efficiency. Quadratic objectives are often designed
to track a reference trajectory, and they can similarly be pre-
computed offline. Similar to linear MPC, CI-MPC strategically
linearizes components of the dynamics about a reference
trajectory in order to leverage offline pre-computation and
matrix pre-factorization. However, unlike linear MPC, CI-
MPC does not result in a convex quadratic program, but
in a nonlinear program since the contact dynamics are only
partially linearized and retain complementarity constraints.

B. LCP Contact Dynamics

Our CI-MPC framework relies on a velocity-based time-
stepping scheme that optimizes an LCP in order to find
the systems’s next configuration, qt+1 ∈ Rn, and velocity,
vt+1 ∈ Rn [34]. The LCP is comprised of impact and friction
subproblems.

The impact problem has the following structure,

M(qt)vt+1 −M(qt−1)vt + hC(qt, vt+1) = (5)

J(qt+1)Tλt +B(qt+1)ut,

qt+1 = qt + hvt+1, (6)
γt ◦ φ(qt+1) = 0, (7)
γt, φ(qt+1) ≥ 0, (8)

with: mass matrix M : Rn → Sn++; dynamics bias C :
Rn×Rn → Rn that includes Coriolis and gravitational terms;
contact Jacobian J : Rl → Rn that maps contact forces
in the local surface frame into the generalized coordinates;
input Jacobian B : Rn → Rn×m that maps control inputs,
typically joint torques, into the generalized coordinates; time
step h ∈ R+; contact forces λt = (γ

(1)
t , β

(1)
t , . . . , γ

(c)
t , β

(c)
t) ∈

Rl defined in the local surface frame, with normal force
γ
(i)
t ∈ R and friction forces β

(i)
t ∈ R2(d−1) which have

been double parameterized for the linearized friction cone;
signed-distance function, φ : Rn → Rc, that returns distances
between specified contact points on the robot (e.g., feet) and
the closest surface in the environment (e.g., the floor); and
◦ is an element-wise (Hadamard) vector product. We use c
to denote the number of contact points, and the environment
dimension d = 2 for planar systems and d = 3 otherwise.
The manipulator dynamics (5) are discretized with a semi-
implicit Euler scheme, and the complementarity constraints
(7)–(8) encode the fact that impact forces can only be imparted
to the system while in contact, and can only be repulsive.

For the integration scheme, we note that J,B,C, and φ
should be evaluated at qt+1 but in practice the approximation
q̃t+1 = qt + hvt is utilized in order for the constraints to be
linear in the decision variables. Instead of this approximation,
CI-MPC evaluates these terms at configurations along a known
reference trajectory.

Coulomb friction is modeled at each contact point using the
maximum-dissipation principle [26] and a linearized friction
cone, and is encoded with the following constraints:

ηt −
[
νTt+1 −νTt+1

]T − ψt1 = 0 (9)

ψt · (µγt − 1Tβt) = 0 (10)
βt ◦ ηt = 0 (11)
βt, ηt ≥ 0, (12)

where νt ∈ Rd−1 is the tangential velocity at a contact
point, µ ∈ R+ is the coefficient of friction, ψt ∈ R
is the dual variable (Lagrange multiplier) associated with a
linearized friction-cone constraint, and ηt ∈ R2(d−1) is the
dual variable associated with the nonnegative friction-force
constraint. The tangential velocity is computed by projecting
the configuration velocity through the contact Jacobian and
taking the appropriate components.

The impact and friction problems (5)–(12) are coupled
through the contact forces and the system’s configuration and
velocity, forming an LCP; its solution produces a one-step
simulation of rigid-body systems that experience hard contact.
The following section presents a path-following method to
optimize such problems.

4

C. Path-Following Method
Path-following methods can efficiently and reliably optimize

problems with inequality and complementarity constraints [20,
28]. In this section, we focus on optimizing LCPs of the form1:

find x, y, z
subject to Ex+ Fy + f = 0,

Gx+Hy + z + h = 0,
y ◦ z = 0,
y, z ≥ 0,

(13)

with decision variables x ∈ Rn, y, z ∈ Rm and problem data
θ = (E,F,G,H, f, h) ∈ Rn×n×Rn×m×Rm×n×Rm×m×
Rn × Rm ≡ Rp. Path-following methods parameterize (13)
by a central-path parameter ρ ∈ R+ that relaxes the following
bilinear constraint:

y ◦ z = ρ1, (14)

where 1 a vector of ones.
The equality and relaxed bilinear constraints form a residual

vector or solution map, r : Rn+2m ×Rp ×R+ → Rn+2m,
that takes w = (x, y, z) ∈ Rn+2m, the problem data, and
central-path parameter as inputs. The problem data and central-
path parameter are fixed during optimization. In the context of
contact dynamics, these data encode the mechanical properties
of the robots, its current configuration and velocity, and
properties of the environment like friction coefficients. Newton
or quasi-Newton methods are used to find search directions
that reduce the norm of the residual and a backtracking line
search is employed to ensure that the inequality constraints
are strictly satisfied for candidate points at each iteration.
Once the residual is optimized to a desired tolerance, the
central-path parameter is decreased and the new subproblem
is warm-started with the current solution and then optimized.
This procedure is repeated in order to find solutions to (13)
with ρ → 0 until the central-path parameter, also referred to
as complementary slackness, is below a desired tolerance.

D. Implicit-Function Theorem
An implicit function, r : Rk ×Rp → Rk, is defined such

that,
r(w∗; θ) = 0, (15)

for solutions w∗ ∈ Rk and problem data θ ∈ Rp. At a
stationary point, w∗(θ), the sensitivity of the solution with
respect to the problem data, i.e., ∂z

∂θ , can be computed by
utilizing the implicit-function theorem [10]. We expand (15)
to first order:

∂r

∂w
δw +

∂r

∂θ
δθ = 0, (16)

and then solve for δw:
∂w∗

∂θ
= −

(∂r
∂w

)−1 ∂r
∂θ
, (17)

to compute the sensitivities. We will use this approach to dif-
ferentiate through the solution from a path-following method
in order to compute gradients of the contact dynamics for CI-
MPC. A differentiable path-following method is summarized
in Algorithm 1.

1Technically, a mixed linear complementarity problem (MLCP) since the
optimization variable x is not part of the complementarity constraint.

IV. DIFFERENTIABLE CONTACT DYNAMICS

In this section we present a differentiable contact dy-
namics formulation that can return smooth gradients. First,
we formulate a parameterized complementarity problem, that
jointly solves the impact and friction problems, for a path-
following method. Solving this problem with a path-following
method successively reduces the complementary slackness,
helping to avoid numerical issues inherent to non-smooth
and discontinuous impact and friction dynamics, and directly
corresponds to converging from “soft” to “hard” contact.
Then, we formulate an LCP by selectively linearizing this
formulation about a reference trajectory. Next, we leverage the
implicit-function theorem from Section III-D to differentiate
through the solution to this LCP in order to provide gradients
to the CI-MPC policy. Finally, we present a custom linear
solver for the LCP that leverages offline pre-computation and
partial factorizations for efficient online computation within
the CI-MPC policy.

A. Contact Dynamics

To evaluate our contact dynamics, we need to jointly opti-
mize the coupled impact and friction problems. We formulate
a parameterized joint feasibility problem that simultaneously
satisfies (5–12) for a fixed central-path parameter:

find qt+1, λt, ψt, η
(1)
t , . . . , η

(c)
t , sφ, sψ (18)

s.t.
(
M(qt−1)(qt − qt−1) (19)

−M(qt)(qt+1 − qt)
)
/h

− hC(qt, (qt+1 − qt)/h)

+ J(qt+1)Tλt +B(qt+1)ut = 0,

sφ − φ(qt+1) = 0, (20)

s
(i)
ψ − (µ(i)γ

(i)
t − 1Tβ(i)

t) = 0,∀i, (21)

η
(i)
t − P (i)(qt+1)(qt+1 − qt)/h (22)

− ψ(i)
t 1 = 0,∀i,

γt ◦ sφ = ρ1, (23)
ψt ◦ sψ = ρ1, (24)

β
(i)
t ◦ η

(i)
t = ρ1,∀i, (25)

γt, sφ, ψt, sψ ≥ 0, (26)

β
(i)
t , η

(i)
t ≥ 0,∀i. (27)

The problem data include previous configurations, time step
and control inputs. This feasibility problem (18) is closely
related to prior work [34]. There, complementarity is strictly
enforced at each iteration, i.e., ρ = 0, as a result of the underly-
ing pivoting-based solver, whereas our formulation has relaxed
bilinear constraints at each iteration that are successively
decreased in order to achieve hard contact in the limit as the
central-path parameter goes to zero. We introduce additional
slack variables sφ, sψ ∈ Rc, a standard technique used with
path-following methods and implicitly encode velocities via
finite-difference approximations.

5

Algorithm 1 Differentiable Path-Following Method

1: procedure PATHFOLLOWING(x, θ)
2: Parameters: β = 0.5, γ = 0.1, ερ = 10−6, εr = 10−8

3: Initialize: y = 0, z = 1, ρ = 0.1, ρgrad = 10−4

4: Until ρ < ερ do
5: ∆w = (∂r∂w)−1r(w; θ, ρ)
6: α← 1
7: Until (x, z)− α(∆x,∆z) > 0 do α← βα
8: Until ‖r(w − α∆w; θ, ρ)‖ < ‖r(w; θ, ρ)‖ do
9: α← βα

10: w ← w − α∆w
11: If ‖r(w; θ, ρ)‖ < εr do ρ← γρ
12: ∂w

∂θ ← DIFFERENTIATE(w, θ, ρgrad) . Eq. 17
13: Return w, ∂w∂θ

B. Linearized Contact-Implicit Dynamics

The CI-MPC policy aims to track a reference trajectory
comprising configurations Q̄ = (q̄0, . . . , q̄T), control in-
puts Ū = (ū1, . . . , ūT−1), and the contact forces Λ̄ =
(λ̄1, . . . , λ̄T−1).

Similar to linear MPC, we reduce the online computa-
tional burden by utilizing simplified dynamics. Specifically,
we formulate time-varying contact-implicit dynamics which
comprise the manipulator dynamics, signed-distance function,
and maximum-dissipation-principle terms linearized about the
reference trajectory, while the key contact dynamics modeled
with complementarity and inequality constraints are retained.
At each time step along the trajectory, we formulate the
following LCP:

find w
subject to C(w − w̄) +D(θ − θ̄) = 0

γ ◦ sφ = ρ1,
ψ ◦ sψ = ρ1
β(i) ◦ η(i) = ρ1,∀i
γ, sφ, ψ, sψ ≥ 0
β(i), η(i) ≥ 0,∀i.

(28)

with decision variables w =
(qt+1, λt, ψt, η

(1)
t , . . . , η

(c)
t , sφ, sψ). Here, w̄ and θ̄ are

reference decision variables and problem data, respectively,
and C and D are matrices that define a linear system of
equations and are pre-computed offline. These strategically
linearized contact-implicit dynamics,

qt+1 = st(qt−1, qt, ut), (29)

st : Rn × Rn × Rm → Rn, optimize (28) and return the
configuration at the next time step. The contact forces at the
current time step can also be returned.

This problem (28) is an LCP, however, it differs from the
classic LCP formulation for contact dynamics [34]. In prior
work, linearization is performed at some approximation of the
next configuration. In the trajectory tracking setting, where
the current and following configurations are known, we can
linearize about the reference trajectory and not simply about
the current configuration or a first-order approximation of the
next configuration.

C. Differentiable Contact Dynamics

CI-MPC employs a bilevel-optimization scheme which eval-
uates the contact dynamics and their gradients for an upper-
level trajectory-optimization problem by solving lower-level
optimization problems. Evaluation of the contact dynamics
is done by optimizing an LCP (28); gradients of the contact
dynamics are then obtained by differentiating the solution to
this problem using the implicit-function theorem [2, 35].

We define the problem data for (28) as θ = (qt−1, qt, ut),
but could also include the time step, friction coefficients,
central-path parameter, and other system values like masses or
inertia terms. At a solution point, we can compute the gradients
of the next configuration or contact forces with respect to
the problem data, e.g., ∂qt+1

∂ut
, using the approach presented in

Section III-D. The residual comprises the equality constraints
of the LCP (28).

The Jacobian ∂r
∂w can be computed and factorized (e.g.,

generally with LU decomposition) in the process of optimizing
(28). Thus, differentiating through the solution w∗ requires
additionally computing ∂r

∂θ and performing p additional linear-
system solves.

We note that this approach depends upon finding a local
minimizer for the residual, which may not exist in general.
Additionally, if ∂r

∂w∗ is singular, we can at best find an
approximate solution to (17), e.g., a least-squares solution.
Finally, an alternative approach to differentiating through an
optimization problem is to fix the number of update steps
and then directly differentiate through an unrolled sequence
of solver steps. We do not explore such an approach in this
work.

Lastly, the central-path parameter determines the comple-
mentary slackness of the solution, i.e., this is a tuneable
parameter for controlling the smoothness of the returned
gradients. Gradients computed with large values of ρ will be
smoother than those computed with small values of ρ, which
more closely approximates a true subgradient at nondifferen-
tiable points. These subgradients often fail to provide useful
information through contact events, so this parameter will be
used to provide CI-MPC with smooth gradients that provide
information through contact events.

D. Linearized Contact-Implicit Dynamics Solver

The most expensive steps in evaluating the LCP and com-
puting gradients of a solution are computing the solution to a
linear system,

Rw∆w = r, (30)

required by the path-following method in order to compute
a new search direction, where we define r as the equality
constraints from (28), Rw = ∂r

∂w , and ∆w as the step direction
for this linear system.

To reduce the computational cost of this optimization, we
exploit both the sparsity pattern and the property that most of
Rw remains constant across iterations [41] and, therefore, can
be pre-computed offline.

For clarity, we use the same notations as in Problem
13. We work with: x = qt+1, y = (γt, ψt, β

(1)
t , . . . , β

(c)
t),

6

and z = (sφ, sψ, η
(1)
t , . . . , η

(c)
t), where w = (x, y, z), and

similarly, split the residual: r = (rx, ry, rz). The Jacobian’s
sparsity pattern is:

Rw =

E F 0
G H I
0 diag(z) diag(y)

 , (31)

where I denotes the identity matrix.
By exploiting sparsity in the third row of (31), we can form

the following condensed system:[
E F

G H̃

] [
∆x
∆y

]
=

[
rx
r̃y

]
⇔ R̃w ∆w̃ = r̃, (32)

where,

H̃ = H − diag(y−1 ◦ z), (33)

r̃y = ry − y−1 ◦ rz, (34)

∆z = y−1 ◦ (rz − z ◦∆y), (35)

and y−1 denotes the element-wise reciprocal of vector y. This
term is always well-defined because a line search enforces
y > 0 at each iteration.

To optimize for ∆w̃, we leverage the fact that, apart from the
bottom-right block, R̃w can be computed offline. We perform
a QR decomposition on the Schur complement of (32),

Q,R← qr(H̃ −GE−1F), (36)

and then solve for the search directions,

∆y = −R−1QT (GE−1rx − r̃y), (37)

∆x = E−1(rx − F∆y). (38)

Additionally, E−1, GE−1, and GE−1F are precomputed
offline. Finally, after solving for ∆w̃, we obtain ∆z with cheap
vector-vector operations (35).

For a system with configuration dimension n and c contact
points, the computational complexity of solving (30) with a
naive approach is O

(
(n + 2cd)3

)
. Our structure-exploiting

approach is O(8c3d3) during the online phase. In practice,
this provides a factor of 15 speed-up for evaluating the
linearized contact-implicit dynamics across all the robotic
systems presented in this paper and, in turn, results in a factor
of 2.5 overall speed-up for the CI-MPC policy.

V. CONTACT-IMPLICIT MODEL-PREDICTIVE CONTROL

In this section, we present the CI-MPC algorithm. Online,
this algorithm efficiently optimizes an instantiation of (1) that
utilizes differentiable contact dynamics. First, we formulate
discrete-time dynamics for this problem which utilize our
linearized contact dynamics (28) for tracking a reference
trajectory. Next, we present a structure-exploiting linear-
system solver for efficiently solving the upper-level trajectory-
optimization problem. Finally, we summarize the algorithm
and present a simple heuristic that enables the policy to
robustly handle unmodeled terrain.

Algorithm 2 Contact-Implicit MPC

1: procedure MPC(Q̄, Ū , Λ̄, H, ρ)
2: Offline Stage
3: (C1:T−1, D1:T−1)← LINEARIZE(Q̄, Ū , Λ̄, ρ)
4: Online Stage
5: For τ = 1, . . . ,∞
6: u∗1 ← TRAJOPT(q0, q1, τ,H)
7: q2 ← SYSTEM(q0, q1, u

∗
1)

8: (q0, q1)← (q1, q2)
9: End

A. Trajectory Optimization

Similar to linear MPC, we optimize a version of (1) with the
time-varying linearized contact-implicit dynamics (28). Impor-
tantly, we employ a state representation, xt = (q

(t)
t−1, q

(t)
t),

comprising two configurations. This exposes Markov structure,
enabling a custom linear-system solver to reduce the overall
complexity of solving the trajectory-optimization problem.

The first state, x1, is fixed and we optimize decision
variables: z = (u1, x2, · · · , uT−1, xT) ∈ Rm(T−1)+2n(T−1).
The resulting dynamics constraints,

dt(xt, ut, xt+1) =

[
q
(t+1)
t

q
(t+1)
t+1

]
−

[
q
(t)
t

st(q
(t)
t−1, q

(t)
t , ut)

]
= 0, (39)

effectively propagate configurations across one time step and
encode the contact-implicit dynamics. The dynamics con-
straints Jacobian,

C = ∇d =

−B1 I 0 0
0 −A2 −B2 I

0 0 0
. . .

 , (40)

has associated one-step dynamics Jacobians,

At =

[
0 I
∂st
∂qt−1

∂st
∂qt

]
, Bt =

[
0
∂st
∂ut

]
, (41)

that have additional sparsity, where d = (d1, · · · , dT−1) ∈
R2n(T−1).

In order to track a reference trajectory, the following objec-
tive, J : Rm(T−1)+2n(T−1) → R, with time-varying quadratic
cost functions is used:

gt(xt, ut) = (xt − x̄t)TQt(xt − x̄t) (42)

+ (ut − ūt)TRt(ut − ūt)
gT (xT) = (xT − x̄T)TQT (xT − x̄T), (43)

where Qt ∈ S2n
++ and Rt ∈ Sm++ ensure that the Hessian of

the objective is positive definite. Velocities are penalized using
finite-difference approximations and because the problem is
lifted by using states with two configurations, these costs do
not introduce state coupling across time steps. The resulting
Hessian of the objective,

∇2J =

R1 0 0 0
0 Q2 0 0
0 0 R2 0

0 0 0
. . .

 , (44)

7

Fig. 2: PushBot performing push recovery. A disturbance (red)
creates an impulse on the system and the policy generates a
new contact sequence that extends the prismatic joint toward
the right wall in order to make contact. After stabilizing,
PushBot pushes against the wall, eventually breaking contact,
in order to return to the nominal upright configuration.

and its inverse,

(∇2J)−1 =

R−11 0 0 0

0 Q−12 0 0
0 0 R−12 0

0 0 0
. . .

 , (45)

are block diagonal and can be pre-computed offline.
The resulting system,[

∇2J CT

C 0

] [
∆z
∆ν

]
=

[
∇J + CT ν

d

]
, (46)

which uses a Gauss-Newton approximation of the constraints
when computing the Hessian of the Lagrangian, is solved
using a block-elimination approach [37]. First, the Schur
complement,

Y = C(∇2J)−1CT =

Y11 Y12 0 0
Y21 Y22 Y23 0
0 Y32 Y33 . . .

0 0
...

. . .

 , (47)

is formed blockwise,

Y11 = B1R
−1
1 BT1 , (48)

Ytt = BtR
−1
t BTt +AtP

−1
t ATt + P−1t+1, (49)

t = 2, · · · , T − 1,

Yt,t+1 = Yt+1,t
T = −P−1t+1A

T
t+1, (50)

t = 1, · · · , T − 2.

TABLE I: Comparison between CI-MPC and MIQP policies
for PushBot example. For a fixed replanning rate of 25 Hz, we
report the mean and standard deviations for the optimization
times and compare this to the associated time budget (0.04
s). Both policies successfully regulate the system around the
equilibrium point. However, the MIQP policy is slower than
real-time, whereas the CI-MPC policy always remains within
time budget, ensuring real-time performance.

replanning time real-time
CI-MPC 0.014± 0.027 s success
MIQP 0.18± 0.09 s failure

Next, a Cholesky factorization, Y = LTL, is similarly
performed blockwise,

L11L
T
11 = Y11 (51)

LttL
T
t+1,t = Yt,t+1, (52)

t = 1, · · · , T − 1,

LttL
T
tt = Ytt − Lt,t−1LTt,t−1, (53)

t = 2, · · · , T − 1.

Finally, block elimination is utilized to solve,

∆ν = Y −1
(
C(∇2J)−1(∇J + CT ν)− d

)
, (54)

∆z = (∇2J)−1
(
∇J + CT ν − CT∆ν

)
. (55)

Without exploiting the sparsity structure of the trajectory-
optimization problem, the complexity of solving this instantia-
tion of (1) with a generic LDLT factorization is O

(
1
3T

3(4n+

m)3
)

, while this specialized solver has an overall complexity:

O
(
T (8n3 + n2m)

)
.

B. Model-Predictive Control

The CI-MPC policy is comprised of offline and online stages
and requires a reference trajectory, (Q̄, Ū , Λ̄), and a planning
horizon, H . During the offline stage, the necessary terms for
(28) are computed for the given reference trajectory. Then,
during the online stage, for a given initial state, comprising
the current and previous configurations, (q0, q1), a control u∗1
is optimized by solving (1) over the MPC planning horizon,
and this input is applied to the system. After the system
evolves, the configurations are updated using the latest state
information.

Additionally, like prior work that utilizes path-following
methods for MPC [37], we employ a fixed central-path
parameter for computational efficiency. In practice, we find
that ρ ≈ 1e-4 is a good balance between computation time,
physical accuracy, and gradient smoothness. Note that, when
verifying the performance of the policy in simulation, we
utilize the nonlinear contact dynamics (18) and tight tolerance
for the central-path parameter, e.g., ρ = 1e-6, to enforce hard
contact, see Section VII for more details. The CI-MPC policy
is summarized in Algorithm 2.

8

Fig. 3: Hopper in 2D performing parkour. The system tracks
the body (orange) and foot (blue) reference trajectories while
ascending three stairs before performing a front flip.

C. Contact-Height Heuristic

To enable the policy to robustly adapt to unknown variations
in terrain height, we employ a simple heuristic that we find to
be effective in practice. The policy maintains a height estimate,
a ∈ Rc, for each contact and utilizes a modified signed-
distance function,

φMPC(q) = φ(q) + a, (56)

that is updated using the current contact height. When contact
is detected, the height estimate is updated. In simulation, a
threshold on the impact-force magnitude is set; and in practice,
force sensors can reliably detect such an event.

This simple heuristic does not affect the structure of (31)
and only requires c more addition operations to compute
r when optimizing the linearized contact-implicit dynamics
problem (30). In our experiments, we find the heuristic to be
effective and reliable across unknown terrain for the systems
tested.

VI. EXAMPLES

We demonstrate the CI-MPC algorithm in simulation by
controlling a variety of robotic systems that make and break
contact with their environments. In the examples we show that
the policy can generate new contact sequences online; is robust
to disturbances, model mismatch and unknown terrain; and is
faster than real-time, see Table IV.

For all the examples presented in this section, we provide a
reference trajectory to the controller. These reference trajecto-
ries are designed using contact-implicit trajectory optimization
[25] to generate gaits for the biped and quadruped, and
templates for the hopper performing parkour. In the former

TABLE II: Comparison between CI-MPC and the Raibert
heuristic for a hopper system on 4 scenarios: flat, sinusoidal,
and piecewise linear terrains; and a parkour stunt (Fig. 3). For
each terrain profile, we report the number of hops achieved
by the policy. For the parkour scenario, we report if the stunt
is successfully completed.

flat sinusoidal piecewise parkour
CI-MPC +100 +100 +100 success
Raibert +100 +100 +100 failure

case, the gait forms a limit cycle and is repeatedly for tracking,
while in the latter case, two templates are generated and
combined to form a composite reference trajectory. It is also
possible to manually design trajectories, as was done for the
hopper in 3D.

We verify the policy performance in simulation using the
nonlinear contact dynamics (18). Additionally, all examples
are simulated using a different sample rate, typically 5-10×
faster than the reference trajectory, in order to ensure that the
policy is robust to sampling rates.

A. PushBot

In this example, we demonstrate that our policy can generate
new, unspecified contact sequences online in order to respond
to unplanned disturbances. The system, PushBot, is modeled
as an inverted pendulum with a prismatic joint located at the
end of the pendulum (Fig. 2). There are two control inputs: a
torque at the revolute joint and a force at the prismatic joint.
The system is located between two walls and has two contact
points, one between the prismatic-joint end effector and each
wall.

PushBot is tasked with remaining vertical and the policy
utilizes a reference trajectory that does not include any con-
tacts. When we apply a large impulse to the system, the policy
generates a behavior that commands the prismatic joint to push
against the wall in order to stabilize. By tuning the policy’s
cost function we can generate different behaviors, including
maintaining contact to stabilize and pushing against the wall
in order to return to the nominal position. The latter behavior
is shown in Fig. 2.

We compare CI-MPC to a method that relies on a mixed-
integer quadratic progam (MIQP) formulation [4] applied to
a simplified version of the PushBot (an inverted pendulum
between two stiff walls). The MIQP minimizes a quadratic
objective function subject to piecewise-linearized dynamics.
Each linear dynamics domain corresponds to a single contact
mode, and discrete decision variables are introduced to encode
contact mode switches. Our CI-MPC approach is fast enough
to be run online, however, this is not the case for the MIQP
policy, as shown in Table I. Moreover, the complexity of
the MIQP increases exponentially with the number of contact
modes, making it an intractable approach for more complex
systems.

9

Fig. 4: Hopper in 3D tracks a hopping gait with body (orange)
and foot (blue) trajectories over unmodeled and uneven terrain.

B. Hopper

Inspired by the Raibert Hopper [32], we model a 2D
hopping robot with n = 4 generalized coordinates: lateral and
vertical positions, body orientation, and leg length, respec-
tively; m = 2 controls: body moment, e.g., controlled with an
internal reaction wheel, and leg force; and a single contact at
the foot.

The centroidal-dynamics modeling assumption we make—
consistent with Raibert’s work—is to locate the leg and
foot mass at the body’s center of mass. This results in a
configuration-independent mass matrix and no bias term in
the dynamics.

The hopper is tasked with locomoting over unknown ter-
rain. The CI-MPC policy uses a reference trajectory that is
optimized with a flat surface and no incline. We compare our
policy to the Raibert heuristic, which we similarly tune for flat
ground and no incline. We observe that our policy is able to
adapt to the varying surface heights that range from 0-24 cm
and that the robot can slip multiple times and is able to recover
while traversing steep inclines. We find that, when tuned well,
the Raibert heuristic also works very well on terrains

Additionally, we task the hopper with climbing a staircase
and executing a front flip (Fig. 3). This complex trajectory
cannot be directly executed using the Raibert heuristic as it is
not a periodic hopping gait. Our policy, however, successfully
tracks this complex trajectory, illustrating the more general
capabilities of CI-MPC. Results are summarized in Table II.

Finally, we extend the Raibert hopper to 3D, for a system
with n = 7 configuration variables: 3 position, 3 modified
Rodrigues parameters for orientation, and 1 leg length; the
m = 3 controls are: 2 body moments about the system’s
roll and pitch angles, and leg force. Again, foot and leg
masses are assumed to be located at the body. We demonstrate
that a policy tuned for flat ground can be employed, without
retuning, for the hopper to locomote over an unknown terrain
(Fig. 4).

Fig. 5: Quadruped tracking a reference trajectory (red) while
carrying an unmodeled 3-kg payload. We depict the torso
(orange) and front-left foot (blue) trajectories.

C. Quadruped

We model a planar quadruped with n = 11 configuration
variables and m = 8 control inputs. The system has four
contacts, one at each point foot.

The quadruped is tasked with moving to the right over three
different terrains: flat, sinusoidal, and piecewise-linear surfaces
(Fig. 1). Additionally, we test the robustness of the MPC policy
by introducing model mismatch. We provide the MPC policy
with the nominal model of the quadruped while the simulator
uses a quadruped with a 3-kg payload, representing 25% of
its nominal mass. Despite the unmodeled load, the policy
successfully tracks the nominal gait with good performance.

We note that the same MPC policy was used across
all quadruped experiments and no retuning was required to
transfer from the nominal case (flat terrain, no payload) to
more complex scenarios. Further, it is easy and intuitive to
rapidly retune the policy in order to achieve improved tracking
performance in the other scenarios.

D. Biped

We model a planar biped based on Spring Flamingo [31]
with n = 9 configuration variables and m = 7 control inputs.
The system is modeled with four contact points, one at the toe
and heel of each foot.

The biped is tasked with moving to the right over three
different terrains: flat, sinusoidal, and piecewise-linear surfaces
(Fig. 6) using the same policy. In Table III, we compare this to
Pratt’s policy [31], which relies on a state-machine architecture
and a number of proportional-derivative controllers. Our MPC
policy—with no additional tuning—can easily walk on all of
the terrains and reliably walks up inclines of up to ten degrees.
Pratt reports that Spring Flamingo can only walk up inclines
of five degrees without requiring the controllers to be re-tuned
[30].

E. Monte Carlo Initial Conditions

In order to assess the robustness of CI-MPC, we perform
Monte Carlo analysis on two systems: the hopper (2D) and the
quadruped. The robots are tasked with tracking a reference
gait and we initialize the systems with configurations that
are randomly perturbed from the reference trajectory. We use
100 randomly sampled initial conditions for each system; the
hopper recovers from significant orientation offsets and that
the quadruped is robust to large drops (Fig. 7).

10

Fig. 6: Biped walking from left to right across flat (top),
sinusoidal (middle), and piecewise linear (bottom) terrain
using the same policy.

VII. DISCUSSION

CI-MPC is capable of robustly tracking reference trajec-
tories through contact despite disturbances, model mismatch,
and uncertain environments. Additionally, we demonstrate that
these policies are capable of generating new contact sequences
online that are qualitatively distinct from their reference tra-
jectory.

An important approximation we make for the online
trajectory-optimization problem is using the strategically lin-
earized contact-implicit dynamics in the policy. This enables
expensive gradient computations and partial matrix factoriza-
tions to be performed in an offline stage, in order to substan-
tially reduce online computation. Despite the approximations
introduced by these simplifications, in practice, the controls
optimized for the linearized contact-implicit dynamics work
well in simulation for the nonlinear contact dynamics and
we have a demonstrably robust tracking controller that works
through contact events for a collection of different robotic
systems.

The physics of hard contact produces non-smooth and
discontinuous gradients. With our path-following method, we
can directly control the smoothness of the gradients in a prin-
cipled way via the central-path parameter. For simulation, this
tolerance is set to ρsim = 10−6 in order to produce realistic
hard contact. For the MPC policy, the parameter is fixed to
reduce online computation and the value, set to ρMPC = 10−4

for all of the examples, was selected empirically to balance
capturing accurate physics with producing usefully smooth
gradients. Indeed, we prioritize fast MPC updates by solving
the trajectory-tracking problem to coarse tolerances. In this
context, imposing very accurate physics would be wasteful in

TABLE III: Comparison between CI-MPC and Pratt state-
machine [31] policies for flamingo system on flat and inclined
terrains. We report the number of steps taken by the robot on
the flat terrain and compare the maximum incline traversed by
our policy in simulation with reported results† [30].

flat incline

CI-MPC +100 10 deg.
Pratt +100† 5† deg.

terms of computational resources. Additionally, we observed
that using smoother gradients enhanced the convergence of the
trajectory-tracking solver and likely enables the policy to more
easily discover new contact sequences.

In the examples, we compare our policy to a number of
system-specific control strategies. We note that these heuristics
work quite well on the particular system for which they were
designed, but that the approaches do not generalize to other
systems. For example, the Raibert hopping controller does not
transfer to the PushBot push-recovery scenario and the Spring
Flamingo walking controller is not directly applicable to the
quadruped. In contrast to these system-specific approaches, our
CI-MPC approach is successfully deployed to all the systems
in this work. Similar to the abilitiy of linear MPC to track a
reference trajectory for a wide range of systems with smooth
dynamics, CI-MPC is able to track reference trajectories for
a variety of systems with nonsmooth dynamics that make and
break contact with their environments.

Contact-implicit trajectory optimization [29, 25] is notorious
for poor convergence properties, despite typically relying on
robust large-scale constrained solvers for nonlinear program-
ming and even good warm starting. As a result, MPC with non-
linear contact dynamics is generally impractical. In this work,
we demonstrate that contact-implicit MPC can be reliable, by
utilizing selectively linearized contact dynamics; converging
despite disturbances and initial conditions with large offsets. In
practice, we find that the one-step contact-dynamics problem
always converges, largely enabled by a numerically robust
path-following method. Additionally, our bilevel-optimization
approach for MPC abstracts the lower-level contact-dynamics
inequality and complementarity constraints away from the
upper-level trajectory optimization problem, significantly im-
proving convergence behavior.

VIII. CONCLUSIONS AND FUTURE WORK

In summary, we have presented differentiable contact-
dynamics that can be utilized in an MPC framework that
performs robust tracking for robotic systems that make and
break contact with their environments. There remain many
exciting avenues to explore in future work. First, with a more
efficient implementation, and potential use of parallelization
and hardware acceleration, we expect CI-MPC can run in real-
time onboard quadruped and biped hardware. Second, instead
of linearization, it should be possible to perform higher-fidelity
convex MPC online by utilizing the nonlinear second-order
friction cone instead of its linearized approximation. Next, an
interesting comparison for CI-MPC would be against a nonlin-

11

Fig. 7: Monte Carlo simulations of initial conditions for sys-
tems tracking a reference trajectory. 100 initial configurations
are randomly sampled for a hopper (top) and quadruped
(bottom). Perturbations from the reference initial configuration
include large translations, tilts, and joint angles offsets. For all
the samples, and both systems, the policy successfully recovers
to the reference gait.

ear MPC implementation in terms of reliability and ability to
generate dynamic behaviors. A natural extension of this work,
which was focused on locomotion, is to the manipulation
domain where control through contact is similarly an open
problem. Finally, a library of templates, comprising reference
trajectories and associated MPC policies, could be assembled
to enable more diverse behavior online and Markov decision
processes could be optimized in a task-and-motion-planning
framework in order to generate complex long-horizon plans.

ACKNOWLEDGMENTS

This work was supported in part by Frontier Robotics,
Innovative Research Excellence, Honda R&D Co., Ltd, ONR
award N00014-18-1-2830, NSF NRI award 1830402, and
DARPA YFA award D18AP00064. Toyota Research Institute
(“TRI”) provided funds to assist the authors with their research
but this article solely reflects the opinions and conclusions of
its authors and not TRI or any other Toyota entity.

TABLE IV: CI-MPC runs at a fixed rate corresponding to the
reference trajectory’s rate fref. For all robotic systems, the
policy runs in real-time, meaning that the time required to
compute the control is always smaller than the time budget
1/fref. All experiments are run on a computer equipped with
an Intel Core i7-8750H processor.

system planning horizon rate
pushbot 1.60 s 25 Hz

hopper (2D) 0.10 s 100 Hz
hopper (3D) 0.20 s 100 Hz
quadruped 0.16 s 64 Hz

biped 0.23 s 64 Hz

REFERENCES

[1] Aaron D. Ames, Kevin Galloway, Koushil Sreenath,
and Jessy W. Grizzle. Rapidly exponentially stabilizing
control Lyapunov functions and hybrid zero dynamics.
IEEE Transactions on Automatic Control, 59(4):876–
891, 2014.

[2] Brandon Amos and J. Zico Kolter. Optnet: Differentiable
optimization as a layer in neural networks. In Interna-
tional Conference on Machine Learning, pages 136–145.
PMLR, 2017.

[3] Alp Aydinoglu, Victor M. Preciado, and Michael Posa.
Contact-aware controller design for complementarity
systems. In 2020 IEEE International Conference on
Robotics and Automation (ICRA), pages 1525–1531.
IEEE, 2020.

[4] Alberto Bemporad and Manfred Morari. Control of
systems integrating logic, dynamics, and constraints.
Automatica, 35(3):407–427, 1999.

[5] Gerardo Bledt. Regularized predictive control framework
for robust dynamic legged locomotion. PhD thesis,
Massachusetts Institute of Technology, 2020.

[6] Matthew Chignoli, Donghyun Kim, Elijah Stanger-Jones,
and Sangbae Kim. The MIT humanoid robot: Design,
motion planning, and control for acrobatic behaviors.
arXiv preprint arXiv:2104.09025, 2021.

[7] Richard W. Cottle, Jong-Shi Pang, and Richard E. Stone.
The linear complementarity problem. SIAM, 2009.

[8] Hongkai Dai, Andrés Valenzuela, and Russ Tedrake.
Whole-body motion planning with centroidal dynamics
and full kinematics. In 2014 IEEE-RAS International
Conference on Humanoid Robots, pages 295–302. IEEE,
2014.

[9] Filipe de Avila Belbute-Peres, Kevin Smith, Kelsey
Allen, Josh Tenenbaum, and J. Zico Kolter. End-to-end
differentiable physics for learning and control. Advances
in Neural Information Processing Systems, 31:7178–
7189, 2018.

[10] Ulisse Dini. Lezioni di analisi infinitesimale, volume 1.
Fratelli Nistri, 1907.

[11] Steven P. Dirkse and Michael C. Ferris. The PATH
Solver: A nommonotone stabilization scheme for mixed
complementarity problems. Optimization Methods and
Software, 5(2):123–156, 1995.

[12] Evan Drumwright. Rapidly computable viscous fric-

12

tion and no-slip rigid contact models. arXiv preprint
arXiv:1504.00719, 2015.

[13] Boston Dynamics. More Parkour Atlas, 2019. URL https:
//www.youtube.com/watch?v= sBBaNYex3E.

[14] Moritz Geilinger, David Hahn, Jonas Zehnder, Moritz
Bächer, Bernhard Thomaszewski, and Stelian Coros.
ADD: Analytically differentiable dynamics for multi-
body systems with frictional contact. ACM Transactions
on Graphics (TOG), 39(6):1–15, 2020.

[15] Nicolas Heess, Dhruva TB, Srinivasan Sriram, Jay Lem-
mon, Josh Merel, Greg Wayne, Yuval Tassa, Tom Erez,
Ziyu Wang, S. M. Eslami, et al. Emergence of loco-
motion behaviours in rich environments. arXiv preprint
arXiv:1707.02286, 2017.

[16] Eric Heiden, David Millard, Erwin Coumans, Yizhou
Sheng, and Gaurav S. Sukhatme. Neuralsim: Augment-
ing differentiable simulators with neural networks. arXiv
preprint arXiv:2011.04217, 2020.

[17] Kazuo Hirai, Masato Hirose, Yuji Haikawa, and Toru
Takenaka. The development of Honda humanoid robot.
In Proceedings. 1998 IEEE International Conference on
Robotics and Automation, volume 2, pages 1321–1326.
IEEE, 1998.

[18] Donghyun Kim, Jared Di Carlo, Benjamin Katz, Gerardo
Bledt, and Sangbae Kim. Highly dynamic quadruped
locomotion via whole-body impulse control and model
predictive control. arXiv preprint arXiv:1909.06586,
2019.

[19] Jonas Koenemann, Andrea Del Prete, Yuval Tassa,
Emanuel Todorov, Olivier Stasse, Maren Bennewitz, and
Nicolas Mansard. Whole-body model-predictive control
applied to the HRP-2 humanoid. In 2015 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems
(IROS), pages 3346–3351. IEEE, 2015.

[20] Masakazu Kojima, Nimrod Megiddo, Toshihito Noma,
and Akiko Yoshise. A unified approach to interior
point algorithms for linear complementarity problems: A
summary. Operations Research Letters, 10(5):247–254,
1991.

[21] Scott Kuindersma, Robin Deits, Maurice Fallon, Andrés
Valenzuela, Hongkai Dai, Frank Permenter, Twan
Koolen, Pat Marion, and Russ Tedrake. Optimization-
based locomotion planning, estimation, and control de-
sign for the Atlas humanoid robot. Autonomous Robots,
40(3):429–455, 2016.

[22] Jeongseok Lee, Michael X. Grey, Sehoon Ha, Tobias
Kunz, Sumit Jain, Yuting Ye, Siddhartha S. Srinivasa,
Mike Stilman, and C. Karen Liu. DART: Dynamic
animation and robotics toolkit. Journal of Open Source
Software, 3(22):500, 2018.

[23] Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen,
Vladlen Koltun, and Marco Hutter. Learning quadrupedal
locomotion over challenging terrain. Science Robotics, 5
(47), 2020.

[24] Zhongyu Li, Xuxin Cheng, Xue Bin Peng, Pieter Abbeel,
Sergey Levine, Glen Berseth, and Koushil Sreenath.
Reinforcement learning for robust parameterized lo-
comotion control of bipedal robots. arXiv preprint

arXiv:2103.14295, 2021.
[25] Zachary Manchester and Scott Kuindersma. Variational

contact-implicit trajectory optimization. In Robotics
Research, pages 985–1000. Springer, 2020.

[26] Jean Jacques Moreau. On unilateral constraints, friction
and plasticity. In New Variational Techniques in Mathe-
matical Physics, pages 171–322. Springer, 2011.

[27] Michael Neunert, Markus Stäuble, Markus Giftthaler,
Carmine D. Bellicoso, Jan Carius, Christian Gehring,
Marco Hutter, and Jonas Buchli. Whole-body non-
linear model predictive control through contacts for
quadrupeds. IEEE Robotics and Automation Letters, 3
(3):1458–1465, 2018.

[28] Jorge Nocedal and Stephen J. Wright. Numerical Opti-
mization. Springer, second edition, 2006.

[29] Michael Posa, Cecilia Cantu, and Russ Tedrake. A
direct method for trajectory optimization of rigid bodies
through contact. The International Journal of Robotics
Research, 33(1):69–81, 2014.

[30] Jerry Pratt and Gill Pratt. Intuitive control of a planar
bipedal walking robot. In Proceedings. 1998 IEEE
International Conference on Robotics and Automation
(Cat. No. 98CH36146), volume 3, pages 2014–2021.
IEEE, 1998.

[31] Jerry E. Pratt. Exploiting Inherent Robustness and Natu-
ral Dynamics in the Control of Bipedal Walking Robots.
PhD thesis, Massachusetts Institute of Technology, May
2000.

[32] Marc H. Raibert, H. Benjamin Brown Jr., Michael
Chepponis, Jeff Koechling, Jessica K. Hodgins, Diane
Dustman, W. Kevin Brennan, David S. Barrett, Clay M.
Thompson, John Daniell Hebert, Woojin Lee, and Bor-
vansky Lance. Dynamically stable legged locomotion.
Technical report, Massachusetts Institute of Technology
Cambridge Artificial Intelligence Lab, 1989.

[33] Jean-Pierre Sleiman, Farbod Farshidian, Maria Vittoria
Minniti, and Marco Hutter. A unified mpc framework
for whole-body dynamic locomotion and manipulation.
IEEE Robotics and Automation Letters, 6(3):4688–4695,
2021.

[34] David E. Stewart and Jeffrey C. Trinkle. An implicit
time-stepping scheme for rigid body dynamics with
inelastic collisions and coulomb friction. International
Journal for Numerical Methods in Engineering, 39(15):
2673–2691, 1996.

[35] Mandar Thombre, Zhou Joyce Yu, Johannes Jäschke,
and Lorenz T. Biegler. Sensitivity-assisted multistage
nonlinear model predictive control: Robustness, stability
and computational efficiency. Computers & Chemical
Engineering, 148:107269, 2021.

[36] Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo:
A physics engine for model-based control. In 2012
IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 5026–5033. IEEE, 2012.

[37] Yang Wang and Stephen Boyd. Fast model predictive
control using online optimization. IEEE Transactions on
Control Systems Technology, 18(2):267–278, 2009.

[38] Keenon Werling, Dalton Omens, Jeongseok Lee, Ioannis

https://www.youtube.com/watch?v=_sBBaNYex3E
https://www.youtube.com/watch?v=_sBBaNYex3E

13

Exarchos, and C. Karen Liu. Fast and feature-complete
differentiable physics for articulated rigid bodies with
contact. arXiv preprint arXiv:2103.16021, 2021.

[39] Eric R. Westervelt, Jessy W. Grizzle, and Daniel E.
Koditschek. Hybrid zero dynamics of planar biped
walkers. IEEE Transactions on Automatic Control, 48
(1):42–56, 2003.

[40] Alexander W. Winkler, C. Dario Bellicoso, Marco Hutter,
and Jonas Buchli. Gait and Trajectory Optimization
for Legged Systems Through Phase-Based End-Effector
Parameterization. IEEE Robotics and Automation Letters,
3(3):1560–1567, July 2018.

[41] Ichitaro Yamazaki, Saeid Nooshabadi, Stanimire Tomov,
and Jack Dongarra. Structure-Aware Linear Solver for
Realtime Convex Optimization for Embedded Systems.
IEEE Embedded Systems Letters, 9(3):61–64, September
2017.

Simon Le Cleac’h is a graduate student with the
Robotic Exploration Lab at Carnegie Mellon Uni-
versity and with the Multi-Robot Systems Lab at
Stanford University. He received his BS in Engineer-
ing from Ecole Centrale Paris in 2016 and his MS in
Mechanical Engineering from Stanford University in
2019. His research interests include optimal control
and game-theoretic optimization for robotic systems.

Taylor Howell is a graduate student at Stanford
University and with the Robotic Exploration Lab.
He received his BS in mechanical engineering in
2016 from the University of Utah and his MS in
mechanical engineering from Stanford University in
2019. His research interests include optimization and
control for robotic systems.

Mac Schwager is an assistant professor with the
Aeronautics and Astronautics Department at Stan-
ford University. He obtained his BS degree in 2000
from Stanford University, his MS degree from MIT
in 2005, and his PhD degree from MIT in 2009.
He was a postdoctoral researcher working jointly in
the GRASP lab at the University of Pennsylvania
and CSAIL at MIT from 2010 to 2012, and was an
assistant professor at Boston University from 2012 to
2015. He received the NSF CAREER award in 2014,
the DARPA YFA in 2018, and a Google faculty

research award in 2018, and the IROS Toshio Fukuda Young Professional
Award in 2019. His research interests are in distributed algorithms for control,
perception, and learning in groups of robots, and models of cooperation and
competition in groups of engineered and natural agents.

Zachary Manchester is an assistant professor in
the Robotics Institute at Carnegie Mellon University
and founder of the Robotic Exploration Lab. He
received a PhD in aerospace engineering in 2015 and
a BS in applied physics in 2009, both from Cornell
University. He was a postdoctoral fellow in the Agile
Robotics Lab at Harvard from 2015 to 2017 and an
assistant professor at Stanford from 2018 to 2020.
He received the NASA Early Career Faculty Award
in 2018 and a Google Faculty Research Award
in 2020. His research interest include numerical

optimization, control and estimation with applications to aerospace and robotic
systems with challenging nonlinear dynamics.

	I Introduction
	II Related Work
	II-A Model-Predictive Control
	II-B LCP Contact Dynamics

	III Background
	III-A Model-Predictive Control
	III-B LCP Contact Dynamics
	III-C Path-Following Method
	III-D Implicit-Function Theorem

	IV Differentiable Contact Dynamics
	IV-A Contact Dynamics
	IV-B Linearized Contact-Implicit Dynamics
	IV-C Differentiable Contact Dynamics
	IV-D Linearized Contact-Implicit Dynamics Solver

	V Contact-Implicit Model-Predictive Control
	V-A Trajectory Optimization
	V-B Model-Predictive Control
	V-C Contact-Height Heuristic

	VI Examples
	VI-A PushBot
	VI-B Hopper
	VI-C Quadruped
	VI-D Biped
	VI-E Monte Carlo Initial Conditions

	VII Discussion
	VIII Conclusions and Future Work
	Biographies
	Simon Le Cleac'h
	Taylor Howell
	Mac Schwager
	Zachary Manchester

